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ABSTRACT The presence of sparsity in both input features and weights within convolutional neural
networks offers a valuable opportunity to significantly reduce the number of computations required during
inference. Moreover, the practice of compressing input data serves to diminish storage requirements and
lower data transfer costs, ultimately enhancing overall power efficiency. However, the compression of
randomly sparse inputs introduces challenges in the input matching process, often resulting in substantial
hardware overhead and increased power consumption. These challenges arise due to the irregular nature
of sparse inputs and the variability in convolutional strides. In response to these challenges, this research
introduces an innovative data compression method, named Stride-Aware Sparsity Compression (StarSPA),
designed to effectively locate valid input values and expedite the multiplication process. To fully capitalize
on this proposed compression method, a weight-stationary approach is employed for efficient convolution.
Comprehensive simulations demonstrate that the proposed accelerator achieves speedup factors of 1.17×,
1.05×, 1.09×, 1.23×, and 1.12× when compared to the recent accelerator named SparTen for AlexNet,
VGG16, GoogLeNet, ResNet34, and EfficientNetV2, respectively. Furthermore, FPGA implementation of
the core reveals a noteworthy 2.55× reduction in hardware size and a 5× enhancement in energy efficiency
when compared to SparTen.

INDEX TERMS AI accelerator, convolutional neural networks (CNNs), data compression, dataflow,
network on a chip (NoC).

I. INTRODUCTION
The unprecedented success of deep neural networks (DNNs)
has established their irreplaceable role in numerous mod-
ern applications, such as autonomous vehicles [1], computer
vision [2], [3], [4], [5], [6], natural language processing [7],
recommendation systems [8], and more [9], [10]. Among
the prevalent algorithms of DNNs, convolutional neural
networks (CNNs) have particularly excelled in computer
vision. CNNs discern meaningful features from complex
input images through the use of multiple filters, trained
on extensive sample data [11]. With a sufficient training
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dataset, CNNs exhibit the capacity to learn high-level features
and achieve performance surpassing human capabilities [12].
However, the inference processes of CNNs frequently neces-
sitate extensive computations, often involving hundreds of
millions of operations [13], [14]. This is due to the utiliza-
tion of 2-D convolution operations applied to relatively large
input feature maps [15]. Such a computational burden can
constrain the utility of CNNs in applications that demand
high-speed processing or operate within energy-constrained
environments, such as mobile devices. Moreover, there is a
foreseen trend towards the development of increasingly com-
plex, deep, and large-scale CNNs to meet the requirements
of more intricate processing tasks [16]. For instance, in com-
parison to AlexNet [2] from 2012, which had 60 million
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parameters and required 630 million computations, by 2021,
NFNet [17] has expanded its parameter size by over sevenfold
and increased its computational load by a factor of 520. This
highlights the pressing need for enhancements in both the
computational speed and energy efficiency of CNN inference
accelerators.

Leveraging the inherent sparsity present in CNNs pro-
vides an efficient and compelling approach to address these
requirements. This advantage is rooted in the fundamental
nature of convolution, which involves numerous Multiply-
Accumulate (MAC) operations between weights and input
features. When either or both of these operands are zero,
the MAC operation has no impact on the final result. This
understanding suggests the feasibility of straightforward and
effective optimization techniques, such as halting or bypass-
ing computations when one of the operands is zero. These
optimization strategies not only conserve energy but also
expedite the computation process. Additionally, it is impor-
tant to highlight that sparse weights and features can be
compressed, resulting in reduced storage requirements and
minimized data transfer overhead [18], [19].

Fortunately, sparsity is a prevalent characteristic within
CNN models, and it is notably driven by the extensive use of
Rectified Linear Unit (ReLU) activation functions [20], [21],
which result in the transformation of negative feature val-
ues into zeros. In our empirical observations using popular
datasets, the application of ReLU activation functions leads
to approximately 50%-70% of the features being con-
verted to zero values [22]. This level of sparsity tends
to increase in deeper layers of the network. Furthermore,
akin to biological neural systems, a significant proportion
of weights within CNNs are zero-valued, typically ranging
from 20% to 80% without any discernible impact on model
accuracy [19], [23], [24]. In practice, CNNs are intentionally
initialized with redundant weights, and pruning is subse-
quently applied using various algorithms, often followed by
retraining. Common pruning algorithms include magnitude-
based [23], energy consumption-based [25], or model
accuracy-based [26] approaches.
Nonetheless, designing DNN accelerators capable of har-

nessing the advantages of sparsity poses considerable chal-
lenges for the following reasons:
1. Irregular Data Access Patterns: The data access pattern

of CNNs inherently exhibits regularity and predictability.
This characteristic remains consistent even when gat-
ing zero-involved computations (ineffectual) to enhance
power efficiency. However, to truly maximize through-
put, the ineffectual computations should be replaced with
effectual ones where both inputs are non-zero. This typi-
cally necessitates additional hardware to actively search
the input memories for effectual inputs and buffers to
store these inputs for future computations. The com-
plexity is further compounded because the input data is
often subjected to compression for various advantages,
resulting in unpredictability of exact locations of non-
zero values. Dealing with this unpredictability typically

demands sophisticated hardware for decoding and buffers
for staging valid input values to facilitate seamless access
by Processing Elements (PEs). Furthermore, the complex-
ity escalates when considering variations in the stride of
convolution layers. Different strides necessitate distinct
input data patterns, requiring the input decoder logic to
accommodate this stride information during the decod-
ing process, further amplifying circuit complexity. For
example, Spartan [27] employs prefix sums and priority
encoders to locate valid input pairs (where both inputs
are non-zero and located at matching positions for a valid
convolutional operation), utilizing up to 62.7% of the
area and consuming 46% of the total power. SCNN [22]
relies on the Cartesian product, assuming that each fil-
ter weight multiplies with every feature. However, this
assumption holds true only for unit-stride convolutions,
limiting the applicability of SCNN to specific CNNs.
GoSPA [15] mandates a complex circuit to decode posi-
tion IDs and convolutional IDs for every input feature,
in addition to a substantial input buffer to store the
inputs.

