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ABSTRACT The family of least mean square (LMS) based adaptive filtering algorithms suffers from
convergence performance limitation due to the sensitivity of such algorithms to the eigenvalue spread of the
input correlation matrix. The quasi-Newton family of adaptive filtering algorithms addresses this limitation,
but its performance is restricted by the estimation accuracy of the correlation matrix inverse, especially for
highly correlated input signals. Furthermore, the convergence rate and the steady-state performance of both
LMS and quasi-Newton families are thoroughly depending on their step-sizes. In this paper, a variable step-
size regularized quasi-Newton adaptive algorithm is proposed in the context of system identification. In this
algorithm, inspired by the matrix inversion lemma, a modified regularized matrix inverse with a time-varying
regularization is computed such that during the convergence, the contribution of matrix inverse in the weight
update is reduced, resulting in a more noise-robust algorithm. The paper further provides a convergence
analysis of the proposed quasi-Newton algorithm, wherein a variable step-size is proposed to achieve a high
initial convergence rate and a low steady-state error in the context of system identification applications.

INDEX TERMS Adaptive filter, quasi-newton algorithm, regularization, system identification, variable
step-size.

I. INTRODUCTION
System identification is one of the significant topics of
signal processing which is widely used in many areas
including acoustic echo cancellation [1], [2], [3], active
noise control [4], acoustic channel equalization [5], source
separation [6], and wireless multipath channels [7].
So far, numerous adaptive filtering algorithms have been

proposed for system identification. The least mean square
(LMS) and normalized LMS (NLMS) adaptive algorithms
are of the most comment due to their simplicity and low
complexity at the expense of a low convergence speed [8],
[9]. The affine projection algorithm (APA) is an extension of
NLMS which exhibits a faster convergence rate due to a less
dependency on the eigenvalue spread of the input correlation
matrix [9]. The convergence speed of APA increases with
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the projection order, however, the computational complexity
increases accordingly, and potential numerical instability
in matrix inverse computation pose challenges. Although
low-complexity variants of APA have been suggested [10]
at the cost of convergence degradation, their computational
complexity remains high, and performance is sensitive to the
spectral variation of the input signal and its statistics.

The quasi-Newton algorithm and its variants repre-
sent another class of adaptive algorithms with reduced
dependency on eigenvalue spread [11], [12], [13], [14],
[15], [16]. The quasi-Newton algorithm shows consider-
able convergence performance improvements compared to
LMS/NLMS for highly correlated input signals [9]. In an
ideal scenario where the input correlation matrix is known
a priori, the quasi-Newton algorithm is insensitive to the
eigenvalue spread, achieving the desired response rapidly [9].
In practice, the inverse of the correlation matrix is not
priori known and need to be estimated. Various methods,
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including recursive approaches based on matrix inversion
lemma (MIL) [13], [14], auto-regressive model-based inverse
approximation [15], matrix diagonalization [16], utilizing
the inverse of the input power spectrum [17], [18], and
autocorrelation matrix inverse approximation using Fourier
transform [11] and iterative algorithms [19], are employed for
this purpose.

To enhance the convergence performance of the quasi-
Newton algorithm, diverse methods have been proposed.
In [15], a hybrid algorithm combining quasi-Newton and
NLMS is proposed to utilize the advantages of these
algorithms. This hybrid algorithm acts as quasi-Newton with
considerable actuating data and NLMS with the weaker
actuating data. In addition, [14] introduces a quasi-Newton
algorithm with selective data, determined by output error
amplitude. While reducing computational complexity, this
approach does not enhance convergence speed.

In addition to the aforementioned contributions, various
variable step-size adaptive algorithms, as cited in [8], [20],
[21], and [22], and others, have been introduced. These
algorithms aim both to improve the convergence rate and
reduce the steady-state error in comparison to their fixed step-
size counterparts.

In [21], a low-cost variable step-size NLMS algorithm
is proposed such that the step-size is dynamically adjusted
as a function of the square error. Specifically, when
mean squared error (MSE) is high, the step-size is main-
tained at its maximum, and as the MSE decreases, the
step-size is proportionally reduced, contributing to further
MSE reduction. Additionally, in [22], a variable step-
size fast NLMS algorithm is introduced with the aim of
enhancing convergence speed and tracking capability for
system identification. The adaptation process begins with a
higher convergence speed, and subsequently, the step-size is
reduced to achieve a relatively low MSE during stationary
steady-state periods. Moreover, the algorithm responds to
system variations by automatically adjusting the step-size
to its maximum values, thereby enabling effective tracking
ability.

