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ABSTRACT This study introduces and evaluates a methodology to define optimal integrated short and
long-term air pollution control measures, to support policy formulation by Local Authorities. The approach
utilized in this methodology is based on a receding horizon strategy. In this approach, an autoregressive
model provides the dynamic characteristics of air quality within a designated time period. The model is
established using daily observed data on pollutant concentration, meteorological variables, and estimated
emission data in the study area. The model is the core of a model predictive control based on the solution,
at each time step, of the resulting optimization problem. The effectiveness of the overall control has been
assessed in the context of controlling NO2 concentrations within the city of Milan. The outcomes of the
study demonstrate that this control system can serve as a valuable tool to assist Local Authorities in making
informed decisions regarding appropriate air quality management strategies.

INDEX TERMS Complex systems, control application, genetic algorithms (GAs), optimization, modelling,
simulation.

I. INTRODUCTION
In recent years, the heightened of nitrogen dioxide (NO2)
concentrations has gained increasing prominence as a
significant environmental concern, primarily due to its
well-established adverse effects on human health, spanning
from pulmonary to cardiovascular diseases [1], [2]. In fact,
exposure to nitrogen dioxide can cause coughing, wheez-
ing, and reduced lung function, especially in vulnerable
populations like children, the elderly, and individuals with
pre-existing respiratory conditions [1]. Moreover, long-term
exposure to NO2 is linked to the development and exacer-
bation of respiratory diseases like asthma and can increase
susceptibility to respiratory infections [3], [4]. Finally,
as an indirect effect, nitrogen dioxide contributes to the
formation of fine particulate matter and ground-level ozone,
which are associated with respiratory and cardiovascular
issues [5]. Strategies to address nitrogen dioxide (NO2)
pollution encompass a range of approaches spanning policy,
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promotion of clean transportation, improved urban planning,
technological innovation, and public awareness/behavioral
changes initiatives. Unfortunately, the complex nonlinear
phenomena governing the formation and accumulation of
NO2 in the atmosphere make the evaluation of the effects
of emission reductions needed from national/regional/local
authorities to take decision a really challenging task [6]. For
this reason, the scientific community has started developing
a series of tool based on the integration of control theory,
identification and optimization to support the definition of
suitable air quality management plan [7], [8], [9]. In this
work, a methodology based on model predictive control [10]
for the control of NO2 concentrations is presented and applied
to the Milan metropolitan area (Italy).

A. RELATED WORKS
Numerous studies have been undertaken to develop suitable
tools for assessing the impact of emission control strategies,
with the aim of supporting regional, national, and local
authorities in addressing this issue ( [11], [12], [13], [14],
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[15]). Based on the implemented solution/methodology these
tools can be divided in:

• Monitoring instruments, enabling policy makers to
assess the current concentration levels within a specified
area. They encompass tolls for managing measured
data [16], [17] and modeling systems capable of
integrating their outputs with virtually any accessible
measurement data [7], [18], [19];

• Forecasting tools, providing pollutant predicted concen-
trations within a specified area over a defined predictive
time-frame. These tools comprehend (i) models based
on data (data-driven) [20], capable of providing infor-
mation about the pollutant concentrations at monitoring
station locations, (ii) deterministic gridmodels [21], [22]
or (iii) models employing a combined method [23];

• Management/Planning solutions, enabling the definition
of air quality control measures in the designated
area [24], [25] through cost-effectiveness and/or multi-
objective methodologies [26], [27], [28].

In the context of this study, a novel methodology is
introduced for delineating both short-term (up to several
days) and long-term (1 year) emission control strategies
to mitigate nitrogen oxide (NO2) levels. While existing
literature typically addresses this problem in the long-
term, assuming a steady-state atmosphere conditions [26],
[29], [30], [31], the presented approach grapples with the
system’s nonlinearity and dynamics affecting the decisions.
In fact, unlike these solutions, this approach is based on the
identification of a data-driven model able to reproduce both
short term (few days) and long term (up to a year) pollutant
dynamics and follows a model predictive control approach
(MPC). MPC is widely used on control system community
in particular for industrial and robotic application [32],
[33], while only limited study has been performed for air
quality management and/or climate change control [9], [34].
Moreover, in order to take into account both short and
long term dynamic, a hierarchical model predictive control
problem has been formulated [10], where the control law
computed for the short term dynamic is used as a constraints
for the long term control problem. Thus, to the extend
knowledge of the authors, the main innovative aspects of
the research relates to (i) the formalization and solution of a
hierarchical model predictive control for a real-world system
far from the ‘‘standard’’ industrial and robotic application; (ii)
the use of a data-driven model approach to approximate the
real, strongly nonlinear, system starting from measured and
estimated data. The methodology’s efficacy is evaluated in
Milan, the capital of the Lombardia region in northern Italy,
to control the usually elevated levels of nitrogen oxide (NO2)
concentrations acting on nitrogen oxides (NOx) emissions.