2. Workload Imbalance and Low PE Utilization: In order
to attain a high throughput while addressing the inherent
data irregularity, it becomes essential to allocate input
buffers for the PEs. Leveraging the nature of convolution,
data is typically broadcast from memory to the PEs to
minimize the number of memory accesses. However, the
randomness of input data sparsity results in variations in
the number of effectual computations among the PEs. This
variance in computation leads to distinct processing times
across the PEs. Consequently, the overall throughput of the
CNN accelerator is constrained by the PE with the highest
number of non-zero MAC operations, ultimately resulting
in reduced PE utilization [18], [27].

Structured sparsity, on the other hand, intentionally intro-
duces regularity to sparse inputs, aiming to partially mitigate
the irregular access pattern and workload imbalances among
the PEs [28]. However, this approach may come at the cost
of a more significant compromise in accuracy compared to
unstructured sparsity [29], [30], [31]. For instance, when
applied to ResNet50 [32], unstructured pruning achieves a
compression ratio of 5.96×while maintaining the same accu-
racy as the original network. In contrast, structured pruning
only attains a compression ratio of 1× [33].

This paper introduces an innovative data compression for-
mat aimed at simplifying input data matching. The final
output features of a layer are compressed based on param-
eters from the subsequent layer, such as stride information.
As a result, the subsequent layer can read input data contin-
uously without requiring complex input matching circuitry.
FIGURE 1 illustrates the contrast between conventional
architectures and the proposed architecture. In the pro-
posed architecture, the output features are compressed in
a ready-for-use format for the subsequent layer. Primar-
ily, this approach alleviates the critical data path associated
with input processing by conducting it during a less critical

10894 VOLUME 12, 2024



N.-S. Pham et al.: StarSPA Compression for Efficient CNN Acceleration

FIGURE 1. Data movement in (a) conventional architectures, and
(b) proposed architecture.

duration without compromising the efficacy of data compres-
sion. The proposed data compression technique seamlessly
integrates into a weight-stationary dataflow with ping-pong
double buffering, facilitating contiguous PE operations.
This approach reduces PE underutilization and mitigates
workload imbalances. The key contributions of this work
include:

• We introduce an efficient data compression format
named Stride-Aware Compressed Sparse Row (SCSR),
which significantly reduces the complexity of input
matching logic while ensuring high-performance
operation.

• Additionally, we integrate the proposed data compres-
sion method into a weight-stationary dataflow with
ping-pong double buffering to enable uninterrupted data
flow through PEs. This maximizes input data reuse,
reduces workload imbalances among PEs, and ulti-
mately increases throughput.

Comprehensive experiments using cycle-accurate simulators
and actual hardware implementations validate the efficacy of
our solutions, demonstrating substantial improvements over
state-of-the-art approaches in terms of speedup, hardware
size, and energy efficiency. The subsequent sections of this
paper are organized as follows: Section II discusses recent
CNN accelerators, Section III introduces the proposed data
compression method, Section IV explains the dataflow using
this compression method in detail, Section V presents the
accelerator’s architecture, Section VI provides implementa-
tion details and simulation results, and finally, Section VII
concludes the paper.

II. RELATED WORKS
The advantages of sparsity exploitation extend beyond the
mere reduction of MAC operations, resulting in height-
ened energy efficiency and enhanced system throughput.
By harnessing the inherent compressibility of intermediate
output features and weights, a notable reduction in the gen-
erated data size can be achieved. This reduction not only
minimizes the number of memory access but also enables
the sufficient storage of data within low-energy internal
SRAM. Given the substantial costs associated with external
DRAM access, which normally 20 times more expensive
than a SRAM access [34], this data compression represents
a significant advantage for sparsity-aware accelerators. Con-
sequently, most sparsity-aware CNN accelerators incorporate
sparse compression to mitigate data size. These compression
methods can be broadly categorized into three main types:
symbol-based methods, absolute indexing methods, and rel-
ative indexing methods, as illustrated in FIGURE 2.

FIGURE 2. Sparse data compression methods. (a) Original sparse matrix.
(b) Symbol-based method. (c) Absolute indexing method. (d) Relative
indexing method.

TABLE 1 provides an overview of recent noteworthy
sparsity-aware architectures, encompassing both one-sided
and two-sided approaches, along with the data compres-
sion formats they employ. One-sided sparsity exploitation,
which targets the mitigation of sparsity in either filter
weights or input features, is generally characterized by its
relatively straightforward implementation and less intricate
hardware design compared to two-sided sparsity techniques.
For example, architectures like Cnvlutin [16], Eyeriss [35],
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and NullHop [36] employ different data compression for-
mats to simplify the omission of zero values in features.
However, they only gate computations involving zeros in
weights rather than completely excluding them, and they do
not compress the weights. In contrast, Cambricon-X [37] is
specifically designed to exclude zero values in weights while
preserving the sparse representation of features. Another
illustration, Tensaurus [38], focuses on the flexible accel-
eration of sparse tensors, dense tensors, and mixed tensors
by introducing a novel sparse storage format known as
Compressed Interleaved Sparse Slice (CISS). This format
not only reduces data transport costs but also enhances the
computational efficiency. It is worth noting that Tensaurus
is exclusively applicable to weights and does not address
sparsity in features.

TABLE 1. Recent sparsity-aware CNN accelerators.

Recent efforts to improve the acceleration of Generalized
Sparse-Matrix-Matrix Multiplication (SpGEMM) through
efficient data organization have gained significant attention.
For example, SIGMA [39] has adopted the ZVC format to
simplify the process of locating valid input pairs. It makes
use of a dynamic stream and a search window to identify
data that can be paired, relying on the coordinate information
from the static stream. Notably, this architecture employs
a search window with just four elements, a choice that
may prove inadequate in generating valid input pairs, espe-
cially in situations with high levels of sparsity. In contrast,
ExTensor [40] considers both dynamic streams from the two
inputs and uses an intersection operation to identify valid
pairs. To streamline the process of skipping unnecessary
values, both input streams are compressed in the CSR format.
When a ‘‘skipto()’’ function is triggered on one of the inputs,
the expectation is that the corresponding destination point
in the other input contains a non-zero value, ensuring the
creation of a valid input pair. Otherwise, it leads to a period
of inactivity for PE.