In the work presented in [23], variable step-size l0-norm
constraint NLMS algorithms are developed for sparse system
identification. The variable step-size schemes are derived by
minimizing the forthcomingmean square deviations (MSDs),
and the optimal step-size in each iteration is determined
through an upper bound of the MSD derivation.

In [24], a variable step-size APA is introduced for the
processing of noncircular signals. The variable step-size
is determined by minimizing the power of the augmented
noise-free a posteriori error vector, resulting in accelerated
convergence and reduced steady-state misalignment.

In the method developed in [25], a variable step-size
gradient descent total least-squares method is proposed to
adapt to changes in the signal-to-noise ratio (SNR) for
direction of arrival (DOA) estimation. In this approach, the
variable step-size strategy is derived by incorporating the

instantaneous augmented weight vector and estimated input
signal power.

In [26], a variable parameter LMS algorithm based on
the generalized maximum correntropy criterion (MCC) is
presented for graph signal processing. The generalized MCC
exhibits robustness to impulse noise in adaptive filtering. This
algorithm introduces a variable recursive step-size strategy
based on the average value of the error signal of sampled
nodes on the graph, aiming to address the trade-off between
fast convergence and small steady-state error.

Taking advantage of MCC, [27] proposes an affine
projection MCC with correntropy-induced metric algorithm
to counteract the adverse effects of impulsive noise on filter
weight updates in sparse systems. In a similar vein, [28]
introduces an affine projection sign algorithm (APSA) to
mitigate the impact of impulsive noise on weight updates for
adaptive filters. This algorithm adopts a variable step-size
based on cascaded component filter modules utilizing a
weighted MSE to alleviate the effects of impulsive noise on
the adaptive filtering system. Furthermore, [29] proposes a
variable regularization APSA to combat the impulsive noisy
environment, incorporating the time correlation of the input
signal and error to adjust the regularization parameter.

It is worth noting that many of the aforementioned time-
varying step-size algorithms rely on feedback from the
estimated MSE, and consequently, their efficiency for system
identification applications, where reducing the MSD error is
crucial, may be limited.

In this paper, a modified quasi-Newton adaptive
algorithm is proposed. The proposed method incorporates
a time-varying regularization in the recursive matrix
inverse computation inspired by the matrix inverse lemma.
Time-varying regularization is applied to diminish the
contribution of matrix inverse in the weight update during
the convergence, resulting in a more noise-robust algorithm.
Furthermore, based on the convergence analysis of the
proposed modified quasi-Newton algorithm, a variable step-
size is proposed to provide a high initial convergence rate
and a low steady-state mean square weight deviation for
application in the system identification.

II. ADAPTIVE SYSTEM IDENTIFICATION
Figure 1 illustrates the schematic diagram of the adaptive
system identification. The input signal to the adaptive filter
is assumed a stationary signal represented by the zero-mean
Gaussian vector x(n) = [x(n), x(n − 1), . . . , x(n − N +

1)]T with variance σ 2
x , where the superscript T denotes the

transpose operator. The observation noise ω(n) is assumed
to be zero-mean white Gaussian with variance σ 2

ω and is
independent of x(n). The desired signal d(n), which arises
from the output of the unknown system impulse response
h(n) = [h0(n), h1(n), . . . , hN−1(n)]T , is expressed as

d(n) = hT (n)x(n) + ω(n), (1)
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FIGURE 1. The schematic diagram of the adaptive system identification.

We assume h(n) as a time-varying system with standard
random walk model as [30]

h(n+ 1) = h(n) + q(n) (2)

where q(n) is a white noise vector of lengthN with zero mean
and variance σ 2

q . The vector sequence q(n) is assumed to be
independent of both x(n) and ω(n).