II. METHODOLOGY
The problems is approached developing the two steps
methodology presented in Figure 1:

FIGURE 1. Methodology scheme.

• identification phase, where a data-driven relationship
among nitrogen dioxide (NO2) concentrations, meteo-
rological variables and nitrogen oxide (NOx) emissions
has been recognized and confirmed for the designated
region in order to calculate the daily average concentra-
tion;

• control definition phase, where an optimal control
problem is formalized and solved. The control aims
at (i) minimizing the the occurrence of short-term
critical events, specifically reducing the number of days
when the NO2 average daily concentration exceeds the
world health organization (WHO) limit threshold of
25µg/m3 and, (ii) ensuring that the annual average
concentration of NO2 remains below the specified limit
threshold of 10µg/m3.

A. MODEL IDENTIFICATION PHASE
The initial stage of the methodology involves establishing
a model for air quality management linking the daily
NO2 average concentrations with NOx emissions and mete-
orological variables, including wind speed, temperature and
solar radiation. As suggested in [9] the computation of the the
daily average concentration is performed using a relatively
simple ARX structure (Eq. (1)):

NO2av(i+ 1) = f (NO2av(i), . . . ,NO2av(Ni−NO2av ),

NOx(i+ 1), . . . ,NOx(i+ 1 − NNOx),

T (i), . . . ,T (i− NT ),WS(i), . . . ,

WS(i− NWS ),RF(i), . . . ,RF(i− NRF ))

=

NNO2∑
i

a(i) · NO2av(i)

+

NNOx∑
i

b(i) · NOx(i+ 1) +

NT∑
i

c(i) · T (i)

+

NWS∑
i

d(i) ·WS(i) +

NRF∑
i

e(i) · RF(i) (1)
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where:
• NO2(i)av [µg/m3] being the NO2 concentration at day i.
• NOx(i) [ton/day] representing nitrogen oxide emissions
NOx on day i.

• T (i) [◦C] representing the mean temperature in the area
on day i.

• WS(i) [m/s] representing the mean wind speed in the
area on day i.

• RF(i) [mm/day] representing the daily rainfall in the
area on day i.

• NNO2 representing the order of the autoregressive part.
• NNOx ,NT ,NWS ,NRF representing the exogenous inputs’
order.

• a, b, c, d, e being the coefficients of the autoregressive
part and exogenous inputs.

To account for the physical behavior of the phenomena
being investigated, a constrained optimization problem is
formulated for the purpose of identification, with the
objective of minimizing the mean squared error in sim-
ulations. This approach is chosen to restrict the gradient
between the model’s output and the controllable variable
(emission levels) to be positive, to guarantee a reduction in
concentration when emissions are decreased through control
measures. Since the model will be used to control the
annual average of NO2 concentration, thus over a fairly
long time frame, the interest lies in the behaviour of the
model in simulation. Because of the simulation errors being
minimised, the resulting optimization problem becomes non-
linear. Consequently, genetic algorithms are employed in this
phase for the solution of the problem, in order to mitigate the
risk of ending up in local minima.

B. CONTROL PHASE
The control phase adopts a two-step model predictive control
(MPC) approach, leveraging the model identified in (II.A)
to offer insights into the dynamics of the chosen air quality
pollutant over the horizon. MPC is founded on the concept
of iteratively optimizing control inputs by predicting the
system’s future states over a predetermined finite time
horizon. At every time step, a problem is solved through an
optimization, taking into account the system’s dynamics, the
constraints, and the selected objectives [10]. The optimization
problem for MPC can be mathematically expressed as
follows:

min J =

N−1∑
k=0

l(x(k), u(k)) + φ(x(N )) (2)

s.t. x(k + 1) = f (x(k), u(k)) k = 0, . . . ,N − 1 (3)

x(0) = x0 (4)

where:
• J represents the cost function to be minimized over the
prediction horizon [0,N ].

• N is the prediction horizon, determining the finite time
span over which future states are predicted and control
inputs optimized.

FIGURE 2. Diagram showing how the control is performed.