On the other hand, SpArch [41], OuterSPACE [42], and
MatRaptor [43] have been developed to implement an outer-
product (or input-stationary) dataflow. This choice serves to
mitigate the inefficiencies associated with the inner-product
dataflow’s input matching process. SpArch employs the con-
ventional CSR format, while OuterSPACE and MatRaptor
introduce modified versions of the CSR format, denoted
as Compressed Row (CR) and Channel Cyclic Sparse
Row (C2SR), respectively, with the aim of improving data
reuse and enhancing memory read-write efficiency. However,
it is important to note that these architectural solutions do
not address the handling of convolutional stride variations.
This oversight can lead to inefficient computations when
not appropriately managed or potentially result in additional
hardware and power overhead.

Eyeriss v2 [18] addresses the challenge of two-sided
sparsity by employing a strategy that involves streaming
CSC-based features alongside CSC-based weights. In this
approach, for each non-zero feature, an exhaustive search
is conducted to identify all valid weights, and these valid
pairs are subsequently buffered for processing by the MAC
units. However, it is worth noting that due to the diversity
of strides in various convolutional layers and the relatively
large size of the input feature maps, the circuit responsible
for searching for valid weights incurs a significant power
and hardware overhead. Consequently, when compared to
the original Eyeriss architecture [35], Eyeriss v2 occupies
approximately 93% more hardware space.

Sparse CNN (SCNN) [22] is specifically designed to
address two-sided sparsity in CNNs by implementing a
Cartesian product dataflow on a data format based on RLE.
Similar to the input-stationary dataflow, this unique dataflow
architecture eliminates the need for a costly input-pair
searching circuit. Nevertheless, SCNN encounters several
significant challenges. Firstly, the Cartesian product dataflow
often experiences data congestion in its output-scatter net-
work. This arises because products of the same output can
be computed concurrently at multiple locations, requiring
additional buffers and intricate data routing. Secondly, the
Cartesian product approach does not account for convolu-
tional stride, as it involves multiplying every input feature
with all non-zero weights. This approach is not suitable for
strides other than one or when the input features are located
at the boundary of the input feature map.

In contrast to SCNN, SparTen [27] employs an inner-
product approach, which involves intersection operations to
identify non-zero matching pairs of inputs before execut-
ing multiplications. Like other methods that rely on input
matching, SparTen utilizes the ZVC format for both input
features and weights, simplifying the process of searching
for valid input pairs. To ensure an ample supply of valid
inputs, SparTen utilizes a relatively large search windowwith
a size of 128 elements. However, this strategy results in sig-
nificant hardware and power costs. Specifically, the analysis
of area and power consumption has revealed that the prefix
sum components account for 54.6% and 40.6% of the total,
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respectively, making substantial contributions to SparTen’s
overall hardware and power overhead.

GoSPA [15] treats input features as dynamic data streams
and weights as stable ones, employing a global search
approach to compute all possible operations for every non-
zero feature. Subsequently, only the required PEs receive the
features, as opposed to broadcasting them to all PEs, a com-
mon practice in many other architectures. This approach
minimizes unnecessary data movement and allows the archi-
tecture to adapt to variations in convolutional strides through
its global search algorithm. However, it is important to
acknowledge that this circuit adds significant hardware and
power costs. Furthermore, GoSPA’s performance is limited
by its input buffering stage, where only necessary input fea-
tures are buffered one at a time, every clock cycle. The buffers
remain idle when unnecessary features arrive, potentially
causing the PEs to lack sufficient input data for processing,
resulting in PE underutilization.

Sparse-PE [13] utilizes look-ahead windows to identify
valid pairs within inputs that have been compressed using the
ZVC format. These valid pairs are subsequently forwarded
to multi-threaded, versatile PEs to execute sparse matrix
multiplication. Nonetheless, akin to other methods grounded
in input matching, Sparse-PE’s look-ahead windows exhibit
limitations in generating adequate data in scenarios charac-
terized by high sparsity levels, resulting in suboptimal PE
utilization. Conversely, the expansion of look-ahead windows
can engender a disproportionate increase in input matching
circuit size and complexity. To circumvent the necessity of
enlarging the look-ahead windows, S2 Engine [44] adopts
a fast-clock speed to seek out valid input pairs, thereby
substantially reducing the dimensions of the input matching
circuit. Reportedly, only 16 bytes of buffer space are nec-
essary for accommodating valid input features and weights.
However, this design choice imposes a constraint on the over-
all operational speed of the accelerator, causing themaximum
attainable operational speed to consistently remain four times
slower than the available clock speed.

CSSpa [45] improves the performance of SparTen by
reducing the dimensions of the input search window while
maintaining high processing unit utilization. Additionally,
it utilizes a channel-stacking dataflow, which maximizes the
reuse of internally buffered data, effectively reducing the
overall number of memory accesses. However, it is essential
to highlight that the input matching circuit still introduces a
noticeable overhead. Furthermore, CSSpa employs relatively
large input buffers to ensure a balanced load distribution
among its PEs.

III. PROPOSED STRIDE-AWARE SPARSITY
COMPRESSION
To facilitate comprehension, we examine a one-dimensional
convolution operation involving a row of input features and
a row of filter weights. FIGURE 3 illustrates an example
of one-dimensional convolution in three scenarios: (a) with
a stride of 1, (b) with a stride of 2, and (c) with a

FIGURE 3. Weight-stationary one-dimensional convolutions occur
between a row of input features and a row of filter weights in three
scenarios: (a) with a stride of 1, (b) with a stride of 2, and (c) with a stride
of 2 while employing the proposed input compression technique.

stride of 2 while utilizing the proposed compression format
for the inputs. In FIGURE 3(a), the input data is com-
pressed using either COO or ZVC methods. It is observed
that the weight-stationary dataflow and input-stationary
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dataflow are more efficient than the output-stationary
dataflowwhen considering the complexity of input matching.
FIGURE 3(a) specifically showcases the weight-stationary
dataflow. By avoiding invalid multiplications involving input
features at the boundary (e.g., f0 ×w2, f0 ×w3, f7 ×w0, etc.),
the multiplications are executed continuously by a MAC
unit. This combination of the input compression format and
the dataflow benefits the PE utilization and consequently
enhances inference speed.