The output signal of the adaptive filter is given by

y(n) = xT (n)w(n) (3)

where w(n) = [w0(n),w1(n), . . . ,wN−1(n)]T is the weight
vector of the adaptive filter of length N . The error signal is
derived by subtracting y(n) from d(n) as

e(n) = d(n) − y(n). (4)

The adaptive filter updates w(n) to attain an appropriate
estimate of h(n). The weight update equation of the NLMS
algorithm is expressed as [9]

w(n+ 1) = w(n) +
µe(n)x(n)
xT (n)x(n)

. (5)

where µ is the step-size which controls the rate of con-
vergence. Several extensions of NLMS with time-varying
step-sizes have already been introduced. For example, in the
set-membership variant of NLMS (SM-NLMS) [31], the
step-size is adjusted using

µ(n) =

 1 −
t

|e(n)|
, |e(n)| > t

0, otherwise
(6)

where t is the set-membership error bound. Additionally,
in the variable step-size LMS (VSS-LMS) algorithm [20], the
step-size is described as

µ(n) =

[
1 −

2

e2δe(n) + 1

]
/
[
(δe(n)δe(n) + xT (n)x(n)

]
(7)

where δe(n) = δe(n− 1) + |e(n)| and δe(n) = δe(n)/n.
On the other hand, the weight update equation of the quasi-

Newton (Q-Newton) algorithm is given by [9]

w(n+ 1) = w(n) + µe(n)8x(n) (8)

where 8 is an estimate of the inverse of the input correlation
matrix Rx = E{x(n)xT (n)}. A recursive approach for 8 is
derived using the matrix inversion lemma (MIL) [9], [16].
According to MIL, the time-varying 8, denoted by 8(n),

is derived from the estimated inverse of the input correlation
matrix as [14] and [32]

8(n) =
1

1 − λ

{
8(n− 1) −

8(n− 1)x(n)xT(n)8(n− 1)

xT(n)8(n− 1)x(n) +
1−λ
λ

}
.

(9)

where λ is a small positive constant that defines the
convergence step of inverse calculation. In the fast quasi-
Newton (FQ-Newton) algorithm [11], the inverse of the
autocorrelation matrix in the weight update equation is
replaced by an approximate one, yielding

w(n) = w(n− 1) + µe(n)P(n)x(n) (10)

where P(n) is an approximate inversion of Rx using the
inverse power spectrum of the signal corresponding to the
truncated autocorrelation sequence [11].

III. THE PROPOSED VARIABLE STEP-SIZE
QUASI-NEWTON ADAPTIVE FILTER
In this section, we propose a novel quasi-Newton adaptive
algorithm with a variable step-size and a recursive estimate
of the regularized matrix inverse. Our contributions include
the adjustment of both the step-size and regularization
factor based on an analysis of the convergence behaviour
of the conventional quasi-Newton adaptive algorithm. The
proposed algorithm, initially sets a high step-size and a
low regularization factor, gradually adapting them during
convergence, in a few steps. This dynamic adjustment results
in the step-size decreasing and the regularization factor
increasing during the convergence, with a low computational
load, and ensures that the algorithm converges to a desired
MSD level.

The total objective of the proposed algorithm is to quickly
attain a desired low steady-state MSD level in the context
of system identification. In the following, we describe the
proposed method in detail.

The weight update process of the proposed quasi-Newton
adaptive algorithm is similar to that of the adaptive quasi-
LMS/Newton algorithm [9], [16], which relies on the inverse
of the correlation matrix. However, our proposed method
differs in that it employs a time-varying regularized version
of the matrix inverse estimate recursively. This modification
aims to enhance the initial convergence while diminishing
the contribution of the matrix inverse during convergence,
leading to a lower steady-state error.