• x(k) denotes the system state at time step k .
• u(k) represents the control input at time step k .
• l(x(k), u(k)) represents the stage cost at time step k ,
capturing the immediate cost associated with the system
state and control input at that time.

• φ(x(N )) is the terminal cost, representing the cost
associated with the predicted system state at the end of
the horizon.

• f (x(k), u(k)) represents the system dynamics that
describe how the state evolves over time.

• x(0) = x0 is the initial condition of the system.
MPC proves particularly advantageous when addressing
intricate, non-linear systems with imposed constraints.

In this context, the control law is compute first solving
the short term control for a forecasting timeframe of N days,
(within the range j until j+N−1) and then a long term control
for a longer predictive horizon of up to the end of the year
solving the two following optimization problems (Figure 2),
respectively:

1) SHORT-TERM CONTROL

min
j+N−1∑
i=j

NO2exc(i) (5)

s.t. NO2exc(i) = h(NO2av(i)) (6)

NO2av(i+ 1) = f (·,NOxav(i+ 1), . . . ,

NOxav(i+ 1 − nNOx)),

i = j . . . j+ N − 1 (7)

NOx(i) = u_st(i) · NOx(i) i = j . . . j+ N − 1 (8)

NO2av(i) ≥ 0 i = j . . . j+ N − 1 (9)

1 ≤ u_st(i) ≤ LBst (10)

where:
• u_st(i) representing the control variables for the short
term problem. It represents the total percentage reduc-
tion of NOx emissions for the short term; u_st(i) =

1 when the pollutant emission reduction is null on the
i− th day, 0 when it’s equal to 100%.
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• N is the receding horizon for the short term (15 days).
• NO2exc(i) being the number of NO2 daily concentration
exceeding; it represents the Boolean (equal to 1 when
exceeding occurs, 0 otherwise).

• h is the identified function that find occurrence or not of
a surplus (average daily concentration > 25 µg/m3 at
day i) on the basis of the average daily concentration.

• NO2av(i) being the average NO2 daily concentration (at
day i).

• NOx representing the NOx emissions in the baseline
scenario (without any reduction implemented).

• f (·,NOxmax(i + 1), . . .NOxmax(i + 1 − nNOxmax )),
f (·,NOxav(i+ 1), . . .NOxav(i+ 1 − nNOxav )) being the
models determined in the Section II-A and representing
the system dynamics.

• LBst being the selected lower bound for the decision
variables in the given problem.

2) LONG-TERM CONTROL

min
[(

1
365

·

365∑
i=1

(
NO2av(i)

))
− NO2_ltsp(i)2

]
(11)

s.t. NO2av(i+ 1) = f (·,NOxav(i+ 1), . . . ,

NOxav(i+ 1 − NNOx)),

i = 1, . . . , 365 (12)

NOx(i) = u_lt(i) · NOx(i), i = 1, . . . , 365 (13)

NO2av(i) ≥ 0 i = 1, . . . , 365 (14)

u_st(i) ≤ u_lt(i) (15)

1 ≤ u_lt(i) ≤ LBlt (16)

where:
• u_lt(i) representing the control variables for the short
term problem. It represents the total percentage reduc-
tion ofNOx emissions for the short term; u_st(i)=1 when
the pollutant emission reduction is null on the i− th day,
0 when it’s equal to 100%;

• h is the identified function that find occurrence or not of
a surplus (average daily concentration > 25 µg/m3 at
day i) on the basis of the average daily concentration;

• NO2av being the average NO2 daily concentration (on
day i);

• NO2_ltsp(i) representing theNO2 concentration set-point
for the long term (according to the WHO guidelines
equal to 10 µg/m3);

• NOx being the NOx emissions in the base case (no
reduction applied);

• f (·,NOxmax(i + 1), . . .NOxmax(i + 1 − nNOxmax )),
f (·,NOxav(i+ 1), . . .NOxav(i+ 1 − nNOxav )) being the
models identified in Section II-A.

• LBlt being the selected lower bound for the decision
variables in the given problem.

The objective functions (5) and (11) are designed to
minimize the number of days with average nitrogen dioxide
concentration surpassing the WHO limit and to keep its

yearly mean concentration as near as possible to the set-point,
respectively. This set-point may potentially vary for different
periods of the year. Equations (6), (7), and (12) illustrate
the system dynamics identified in Section II-A, whereas
constraints (8) and (13) delineate the pollutant emissions
subsequent to the implementation of the control actions
u_st(i) and u_lt(i). Equations (9) and (14) constraint the
average daily values of nitrogen dioxide concentrations not
to be negative. (15) binds the second control problem (long
term) to the short one by applying percentage reductions that
are greater than or equal to those defined in the short-term
control. Finally, constraints (10), (16) define the upper and
lower bounds of the control actions for the problem.