However, the integration of the conventional data com-
pression format with weight-stationary or input-stationary
dataflows is primarily optimized for unit-stride configuration.
In cases involving different strides, the MAC operation often
encounters interruptions due to the generation of invalid input
pairs, leading to unnecessary output products. As depicted
in FIGURE 3(b), when the stride is 2, while keeping other
setups consistent with the previous example, a multitude
of invalid multiplications occur, including instances such as
f3 × w0, f3 × w2, and f5 × w2. To circumvent these unneces-
sary computations, a typical approach involves the utilization
of an input preparation circuit alongside the necessity for
additional buffers to store valid input pairs. This practice
is prevalent in most accelerators available today. However,
when considering the unpredictability of non-zero input val-
ues and the variability in sparsity rates, the implementation
of input matching circuitry can prove to be ineffective in
several aspects. It may lead to a bulky and power-intensive
solution in the case of Spartan architecture [27] or result in
input shortages in the case of GoSPA [15].

The aforementioned drawbacks of the input preparation
circuit can be effectively mitigated by adopting a two-array
compression approach for the input features and weights,
as proposed and illustrated in FIGURE 3(c). When convo-
luting with a stride of 2, both the input features and filter
weights are organized into an even array and an odd array,
as demonstrated in the figure. In this scenario, the even array
of the features is convolvedwith the even array of the weights,
while the odd array of the features is convolved with the
odd array of the weights. Consequently, convolution can be
efficiently executed without the necessity for input matching
logic. For strides other than 2, the number of compressed
arrays for both inputs should match the specified stride value.

The key distinction between the proposed compression
technique and previous methods lies in the preparation of
input features for a given layer (layer nth) while they are still
considered as output features from the preceding layer (layer
(n− 1)th). FIGURE 1 illustrates this contrast between con-
ventional architectures and the proposed architecture. In all
these architectures, the inference process unfolds sequentially
from one layer to the next. In the case of the proposed
architecture, during the processing of the (n− 1)th layer, the
compression unit considers parameters such as the stride of
the nth layer to determine the optimal division and com-
pression for the output features. These compressed output
features are then stored in a global feature memory, ready to
serve as inputs for the nth layer. Notably, since compression

units are commonly integrated into most accelerators, the
proposed technique does not necessitate additional hardware,
such as an input preparation stage. Additionally, the filter
weights can be compressed offline before the inference pro-
cess takes place. Given that the proposed data compression
method considers the stride information of the subsequent
layer to optimize data storage and facilitate the processing
of that subsequent layer, it is aptly named the ‘‘Stride-Aware
Compressed Sparse Row’’ (SCSR). The proposed accelerator
that uses the SCSR data format is named ‘‘StarSPA’’, an abbre-
viation for Stride-Aware Sparsity CNN Accelerator.
The proposed compression method effectively mitigates

challenges associated with irregular sparsity and varying con-
volutional strides. However, it is important to note that the
issue of potential invalid multiplications involving boundary
input features still persists, and this matter will be explored
further in the subsequent section.

IV. OPERATION ON SCSR FORMAT
In the previous section, a 1-D convolution example was
employed for ease of introducing the proposed technique.
This section provides a more comprehensive elucidation of
the SCSR representation and its application in the context of
2-D convolution using the weight-stationary dataflow.

A. SCSR FORMAT
FIGURE 4(a) illustrates a specific instance of 2-D convolu-
tion with a stride of 2, involving a 16 × 16 sparse feature
matrix and a 4 × 4 sparse weight matrix. To simplify the
presentation, only the initial four rows of the feature matrix
are displayed. Given the stride of 2, the weight is selectively
multiplied with features with a distance of 2, rather than with
all the features. The illustration identifies the features and
weights potentially engaging in mutual multiplications by
color-coding. It is noteworthy that a weight is not multiplied
with all features sharing the same color, as certain features
at the matrix boundary do not facilitate valid computations
with the weight. For example, in FIGURE 4(a), the third row
of the weight matrix is not multiplied with the first row of
the feature matrix. The intricacies of computation addressing
with features at the boundary will be further explored shortly.

Given that features and weights with the same color are
more likely to undergo mutual multiplication, while those of
different colors are not paired, there is a distinct advantage
in consecutively compressing features or weights of the same
color. This sequential compression facilitates the multiplica-
tion process in the PE, as the MAC unit can read consecutive
data without relying on an input matching circuit. This forms
the crux of the proposed SCSR format. The compression
of the feature matrix can be formally expressed through a
mapping function Zrof ×cof → Ztf ×rf ×cf with notations and
descriptions outlined in TABLE 2. The outputs of the function
are determined as follows:

tf = cof mod s (1)

rf = rof (2)

cf = cof (3)
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FIGURE 4. Illustration of stride-aware data compression together with its utilization by weight-stationary dataflow:
(a) uncompressed sparse input features and weights, (b) stride-aware data compression format when stride is two,
(c) the convolution of the first compressed feature and weight tensors on weight-stationary dataflow.

The outcomes reveal that the count of compressed tensors is
denoted byMax

(
tf

)
= s, corresponding to the stride. In each

tensor, every row exclusively contains features of the same
colors. Importantly, the row and column indices of the feature
elements remain unchanged from their original matrix con-
figuration. This facilitates a straightforward reconstruction of
the original matrix from the CSR format.

The compression of the weight matrix can be mathe-
matically represented by a mapping function Zrow×cow →

Ztw×rw×cw . The outputs are determined as follows:

tw = cow mod s (4)

rw =
(
row mod s

)
× s+ floor(row

/
s) (5)

cw = cow (6)

It is evident that the number of compressed tensors is
Max (tw) = s, corresponding to the count of compressed

TABLE 2. Nomenclature.

feature tensors. In contrast to the compression of features, the
order of rows is modified to ensure that all weights with the
same color within the original matrix are compressed in close

VOLUME 12, 2024 10899



N.-S. Pham et al.: StarSPA Compression for Efficient CNN Acceleration

proximity to each other. The results of applying the equations
to the original sparse matrices are presented in FIGURE 4(b).
In this specific example, with the stride of 2, both feature
and weight matrices are compressed into two distinct ten-
sors. Given that the order of rows in the weight tensors is
altered, the weight compression is more intricate than the fea-
ture compression, which performs compression row-by-row.
However, it is noteworthy that the weight compression can
be conducted offline, eliminating the need for any hardware
overhead during inference. Meanwhile, the compression of
features is performed online and can be achieved using any
straightforward CSR compression circuit without imposing
significant hardware demands.