We note that the regularization factor serves to prevent
instability in matrix inversion, particularly when dealing
with ill-conditioned data matrices that are numerically
challenging to invert in practice. This situation commonly
arises when handling highly correlated signals. The pro-
posed regularization thus serves a dual purpose: firstly,
to mitigate computation errors and construct a noise-robust
adaptive algorithm, and secondly, to strike a balance between
quasi-Newton and LMS algorithms, achieving a high initial
convergence rate along with a low steady-state MSD error.
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Theweight vector update equation of the proposed variable
step-size quasi-Newton (VSS-Q-Newton) algorithm can be
expressed as

w(n+ 1) = w(n) + µ(n)e(n)8(n)x(n) (11)

where µ(n) is a variable step-size and 8(n) is a recursive
estimate of the regularized matrix inverse such that

8(n) = γnR̂−1(n) + (1 − γn) I (12)

where 0 ≤ γn ≤ 1 is a time-varying regularization
parameter, and R̂−1(n) is a time-varying estimate of R−1

x .
In extreme cases, with γn = 1, 8(n) = R̂−1(n), and
the proposed algorithm acts as a time-varying quasi-Newton
algorithm. Conversely, with γn = 0, 8(n) = I, resulting
in a time-varying LMS algorithm. It is noteworthy that for
0 ≪ γn < 1, 8(n) serves as a regularized version of the
matrix inverse. The derivation of the matrix8(n) is discussed
in the following section.

A. DERIVATION OF THE REGULARIZED MATRIX INVERSE
In this section, we propose a recursive approach for 8(n)
inspired by the MIL. To achieve this, we modify (9) in
a manner that eliminates the dependency of the initial
convergence on the correlation of inputs. Subsequently, after
the initial convergence, 8(n) contains more regularization
amounts and hence, approaches the identity matrix to
achieve a low steady-state MSD. The rationale behind this
approach is to mitigate estimation errors in the weight update
process after the initial convergence, ultimately achieving a
lower steady-state MSD error than what is possible with a
conventional quasi-Newton algorithm. With this objective in
mind, the computation of 8(n) is performed using 8(n) =

1
1 − λ

{
8̃(n− 1) −

8̃(n− 1)x(n)xT(n)8̃(n− 1)

xT(n)8̃(n− 1)x(n) +
1−λ
λ

}
,

8̃(n) = γn8(n) + (1 − γn) I,

(13)

where the coefficient γn is determined such that 8(n) is
initially a regularized estimate of R−1

x , and through varying
regularization, it gradually approaches the identity matrix.
Notably, when γn = 1, (13) is equivalent to (9), and 8(n)
is therefore an estimate of R−1

x . Moreover, to achieve 8(n ≫

1) ≊ I, one should set γn → 0 for n ≫ 1.
This implies that the initial value of γn is set to one

and it approaches zero for large values of n, i.e., after
initial convergence. In order to consider the variation of γn
proportional to the rate of convergence, its value can be
determined as a function of the number of iterations required
for the convergence, rn, given by

γn =

 1 − (
n
rn
)α, n < rn

0, n ≥ rn
(14)

where rn will be derived in the next section for two caseswhen
rn = r = constant and when rn is time-varying, and α ≥ 1 is
a constant that indicates the decay rate for γn.

FIGURE 2. Typical variations of γn for various amounts of α with r = 5000.

Figure 2 shows typical variations of γn for various values
of α = 1, 2, 3, 4 when r = 5000 is considered. As observed,
the decay rate depends on the value of α such that higher
values of α result in slower variations of γn initially and faster
variations as n approaches r . This signifies that initially, the
contribution of R̂−1(n) to 8(n) is reduced more gradually for
higher values of α. We empirically choose α = 2 to achieve
a desirable convergence performance in the simulations.

B. DERIVATION OF THE STEP-SIZE
To determine the variable step-size µ(n), we first provide an
analysis of theMSD convergence behaviour of the Q-Newton
algorithm for Gaussian inputs.

1) STOCHASTIC ANALYSIS OF THE Q-NEWTON
CONVERGENCE BEHAVIOUR
Substituting (2) and (1) into (4) gives

e(n) = xT (n)h(n) − xT (n)w(n) + ω(n)

= −xT (n)v(n) + ω(n) (15)

where v(n) = w(n) − h(n). Subtracting h(n) from both sides
of (8) and using (2) and (15) yields

v(n+ 1) = v(n) + µe(n)8x(n) − q(n)

= v(n) + µ
(
− xT (n)v(n) + ω(n)

)
8x(n) − q(n)

= v(n) − µ8x(n)xT (n)v(n)

+ µω(n)8x(n) − q(n) (16)

As a result,

v(n+ 1) =

[
I − µ8x(n)xT (n)

]
v(n) + µω(n)8x(n) − q(n).