As (5) and (11) define a problem with a non-linear
objective function, a solver based on genetic algorithms has
been employed to compute the solution for each interval from
j to j+ N − 1.

C. GENETIC ALGORITHMS
Genetic algorithms are a class of meta-heuristic algorithms
that simulate the evolution of a population of tentative
solutions based on principles inspired by natural selection and
genetics [35], [36], [37]. Typically, these algorithms consist
of the following components:

• Population. A finite population of individuals represents
potential solutions to a given problem.

• Fitness Function. A fitness function evaluates the
quality of each solution and provides guidance on
which individuals are most suitable for reproduction.
In a classic optimization problem this is the objective
function.

• Genetic Operators. These operators transform the cur-
rent population into the next generation. They include:
- - Selection operator: akin to natural selection,

involves identifying the most high-performing
individual, namely, the most promising solutions.

- - Crossover operator: it combines the genetics of
top-performing individuals to create hybrid solu-
tions which then become integrated into the subse-
quent populations.

- - Mutation operator: new individuals are introduced
by making small, random modifications to current
solutions.

• Termination Criterion: the process of generating the new
population is reiterated until one or more predefined
stop conditions are met. Some of the most frequently
encountered criteria include:
- - Reaching a predefined iteration number.
- - Failing to achieve consistent improvement in the

solution over a specified number of iterations.
- - The exceeding of a predefined time limit.

The critical aspect of using genetic algorithms lies in defining
an appropriate fitness function that accurately evaluates the
quality of the evolved sets of solutions. The algorithm can be
divided into several phases, as can be seen in Figure 3:

VOLUME 12, 2024 10763



L. Sangiorgi, C. Carnevale: MPC Methodology to Integrate Short and Long Term Air Quality Objectives

FIGURE 3. Flow chart of a genetic algorithm.

• Population Initialization: initially, a population of indi-
viduals is created entirely at random. This population
then iteratively evolves until an optimal solution is
found.

• New Population Generation: during this stage, the initial
population undergoes evolution through the three oper-
ations mentioned: selection, crossover, and mutation.

• Termination Test: the process of generating a new
population continues until one or more of the predefined
stop criteria are satisfied, such as reaching a fixed
iteration limit, achieving no significant improvement,
or surpassing a specified time constraint.

III. APPLICATION AND RESULTS
The proposed methodology has been implemented for
effectively addressing air quality management, specifically
focusing on NO2 levels, in the Milan agglomeration, located
in Lombardia, Italy.

The Milan agglomeration encompasses the entire local
jurisdiction, spanning a territory of 182 square kilometers
and accommodating a population of 1,357,944 residents.
Milan is recognized for having one of the poorest air quality
records in Europe, primarily due to the extensive presence
of road transportation and road and railway infrastructure,
which contribute significantly to pollutant emissions within
the municipality. Additionally, emissions from heating and
industrial combustion also play a role. The WHO proposed
a limit of 10 µg/m3 as the maximum allowable annual
average concentration of NO2 to safeguard public health,
while regarding the average daily limits, the legal threshold
is set at 25 µg/m3, which should not be surpassed more than

3 or 4 occurrences in a year (99th percentile). Moreover, the
objective is to strike a balance between achieving air quality
standards and minimizing the potential social disruptions
caused by stringent emission reduction actions.

A. MODEL IDENTIFICATION PHASE
During the initial phase of themethodology, an autoregressive
model has been identified using a dataset spanning from
January 2014 to September 2020. This dataset encompassed:
(i) daily average concentrations ofNO2 overMilan area, com-
puted starting from the data monitored in ARPA Lombardia
stations; (ii) daily NO2 emission values derived from the
annual emission database provided by INEMAR, distributed
across various macrosectors/activities (i.e. industry, domes-
tic heating, road transport) [38]; and (iii) meteorological
data collected from 21 monitoring stations situated in the
municipality of Milan and its surrounding areas. More
in details, the concentrations and meteorological variables
are calculated as the averages derived from data collected
at all monitoring stations within the Milan municipality.
Additionally, emissions are computed as the sum across the
entire area of Milan.