B. CONVOLUTION LAYER
The 2-D convolution between the original feature matrix and
weight matrix has been restructured into multiple 2-D convo-
lutions, each involving a feature tensor and its corresponding
weight tensor. In this configuration, these convolution tasks
are assigned exclusively to a single PE, accommodating
only one MAC unit. The dedicated PE designed for these
convolution tasks is illustrated in FIGURE 7. One primary
objective is to fully leverage the capabilities of the MAC
unit, ensuring it performs one multiplication and accumu-
lation operation per clock cycle with minimal idle time.
Simultaneously, another goal is to optimize the utilization of
the relatively small buffers within the PE, mitigating bulky
hardware overhead.

To achieve this, the compressed feature tensors are parti-
tioned into distinct rows before being broadcast to the PE.
In contrast, the compressed weight tensors remain intact and
are stored within the weight buffer of the PE. Consequently,
the initial 2-D convolutions between the feature tensors and
weight tensors are transformed into multiple 2-D convo-
lutions between the feature rows and the weight tensors.
Specifically, each row of features within a feature tensor is
sequentially loaded for convolution with the corresponding
weight tensor. For example, every feature row in the feature
tensor Tf [0] is processed consecutively in conjunction with
the weight tensor Tw [0]. This process is then iteratively
repeated for subsequent feature tensors and their correspond-
ing weight tensors.

The timing process, representing a weight-stationary
dataflow on the SCSR-based input data, is depicted in
FIGURE 4(c). This process involves a 2-D convolution
between the feature tensor Tf [0] and the weight tensor Tw [0].
The feature tensor is initially subdivided into multiple rows,
and each row sequentially participates in a 2-D convolution
with the weight tensor Tw [0]. In the context of the stride-2
convolution with the weight tensor, the feature rows only
engage with specific weight rows of the same color. During
the computation, a weight is selected and remains constant
while the input feature counter progresses from a starting
point to an end point within the feature row, advancing
one step per clock cycle, as illustrated in FIGURE 4(c).
The weight undergoes alteration only when the next feature

address fails to form a valid input pair with the current
weight. This transition occurs at specific clock cycles, such
as at clocks 2, 4, 8, 11, and so forth.

As demonstrated in the provided example, the integration
of the proposed data compression and the weight-stationary
dataflow presents an effective solution for mitigating
the input irregularity issue commonly encountered in
sparsity-aware CNN accelerators. Nevertheless, a challenge
persists with the presence of invalid convolutional pairs at
the boundaries of the input feature matrix. This challenge
manifests at both row level and column level of the feature
tensors. For instance, in the case of row-level invalid pairs, the
first row of the feature tensor Rf [0] exclusively participates
in convolution with the first row of the weight tensor Rw [0]
and does not form valid pairs with the second row Rw [1].
Similarly, for column-level invalid pairs, examples include
pairs like (f20,w02) and

(
f2f ,w01

)
, which do not constitute

valid operand pairs for convolutional operations.
To address the issue of row-level invalid computations,

when a feature row is broadcast to PEs containing weight
tensors, two additional signals are concurrently broadcast.
These signals serve to inform the PEs about the starting and
ending rows of weights that constitute valid computations.
The PEs utilize this information to selectively choose weight
rows within this valid range. The valid range of rows is
denoted as

[
rstartw , rendw

]
, and its calculation is determined

by Algorithm 1.
The computation of the

[
rstartw , rendw

]
pair does not impose

a significant time overhead; however, it necessitates specific
hardware resources and consumes power. During the infer-
ence phase, this pair is generated by a control block and
broadcasted to the PEs along with the row of compressed
features. Instead of being recalculated locally by each PE, the
precomputed pair is shared among multiple PEs. This spatial
reuse of the pair across multiple PEs helps to amortize the
cost associated with its computation.

Algorithm 1 Select Valid Weight Row
input: rf – compressed feature row index

s – stride
Row− weight matrix height
Rof – feature matrix height

output: rstartw , rendw

1. if
(
Rof − rf < Row

)
2. rstartw =

(
rfmods

)
×s+floor

((
Row − Rof + rf

)
/s

)
3. else
4. rstartw =

(
rfmods

)
× s

5. end if
6. if

(
rf < Row − 1

)
7. rendw =

(
rfmods

)
× s+ floor

(
rf

/
s
)

8. else
9. rendw =

((
rfmods

)
+ 1

)
× s− 1

10. end if
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To effectively tackle the challenge of column-level invalid
computations, a cost-effective solution involves integrating a
specialized address verification block seamlessly into the fea-
ture buffer. This block is designed to compute a

[
cstartf , cendf

]
range of column indices within the feature row for each spe-
cific weight position. Valid pairs can only be formed between
the weight and features with column indices lying within this
range. The formulas to calculate these values are outlined
below:

cstartf = cw (7)

cendf = Co
f − Co

w + cw (8)

To facilitate the selection of valid features within the column
index range

[
cstartf , cendf

]
a counter cnt f is initialized and

incremented by one unit every clock cycle. The condition
cstartf ≤ Cf

[
cnt f

]
≤ cendf is checked to ensure the selection of

valid features. Determining the last value of cnt f is straight-
forward by comparing the column index of the next feature
with cendf . However, selecting the initial value of cnt f requires
more effort due to the irregular nature of the compressed
feature row. To simplify this process, when broadcasting the
compressed feature row, a small array Sel

[
0 : Co

w − 1
]
is

concurrently broadcasted. This array aids the PE in promptly
identifying the initial value of cnt f . The search process can
be illustrated by the following equation:

cnt f = Sel [cw] (9)

The computation of Sel is executed in the control block and
is illustrated by Algorithm 2.

FIGURE 5 provides a detailed illustration of the 2-D con-
volution between a compressed feature row and a compressed
weight tensor. The compressed feature row corresponds to
the third row of the first feature tensor, and the com-
pressed weight tensor is the first weight tensor shown in
FIGURE 4(b). The tuple

[
cstartf , cendf

]
= [0, 1] indicates the

column indices of the weight rows participating in the convo-
lution. When a weight is selected, an initial value of cnt f is
calculated by Eq. (9) is calculated by Eq. (9) to select the first
valid feature. For example, when the weight w02 is selected,
cnt f = Sel [2] = 1, pointing to f22. The counter cnt f contin-
ues to increase until the last valid feature is selected, at which
point the selected weight is swapped with the subsequent
value.