(17)

where I is the N × N identity matrix. Assuming that x(n) is
statistically independent from v(n), post-multiplying (17) by
its transpose and taking its average results in

E
{
v(n+ 1)vT (n+ 1)

}
= E

{
v(n)vT (n)

}
+ µ28E

{
x(n)xT (n)v(n)vT (n)x(n)xT (n)

}
8
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− µE
{
v(n)vT (n)x(n)xT (n)

}
8

− µ8E
{
x(n)xT (n)v(n)vT (n)

}
+ µ2E

{
ω2(n)8x(n)xT (n)8

}
+ σ 2

q I (18)

We note that

E
{
x(n)xT (n)v(n)vT (n)x(n)xT (n)

}
= 2RxK (n)Rx + Tr [RxK (n)]Rx (19)

where K (n) = E
{
v(n)vT (n)

}
. The above equality holds

for zero-mean Gaussian inputs x(n) [33] (Eq. (10.4.26)).
Consequently,

K (n+ 1) = K (n)

+ µ28 {2RxK (n)Rx + Tr [RxK (n)]Rx} 8

− µ [K (n)Rx(n)8 + 8Rx(n)K (n)]

+ µ2σ 2
ω8Rx(n)8 + σ 2

q I (20)

Defining ξ (n) = E
[
vT (n)v(n)

]
= Tr [K (n)] as the MSD

criterion, we derive

ξ (n+ 1) = ξ (n) + µ2
{2Tr [8RxKvv(n)Rx8]

+ Tr [RxKvv(n)] Tr [8Rx8]}

− 2µTr [8RxKvv(n)] + µ2σ 2
ωTr [8Rx8] + σ 2

qN

(21)

To proceed further, after some manipulations, we can
rewrite (21) as

ξ (n+ 1) = aξ (n) + b (22)

where

a ≈ 1 + µ2(2σ̃ 2
x + Nσ 2

x σ̂ 2
x ) − 2µσ̆ 2

x (23)

is the decay rate and b ≈ µ2Nσ 2
ωσ̂ 2

x + σ 2
qN in which,

σ 2
x = Tr[Rx]/N , σ̃ 2

x = Tr[Rx8
2Rx]/N , σ̂ 2

x = Tr[82Rx]/N ,
and σ̆ 2

x = Tr[8Rx]/N . Solving the recursive equation (22),
we achieve

ξ (n) = anξ (0) + b
n−1∑
k=0

ak , n ≥ 1 (24)

Without loss of generality, assuming hT (n)h(n) = 1 and the
initial value of the weight vector w(0) = 0, we obtain ξ (0) =

1, and hence,

ξ (n) = an + b
n−1∑
k=0

ak , n ≥ 1 (25)

For the convergence of Q-Newton, from (25), we should
have 0 < a < 1. As a result,

µ(2σ̃ 2
x + Nσ 2

x σ̂ 2
x ) − 2σ̆ 2

x < 0 (26)

and we satisfy the condition for convergence of (25),
establishing upper and lower bounds for the step-size as

0 < µ <
2σ̆ 2

x

2σ̃ 2
x + Nσ 2

x σ̂ 2
x

(27)

Solving the recursive equation (25) for steady-state, ξss,
we obtain

ξss = lim
n−→∞

ξ (n) =
b

1 − a
≈

µ2Nσ 2
ωσ̂ 2

x + σ 2
qN

2µσ̆ 2
x − µ2(2σ̃ 2

x + Nσ 2
x σ̂ 2

x )
(28)

from which we derive

µss =

ξss +

√
ξ2ss − Cσ 2

qN/σ̆ 2
x

C σ̆ 2
x

(29)

where µss denotes the step-size µ that the MSD level ξ (n)
approaches ξss, and

C =
1
σ̆ 2
x

{
Nσ 2

ωσ̂ 2
x + ξss

(
2σ̃ 2

x + Nσ 2
x σ̂ 2

x

)}
. (30)

As already defined, r is the number of iterations required
for the adaptive algorithm to reach its steady state, which can
be computed using

r =

log10
[

ξss
ξinit

]
log10 [a]

, (31)

where ξinit is the initial value of ξ (n) at n = 0. Assuming
without loss of generality, w(0) = 0 and hT (n)h(n) = 1, then
ξinit = 1.