As stated in Section II-A, in order to maintain the
cause-effect relationship between emission and concentra-
tions, the model identification has been carried out solving
an optimization problem with a positive relationship between
emissions and concentrations as a constraint by means
of genetic algorithms using tuples from 2014 to 2018.
The model validation (and the tests on the definition of
the different control laws) have been performed with the
2019 data. In order to select the best model structure,
a wide range of tests has been performed, varying the
autoregressive and exogenous part orders. The resulting best
performing model over the validation dataset has order 3 for
autoregressive part and 2 for the exogenous input (Eq. (17)):

NO2av(i+ 1) = f
(
NO2av(i),NO2av(i− 1),

NO2av(i− 2),NOx(i+ 1),NOx(i),

T (i),T (i− 1),WS(i),WS(i− 1),

RF(i),RF(i− 1)
)

= 0.045 · NO2av(i)

+ 0.069 · NO2av(i− 1)

+ 0.18 · NO2av(i− 2)

+ 0.65 · NOx(i+ 1) + 0.23 · NOx(i)

+ −0.20 · T (i) − 0.63 · T (i− 1)

+ −0.049 ·WS(i) + 0.04 ·WS(i− 1)

+ 0.009 · RF(i) + 0.01 · RF(i− 1) (17)

Table 1 shows the performance of the selected model in
terms of:

• Normalized Mean Error:

NME =

∑Nv
k=1 NO2k − NO2k∑Nv

k=1 NO2k
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TABLE 1. Performance of the ARX model for the computation of the
average daily concentration on the validation years.

• Normalized Mean Absolute Error:

NMAE =

∑Nv
k=1 |NO2k − NO2k |∑Nv

k=1 NO2k

• Correlation Coefficient:

Corr

=

∑Nv
k=1(NO2k − µNO2)(NO2k−µNO2)√∑Nv

k=1(NO2k − µNO2)2 ·

√∑Nv
k=1(NO2k − µNO2)

2

Here, Nv represents the number of tuples in the validation
dataset, NO2k and NO2k denote the computed and measured
NO2 daily mean concentrations on day k of the validation
dataset (for the years 2019 and 2020, respectively). Fur-
thermore, µNO2 and µNO2 represent their averages over the
validation dataset.

We can see that all the calculated statistical indexes allow
us to assume that the model captures the trend of the
average daily NO2 concentrations over time quite accurately
(Table 1). Notice that the models leads to the results of
the average daily concentration for the long and short term
control definition. As the model is intended for control
definition over a relatively extensive period (ideally, the entire
year), its performance is assessed by computing the output in
a simulation scenario. In this simulation, only the initial value
of NO2 concentrations is assumed to be known.

B. CONTROL PHASE
The control objective is to determine the percentage of actions
to be applied in the short and long terms to reduce the
level of nitrogen dioxide concentrations. Coherently with the
methodology presented in Section A, the integrated control
system is based on the definition of two control laws with
different time horizons:

• Short-term horizon: the control objective is to limit any
possible excess of the average daily NO2 concentration
(25 µg/m3) over a short-term time horizon of 15 days;

• Long-term horizon: the control has the objective of
ensuring that the annual average NO2 concentration
must be below the European legal limit close to
10 µg/m3, in order to do not overcontrol the system,
causing unnecessary impacts on the population.

The overall control systemfirst tests if in the next 15 days at
least one exceedance will occur and eventually start defining
the control law in order to limit its number. The impact of the
defined control law on both exceedances and yearly average
will be computed, applying the control for a control horizon

TABLE 2. Configuration of genetic algorithm for the control phase.

of 5 days. If the yearly average is higher than 10 µg/m3, the
long-term control will be applied. The choice of first applying
the short-term control problem instead of the long-term one
(provided that their conditions of application are verified)
was dictated by the immediate and priority need of avoiding
surpluses of nitrogen dioxide in the near future in order
to avoid serious consequences on public health and on the
environment, so it is essential to reduce concentrations in
order to guarantee a healthier environment in the short term.
Optimal long-term control, on the other hand, remains crucial
to maintain an annual average of NO2 below the established
threshold, thus ensuring sustainable air quality over time.
In summary, this strategy integrates the immediate needs
of public health and the long-term needs of environmental
sustainability, ensuring that the goal of reducing pollution is
effectively addressed in both time frames.

1) CONTROL VARIABLES
In this application, the control variables have been expressed
as the daily percentage reduction u(i) that the local authority
could implement to decrease the NOx(i) emissions on the i−
th day.