C. FULLY CONNECTED LAYER
In contrast to convolution layers, fully connected layers do
not exhibit weight reuse; each weight is multiplied by only
one feature. Consequently, weight-stationary dataflow is not
employed for these layers; instead, it is replaced by an output-
stationary dataflow. In this configuration, each PE utilizes
a dot-product operation on a weight tensor and the input
feature tensor to produce a single output. To streamline the
dot-product operation on the PE, one-sided sparsity exploita-
tion is applied to reduce the complexity of the input matching
circuit. Specifically, only compressed weights are divided

Algorithm 2 Select Valid Feature Column
input: Cf – feature column indices

Co
w – weight matrix length

output: Sel
[
0 : Co

w − 1
]

1. int cnt = 0
2. for

(
i = 0; i < Co

w − 1; i+ +
)

3. Sel [i] = cnt
4. if

(
Cf [cnt] == i

)
5. cnt+ = 1
6. end if
7. end for

FIGURE 5. Illustration of 2-D convolution between a SCSR-based feature
row and weight tensor: (a) input operands, (b) temporal operation.

into chunks and loaded onto the PEs, with each PE con-
taining a chunk of weights from a distinct filter. Prior to
broadcasting chunks of compressed features to these PEs,
the compressed features undergo a zero-insertion process to
uncompress the chunks. The zero-insertion circuit, illustrated
in FIGURE 6(a), employs a single 1:16 multiplexer over mul-
tiple clocks to produce an uncompressed chunk of features.
This decoded chunk is then broadcasted to the PE, while a
new chunk is being processed. This approach ensures that
input dependency latency is not incurred. The dot-product
engine, depicted in FIGURE 6(b), utilizes a 16:1 multi-
plexer to select corresponding features based on the index
information of the compressed weights, enabling efficient
computation of the dot-product in the fully connected layers.

V. OVERALL ARCHITECTURE
A. PE ARCHITECTURE
The PE specifically designed for the 2-D convolution of a
SCSR-formated feature row with a SCSR-formated weight
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FIGURE 6. Operations on fully connected layers: (a) zero insertions of a
compressed feature vector, (b) dot product of one-sided sparsity.

tensor, as described in Section IV, is illustrated in FIGURE 7.
It consists of several key components: an input feature buffer,
a weight buffer, an output buffer, a MAC unit, an address
calculator, and a PE controller. The primary function of the
PE is to compute the final sums of an output feature array
within an output channel. As a result, the output buffer con-
tinually stores partial sums of the assigned output features
during the convolution process across all input channels.
Simultaneously, the input feature and weight buffers are peri-
odically updated with the required input data. To minimize
input data latency, the input buffers are doubled in size.
In this architectural design, the input feature buffer size is
of 2 × 16 elements, the weight buffer has dimensions of
2 × 25 elements, and the output buffer is configured at
14 × 14 elements.

The Address Calculator is responsible for computing
addresses for output partial sums, relying on the coordinate
information of the input data. Consequently, the output fea-
ture value, specified by the output address, is accumulated
with the product generated by the MAC unit. Meanwhile, the
PE Controller serves as a control unit, responsible for receiv-
ing event signals, address signals from the input buffers,
and config signals from the main controller of the acceler-
ator. These inputs are used to determine the necessary input
address selections for the input buffers.

The configuration data, provided to the PE Controller
prior to inference, contains essential information regarding

convolution parameters (such as stride and filter size) and
mapping algorithm parameters (such as dimensions of the
assigned input and output). The function of the PE controller
is to calculate counters

(
cntw, cnt f

)
to select valid weights

and features in their respective buffers. he operation of the
PE Controller is elucidated by Algorithm 3, which takes[
rstartw , rendw

]
and Sel calculated in Algorithm 1 and 2 as

inputs. The functions find_index() and find_column() can be
simply implemented using SCSR format.

Algorithm 3 2-D Convolution Between a Feature
Row and a Weight Tensor

input: rstartw , rendw
Sel [0 : lw − 1]
Co
f ,C

o
w

Tw
output: cntw, cnt f

1. cntw = find_index
(
Tw, rstartw

)
2. cntw = find_index

(
Tw, rstopw

)
3. while cntw ≤ find_index

(
Tw, rendw

)
4. rw = find_column (Tw, cntw)

5. cnt f = Sel [rw]
6. while cnt f ≤ Co

f − Co
w + rw

7. cnt f + = 1
8. end while
9. cntw + = 1
10. end while

FIGURE 7. PE architecture.

Designating the row and column indices of an output fea-
ture as ro, co, the subsequent equations serve to determine the
address of the output feature.

ro =
(
rf − rw

) /
s (10)

co =
(
cf − cw

) /
s (11)

B. WORKLOAD ALLOCATION
In FIGURE 8, we present the workload distribution for PEs
within our designed architecture, featuring a 16 × 16 PE
array. Each PE is tasked with computing the final sums of a
subsection of output features within a channel. Consequently,
it is necessary for the PE to read the weights of an entire filter
and a subtensor of input features. These inputs are segmented
into smaller units and then transferred to the PE. To minimize
the number of memory accesses and take full advantage of
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FIGURE 8. Workload assignment.

the convolution process, we employ a broadcast approach
for the input data, allowing multiple PEs within a row to
access the same input feature rows and PEs within a column
to access the same weight channels. This means that PEs
located within the same row are responsible for generating
output features for consecutive output channels, while PEs
within the same column focus on producing output features
for the same output channel. Given the variability in workload
dimensions across layers within the same model and among
different models, we have devised a mapping algorithm
to ensure an equitable distribution of the workload among
the PEs.

After receiving the requisite input data, the PEs indepen-
dently perform 2-D convolutions, as elaborated in Section IV.
Upon completing their computations, PEs initiate buffer
swapping to continue their operations with fresh data.
Simultaneously, the released buffers from PEs in the clus-
ter are refilled with new data, effectively reducing data
dependencies. Since each PE is responsible for generating
complete sums of distinct output feature subsections, input
feature tensors read by adjacent PEs exhibit data overlap,
which in turn increases the number of required memory
accesses. To mitigate this data overlap, we have structured
the workload distribution among PEs in a preferably square
configuration.