2) GENERALIZATION OF THE ANALYSIS TO A Q-NEWTON
ALGORITHM WITH TIME-VARYING MATRIX
In the case where 8 is time-varying, C and as a result, µss, a,
and r are time-varying as well. Denoting the corresponding
time-varying parameters by 8(n), Cn, µss(n), a(n), and rn,
respectively, we modify (29) as

µss(n) =

ξss +

√
ξ2ss + C(n)σ 2

qN

C(n)
(32)

where

C(n) = σ 2
ωTr [8(n)] + ξss

(
2 +

Tr [Rx] Tr [8(n)]
N

)
. (33)

In addition, the decay rate can be modified as

a(n) ≈ 1 + µ2(n)(2σ̃ 2
x (n) + Nσ 2

x σ̂ 2
x (n)) − 2µ(n)σ̆ 2

x (n)

(34)

where

σ̃ 2
x (n) = Tr[Rx8

2(n)Rx]/N ,

σ̂ 2
x (n) = Tr[82(n)Rx]/N ,

σ̆ 2
x (n) = Tr[8(n)Rx]/N .

Moreover, rn is defined as the number of iterations required
for the adaptive algorithm to reach its steady state with a
time-varying decay rate a(n), which can be computed using

rn =

log10
[

ξss
ξinit

]
log10 [a(n)]

. (35)

As can be seen, rn is updated at each iteration n until 8(n)
reaches its steady state.
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FIGURE 3. Derivation of µ(n + 1) versus µ(n) using the line equation.

3) DERIVATION OF THE VARIABLE STEP-SIZE
According to the previous derivation, the step-size µ can
be considered as a time-varying quantity that initiates from
an initial value µ0 and follows the variation of µss(n).
Consequently, we introduce a recursive approach for µ(n)
expressed as

µ(n+ 1) =



µ0, n = 1
rn − n− 1
rn − n

µ(n) +
1

rn − n
µss(n),

1 < n < rn
µss(n), n ≥ rn

(36)

Figure 3 visually illustrates the computation of µ(n+ 1) at
iteration n + 1, utilizing the line equation constructed from
the known values of µ(n), rn, and µss(n) for 1 < n < rn.
As can be seen from (36), once the desired MSD level

is attained at n = rn, the value of µ(n) becomes µss(n),
which can be constant if 8(n) achieves its steady-state value.
It is worth noting that, since a(n) in (34) is a function of
µ(n), rn in (35) also becomes a function of µ(n). In essence,
r1 is initially computed using µ0, and then rn and µ(n)
subsequently update each other in a loop.

4) DERIVATION OF A LOW-COMPLEXITY VARIABLE
STEP-SIZE
It is notable that the computations of µss(n) in (32) and rn
in (35) in each iteration require a substantial computational
load. The total number of multiplications, additions, and
divisions to compute µss(n) and rn per iteration are 1.5N 3

+

14, 1.5N 2(N − 1) + 4N + 3, and 8, respectively.
To address this, we can establish a low-complexity version

of the step-size that starts from the initial value and varies
based on the updated values of µss(n) and rn in a few steps.
Assuming ni, i = 1, . . . ,K as the values of n at K steps,
we consider ri and µss,i, respectively, as the values of rn
and µss(n) at ni. Additionally, at the final step, nK = rK .
In general, a higher value of K provides a faster convergence
to ξss at the cost of increased computational load. To this end,

FIGURE 4. Variation of µ(n) in steps.

TABLE 1. The step-size reset algorithm [34].

we adjust the time-varying step-size µ(n) as follows

µ(n) =



µ0, n < n0
ri+1 − n
ri+1 − ni

µ(ni) +
n− ni
ri+1 − ni

µss,i+1,

ni ≤ n < ni+1,

µss,K , n ≥ nK

(37)

where i = 1, . . . ,K − 1. Figure 4 illustrates the variation of
µ(n) (with the red line) in steps. As observed,µ(n) is updated
with a new decay rate in each step. As highlighted in (37),
after achieving the desired MSD level at n = nK , the value of
µ(n) becomes µss,K , which is constant with respect to n.