2) TEST DEFINITION
In order to evaluate the impact of the integration between
short and long term control, three different test cases are
performed and compared:

• Case 1: the full methodology (integration of short and
long as presented in Section II) is applied.

• Case 2: only the short term control is applied.
• Case 3: only the long term control is applied.
Each of the case studies was compared with the uncon-

trolled cases. Moreover, 3 values of lower bound for u have
been considered: 0.75 (maximum reduction of 25% with
respect to the uncontrolled case); 0.5 (maximum reduction of
50% with respect to the uncontrolled case); 0.25 (maximum
reduction of 75%with respect to the uncontrolled case); while
the upper bound is always set equal to 1 (when no emission
reduction is applied).

The configuration of the genetic algortihm (Table 2) has
been selected after a series of test on the more challenging
(for the algorithm) case, i.e. full methodology (short+long
control), with lower bound equal to 0.25.

3) RESULTS
Table 3 compares the results obtained from the different
computed optimisations with each other and with the
uncontrolled case.
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TABLE 3. Comparison of the annual average and the number of
exceeding cases between the different implemented cases).

FIGURE 4. Average NO2 concentration for the controlled and
uncontrolled cases.

FIGURE 5. Comparison of the annual average concentration for the
controlled and uncontrolled cases.

It clearly shows that the annual average concentration
in the uncontrolled case has a value very close to 43.1
µg/m3 while when the hybrid control is performed, the
control law is able to lower the values of the nitrogen dioxide
concentrations to a value of 29.26 µg/m3, 16.18 µg/m3 and
10 µg/m3 respectively for the 3 different lower bounds

FIGURE 6. Comparison of the exceeding for the controlled and
uncontrolled cases.

FIGURE 7. Emission reduction percentage applied for the short and long
term control of the different lower bounds tested.

applied in the tests (0.75, 0.5 and 0.25). The control is
capable of decreasing the concentration of nitrogen dioxide
in the atmosphere in all performed cases, reaching the
predefined set point when reducing concentrations by 75%
(remembering that this case is hardly applicable in real life).
As far as the number of daily excesses is concerned, the
control once again demonstrates that it is possible to reduce
the number of days with pollutant concentration above the
threshold by a percentage equal to 60%, 80% and 97% in the
three cases mentioned above. Concerning the short and long
term separate control, as shown in Table 3, they are also able
to reduce the annual average concentration and the number of
exceeding but by a smaller percentage when compared with
the hybrid one. The trend in the control action takes on the
lowest value, i.e. with maximum reductions, almost always
in the colder months and slightly higher values in the central
months, denoting a slight reduction in applied actions, while
in the changing seasons it takes on more variable values from
one day to the next.
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Figure 4 shows how in the winter months there is a more
aggressive action, while in the summer months the action
is reduced by around 3-4% compared to the cold months.
Despite this, it is important to emphasise that the controllers
further reduce the value of the NO2 concentrations. Further-
more, Figure 5 and 6 show how the number of exceeding in
the controlled case are reduced by the policies’ application
reduction and the resulting annual average concentration
for the differente perfomend tests, respectively. Moreover,
Figure 7 plots the percentage reduction applied, showing that,
in particular in the last part of the year, a strong control action
need to be performed to stay as close as possible to WHO
standards.

IV. CONCLUSION
This work introduces and applies a receding horizon, data-
driven control approach. The methodology is structured into
two distinct phases: (i) the identification of a model that
characterizes the daily average nitrogen dioxide concen-
trations and (ii) the development and implementation of
control strategies. The implementation of the model enable
the identification of optimal action percentage to be taken in
the short and long term if certain threshold limits are exceeded
in order to reduce the concentrations of the pollutant under
study. The approach involves forecasting air quality, initially
in the short term and then in the long term, to ensure that
both daily and yearly average nitrogen dioxide concentrations
remain below the legally established thresholds.

The implementation of this approach utilized short and
long term control algorithms employing a receding horizon
technique. The algorithm anticipates the emission reduction
percentage to be applied over the next fifteen days from a
predefined set of options. The model was applied across the
entire Milan metropolitan area for the entirety of 2019, and
genetic algorithms were employed to optimize the selection
of actions.

The control algorithms are developed and compared for
managingNO2 concentrations. In all tested scenarios, the sys-
tem successfully lowered the annual average concentration
and the number of daily exceedances in the year. However,
in order to get closer to the WHO threshold guidance, a big
effort needs to be done, lowering the level of NOx emissions
up to 75%.
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