C. OVERALL ARCHITECTURE OF STARSPA
The overall architecture of the proposed StarSPA accelera-
tor is illustrated in FIGURE 9. It comprises the PE array,
an externalWeight Buffer, an internal Feature Buffer, a ReLU
& Pooling unit, and a Data Compressor. For simplicity, the
control block is not depicted in the diagram. The sparse

FIGURE 9. StarSPA accelerator’s architecture.

pretrained weights are compressed in the SCSR format and
stored within the Weight Buffer, organized into banks. Each
bank within the Weight Buffer broadcasts weights to a col-
umn of PEs via a 64-bit data bus. The output features
generated by the PE array pass through the ReLU & Pooling
block before undergoing compression by the Data Com-
pressor. The Data Compressor utilizes mapping and stride
information from the subsequent layer to apply appropriate
compression to the output features. These compressed output
features are then stored within the internal Feature Buffer,
making them accessible as input features for PEs involved
in computing the next layer. Similar to the Weight Buffer,
the Feature Buffer is comprised of multiple banks that effi-
ciently broadcast features to PEs situated in different rows.
The size of the Feature Buffer, set at 1MB, is determined
through simulations involving actual datasets and various
widely-used CNN models, such as AlexNet [2], VGG16 [4],
GoogLeNet [3], ResNet34 [32], MobileNetV1 [46], and Effi-
cientNetV2 [47], all employing 8-bit data precision.

VI. EVALUATION
A. METHODOLOGY
The proposed design StarSPA has undergone comprehen-
sive evaluation through a two-fold approach, encompassing
an FPGA-based hardware implementation and a cycle-
accurate simulator. The FPGA implementation provides
insights into hardware dimensions, quantified in terms of
Lookup Tables (LUTs) and Flip-Flops (FFs). Due to the
time-intensive nature of developing the entire hardware accel-
erator and conducting simulations, the focus was directed
towards implementing a PE cluster, comprising 16 PEs,
implemented using SystemVerilog. The Register-Transfer
Level (RTL) design underwent synthesis to ensure optimal
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FIGURE 10. Comparisons on normalized speedup on convolution layers of (a) AlexNet, (b) VGG16, (c) GoogLeNet, (d) ResNet34, (e) MobileNetV1 and
(f) EfficientNetV2 (baseline: Dense architecture).

performance, albeit at the potential increased expense of
power consumption and hardware costs.

Moreover, the FPGA implementation allows for an
in-depth examination of energy efficiency, which is computed
as the product of the average power consumption and the time
needed to complete a specified taskset. We generated various
synthetic tasksets with diverse dimensions and sparsity levels
to mirror the real dimensions of layers within CNN models.
These tasksets span a range of sparsity rates from 0% to 90%.
The reported energy efficiency figures represent the mean
energy consumption required for performing inference on
these generated tasksets.

The performance of StarSPA is empirically validated
through inferences conducted on actual CNN models
using the cycle-accurate simulator. This simulator, equipped
with 256 MAC units, accurately quantifies the number
of clock cycles essential for computations in each layer
of the CNN models. The CNN models chosen for this
experiment encompass well-known architectures, including
AlexNet, VGG16, GoogLeNet, ResNet34, MobileNetV1,
and EfficientNetV2. It is noteworthy that MobileNetV1 and
EfficientNetV2 incorporate non-unit stride at both their initial
and various intermediate layers, whereas AlexNet, VGG16,
GoogLeNet, and ResNet34 exclusively utilize non-unit stride
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in their initial layers. Notably, the models have undergone
pruning and fine-tuning CIFAR10 dataset [48] to achieve
commensurate accuracy levels with their dense counterparts.
The average sparsity rates of the models used in this exper-
iment are detailed in TABLE 3. Additionally, the simulator
provides data on the number of memory accesses, contribut-
ing to the evaluation of the proposed architecture’s energy
efficiency.

TABLE 3. Benchmarks.

B. SPEED UP ON ACTUAL CNN MODELS
The performance evaluation of StarSPA was carried out
utilizing the cycle-accurate simulator. This evaluation encom-
passed the inference process on six distinct CNN models,
as detailed in TABLE 3. The objective was to record the
precise counts of clock cycles necessary for computations
within each layer of these models. Typically, for the initial
layers of these CNNmodels, a conventional practice involves
the deployment of an external data processing unit to parti-
tion and store the input image into the feature buffer of the
accelerator. In the case of StarSPA, the input image is divided
into manageable subsections through the internal Data Com-
pressor. These subsections were subsequently stored in the
Feature Buffer. Given that the input images were inherently
dense, the Data Compressor’s operation involved selecting
pixels at stride steps for concurrent storage in the buffer. Sub-
sequently, the PEs carried out the actual convolution process
on the preprocessed input image.

To offer a comprehensive perspective on the enhanced
performance of the proposed architecture, we conducted
implementations and simulations of other state-of-the-art
architectures, specifically Sparten [27] and GoSPA [15].
Furthermore, we included a dense architecture in our com-
parative analysis, which was conceptually similar to StarSPA
accelerator but lacked the sparsity-exploiting features. All
of these architectures were uniformly configured with iden-
tical parameters, featuring 256 MAC units and 1MB of
SRAM designated for feature storage. The recorded counts
of clock cycles required for inference processing across
the layers of each CNN model, employing these architec-
tures, were subjected to normalization regarding the dense
architecture.

FIGURE 10 provides a comparative analysis of speedup
factors for convolution layers across various accelerators
applied to the CNN models. In most cases, our work out-
performed other architectures. The ranking of performance,

FIGURE 11. Energy consumption on Zynq-Ultrascale+ FPGA
(a) Normalized energy efficiency and (b) Energy breakdown.

from highest to lowest, was as follows: StarSPA, SparTen,
GoSPA, and the dense architecture. To delve into specifics,
our work achieved speedup factors of 1.17×, 1.05×, 1.09×,
1.23×, and 1.12× in comparison to SparTen for AlexNet,
VGG16, GoogLeNet, ResNet34, and EfficientNetV2,
respectively.