5) RESET ALGORITHM FOR A SYSTEM SUDDEN CHANGE
In situations where there is an abrupt change in the unknown
system, it is necessary to recalibrate the step-size µ(n) and
regularization parameter γn to their initial values in order to
maintain the tracking performance of the adaptive algorithm.
In pursuit of this objective, we incorporate the step-size reset
algorithm, proposed in [34] into our proposed algorithm.
Table 1 outlines the step-size reset algorithm in accordance
to our propose algorithm.
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In Table 1, VT and VD (where VD < VT ) represent positive
integers. The notation mod (p, q) denotes the remainder of
the division between the integers p and q. In addition, M is
a diagonal matrix with VT − VD ones in the diagonal. The
operator sort(.) denotes the ascending sort operation, and ϵ

represents a threshold value. The step-size reset algorithm
involves VT − VD multiplications, VT − VD + 1 additions,
and VT + 2 divisions.

C. COMPLEXITY ANALYSIS
In this section, we evaluate the computational complexity
of the proposed method and compare it with some other
algorithms. To ensure a fair comparison, we specifically
focus on second-order algorithms which use matrix inverse.
Furthermore, we leverage the symmetric property of the
correlation matrix in our analysis.

The MIL expressed in (9) requires 1.5N 2
+ N + 1 multi-

plications, 1.5N 2 additions, and 3 divisions. In comparison,
the regularized MIL, as defined in (13) and (14), requires
2N 2

+ N + 3 multiplications, 1.5N 2
+ N + 2 additions, and

4 divisions.
The weight update equation for Q-Newton and FQ-Newton

in (8) and (10) involves N 2
+ N + 1 multiplications and

N 2 additions. In contrast, for VSS-Q-Newton, the required
computations associated with (11) and (37) includeN 2

+N+

3 multiplications and N 2
+ 2 additions.

In the APA weight update equation, considering L as the
projection order, the computational complexity of the matrix
inverse is of the order O(L3). Additionally, the number of
multiplications, additions, and divisions in the weight update
are NL2 + (2N + 1)L, (N + 1)L2 + (2N − 1)L, and 0,
respectively.

The computations required for generating the output
and error signals are identical for Q-Newton, FQ-Newton,
and VSS-Q-Newton, involving N multiplications and N
additions. In contrast, for APA, these computations entail
N 2 multiplications and N 2 additions.
Table 2 presents a comparative analysis of compu-

tational complexity, considering the number of required
multiplications/divisions and additions per iteration. It is
important to highlight that the computations for ri and µss,i
to calculate µ(n) in (37) are performed only in a very
limited number of transients (K ), which can be considered
negligible in comparison to the iterations needed to attain
the desired MSD level. The computational requirements
for these operations are indicated as O(K ) in Table 2.
Additionally, it is worth noting that the complexity of the
step-size reset algorithm, as discussed in the previous section,
is minimal compared to other adaptation operations and
has been omitted from the table for the sake of clarity in
comparison.

Consequently, in VSS-Q-Newton, the complexity is
slightly elevated compared to other second-order algorithms,
owing to the additional computations involved in determining
µ(n) and 8(n).

TABLE 2. Computational complexity of different second-order algorithms.

D. EFFICIENT IMPLEMENTATION FOR
HIGH SYSTEM LENGTHS
In applications such as active noise control or acoustic
echo cancellation, where the system length is substantial,
challenges in terms of computational cost and even, the
impracticality of the adaptive algorithm can arise. To address
this issue, we can implement the proposed variable step-size
approach alongwith the variable regularization utilizing a fast
quasi-Newton algorithm. This modification proves beneficial
when dealing with longer unknown systems, as the size of the
matrix inverse becomes considerably smaller than N , making
it suitable for such applications [15], [35].

Further complexity reduction can be achieved by employ-
ing a block fast LMS/Newton algorithm, facilitating a
block update within the LMS part of the algorithm [36].
The resulting algorithms exhibit a significant reduction
in arithmetic complexity. We consider extensions of the
proposed approach for future developments in our ongoing
research endeavors.

IV. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed
VSS-Q-Newton algorithm and compare its convergence
performance with NLMS, SM-NLMS, Q-Newton, APA,
VSS-LMS algorithm [20], and F-Q-Newton [11] in the
context of system identification.