It is important to note that, in the case of MobileNetV1,
StarSPA exhibited slightly lower performance compared to
SparTen. This deviation can be attributed to the architec-
tural specifics ofMobileNetV1, which incorporates separable
depthwise convolutions. These separable depthwise convolu-
tions consist of a depthwise convolution layer followed by
a pointwise convolution layer. StarSPA demonstrated effi-
cient hardware utilization in depthwise convolution layers,
where the dataflow fully leveraged buffered inputs. How-
ever, in the pointwise convolution layers, StarSPA buffered
only a single weight representing an entire weight channel
in each cycle, which could lead to underutilization when
the buffered weight value was zero. In contrast, the point-
wise dataflow within SparTen proved more effective in these
scenarios.

C. AREA EFFICIENCY
To evaluate the area efficiency of StarSPA, we implemented a
Register-Transfer Level (RTL) design for a single PE cluster
using the SystemVerilog programming language. This cluster
consisted of 16 PEs arranged in the same row within the PE
array. Each individual PE was equipped with an 8-bit mul-
tiplier and a 24-bit accumulator. To facilitate a meaningful
comparison, we developed an RTL design for a SparTen’s
compute cluster, ensuring it featured an equivalent number of
multipliers. Specific details regarding buffer parameters for
both architectures are provided in TABLE 4. The synthesis
of the RTL designs for both accelerators was conducted on
a Zynq-Ultrascale+ FPGA [49]. The synthesis options were
optimized with a preference for performance. It is noteworthy
that the MAC units were synthesized using the FPGA’s LUTs
and FFs, without the need to utilize Digital Signal Process-
ing (DSP) units.

TABLE 5 presents a comprehensive breakdown of the
FPGA resources used in our evaluation. Notably, our pro-
posed architecture’s elimination of the need for an input
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FIGURE 12. Comparisons on normalized SRAM accesses on convolution layers of (a) AlexNet, (b) VGG16, (c) GoogLeNet, (d) ResNet34, (e) MobileNetV1
and (f) EfficientNetV2 (baseline: Dense architecture).

preparation stage resulted in a significant reduction in the
total number of employed LUTs, showing an impressive
4.55× decrease. This figure decreased from 175270 LUTs
in SparTen to only 38550 in StarSPA. Furthermore, the total
number of employed FFs experienced a notable reduction of
1.74×, dropping from 162664 in SparTen to 93749 in our
work. The decrease in LUTs can be attributed primarily to
the removal of an input searching circuit within StarSPA.
Simultaneously, the reduction in FFs in StarSPA can be traced
back to the decreased sizes of the PE buffers, as detailed
in TABLE 4.

D. ENERGY EFFICIENCY
To assess the energy efficiency of StarSPA, synthetic task
sets, comprising 3-D input feature maps and 3-D filters,
serve as inputs for running simulations on the post-synthesis
netlists. Switching Activity Interchange Format (SAIF) files
were generated to create power reports. The energy required
to complete a taskset is computed by multiplying the
average power consumption by the duration needed to
finish the taskset. Various tasksets were generated, each
with varying dimensions and variable sparsity levels rang-
ing from 0% to 90%. The reported energy consumption
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TABLE 4. PE’s buffer parameters.

TABLE 5. Numbers of FPGA primitives in synthesized PE clusters.

represents the average value derived from the results obtained
by simulating these tasksets. The energy efficiency of the
proposed design was compared to that of Sparten. Both archi-
tectures were synthesized and verified to operate correctly at
a clock speed of 100 MHz.

In FIGURE 11(a), there was a significant 5.0× reduction in
energy consumption observed in StarSPA when compared to
Sparten. This reduction can be attributed to the absence of an
input matching circuit in StarSPA. FIGURE 11(b) provides a
detailed breakdown of the influence of various components
on the overall energy consumption within a single PE cluster.
Notably, the most significant energy-consuming component
in SparTen was the prefix sum, whereas in StarSPA, the
primary contributor to energy consumption was associated
with its output buffer. This distinction can be explained by the
fact that StarSPA operates under a weight-stationary dataflow,
which necessitates frequent queries to the output buffer on
each clock cycle.

In addition to the advancements in terms of hardware
size and energy efficiency, StarSPA’s dataflow resulted in a
significantly reduced number of memory accesses compared
to SparTen. FIGURE 12 illustrates the normalized counts
of memory accesses caused by StarSPA, SparTen, GoSPA
in comparison to the dense architecture. It is evident that
SparTen incurred a substantial volume of SRAM accesses,
primarily due to the limited reuse of locally buffered data.

In contrast, GoSPA and StarSPA showed similar quantities
of SRAM accesses, as both accelerators efficiently managed
data access, reading and flushing data only when neces-
sary for all potential computations. The average counts of
SRAM accesses attributed to SparTen during simulations
of AlexNet, VGG16, GoogLeNet, ResNet34, MobileNetV1,
and EfficientNetV2 were 9.4×, 7.3×, 2×, 5.6×, 1.8×, and
2.23×, respectively, when compared to StarSPA. The signif-
icant reductions in SRAM accesses observed for AlexNet,
VGG16, and ResNet34 can be attributed to their relatively
wide filters, which facilitate more effective feature reuse in
our architecture. In contrast, GoogLeNet and MobileNetV1,
which incorporate numerous pointwise convolution layers
with 1 × 1 filters, experienced the least reduction in SRAM
accesses.

VII. CONCLUSION
This paper introduces a novel data compression method
known as Stride-Aware Compressed Sparse Row (SCSR),
designed to alleviate the computational load of input search-
ing in sparse CNN acceleration. What sets this approach
apart from previous research is that it compresses the output
features of a layer based on the parameters of its sub-
sequent layer. Consequently, the input features are fully
prepared for computation in the following layer, eliminating
the need for expensive input searching circuits. The com-
bination of a weight-stationary dataflow and asynchronous
swapping of the doubled input buffers within the proposed
architecture leads to exceptional PE utilization, resulting in
enhanced inference speed. However, despite the significant
advancements achieved by this architecture compared to
state-of-the-art accelerators, it is acknowledged that the appli-
cation of a weight-stationary dataflow results in a substantial
number of queries to the output buffer. Therefore, further
research is needed to mitigate the reading costs associated
with the output buffer.
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