For the evaluation of algorithms, we utilize the normalized
MSD (NMSD) criterion, defined as

NMSD (dB) = 10 log10

{
∥h(n) − w(n)∥2

∥h(n)∥2

}
. (38)

In the following simulations, an independent white Gaussian
noise signal is added to the output signal y(n) with SNR=

30 dB. The unknown impulse response h(n) is considered
time-invariant with a length of N = 64. The adaptive
weights are initialized to zero for all algorithms. The
simulation results for NMSD are obtained by averaging
across 20 independent trials.

In the first simulation, we consider the input signal x(n) as
a zero-mean white Gaussian signal with a variance of σ 2

x = 1.
For the proposed VSS-Q-Newton algorithm, K = 10 and
ξss = −55 dB are considered. The values of the step-size
for NLMS, SM-NLMS, and Q-Newton algorithms are chosen
as µ = 0.015. Moreover, the value of the step-size for
APA is chosen as µ = 0.003, and its projection order is
L = 7.
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FIGURE 5. Variations of ri , µ(n), and µss,i for typical white and colored
Gaussian input signals.

The variation of ri, µ(n), and µss,i for the above white
Gaussian input signal are depicted in Fig. 5. As can be
seen, r1 = 1283 and gradually increases to eventually reach
r10 = 16010 after 10 steps. Additionally, µss,i varies from
2 × 10−4 to 3.5 × 10−4. The value of µ(n) reduces from
µ0 = 0.015 to 0.00021.

Figure 6 compares the NMSD convergence behaviour of
the proposed algorithm with its counterparts. As can be seen,
the VSS-Q-Newton achieves an NMSD less than −50 dB
after 3500 iterations, while APA, VSS-LMS, FQ-Newton,
Q-Newton, and NLMS reach that NMSD level after 6000,
18000, 24300, 24900, and 25700 iterations, respectively. The
SM-NLMS achieves a high initial convergence rate, however,
its steady-state NMSD is restricted to−40 dB. In addition, the
steady-state NMSD of the proposed VSS-Q-Newton achieves
−61 dB, while for other algorithms, except SM-NLMS and
APA, it achieves −54 dB.

It is noteworthy that the convergence performance of
FQ-Newton, Q-Newton, andNLMS is similar, as theNewton-
based algorithms produce a near-identity matrix for the
correlation matrix inverse. As a result, the strength of the
proposed VSS-Q-Newton lies in its variable step-size.

Next, we evaluate the NMSD behaviour of adaptive
algorithms using a correlated input signal created by passing a
white Gaussian signal through an FIR filter with coefficients
[0.3574, 0.9, 0.3574] to generate a signal with a pseudo-
speech spectrum [37].

The variation of ri andµ(n) for the aforementioned colored
Gaussian input signal is depicted in Fig. 5. It is observed that
ri is initially equal to r1 = 1900 and gradually increases to

FIGURE 6. Comparison of NMSD of various algorithms for white input.

FIGURE 7. Comparison of NMSD of various algorithms for colored input.

ultimately reach r10 = 14600 after 10 steps. In addition, µss,i
varies from 0.8× 10−4 to 2× 10−4. As a result, the value of
µ(n) decreases from its initial value of µ0 = 0.008 to reach
0.00036 after 16000 iterations, as illustrated in Fig. 5.

Figure 7 compares the NMSD convergence behaviour of
the proposed algorithm with its counterparts for the specified
colored input. The values of step-size for NLMS, SM-NLMS,
Q-Newton algorithms are set to µ = 0.015. Additionally,
for APA, the value of step-size and projection order are
chosen as µ = 0.003 and L = 7, respectively. These
values are chosen such that these algorithms converge to the
same steady-state NMSD as the VSS-Q-Newton. As can be
seen, the VSS-Q-Newton algorithm achieves the NMSD less
than −30 dB after 6000 iterations while APA, FQ-Newton,
Q-Newton, VSS-LMS, SM-NLMS, and NLMS reach that
NMSD level after 29000, 35000, 40000, 105000, 164000, and
230000 iterations, respectively. Consequently, the proposed
algorithm exhibits a significantly higher convergence rate
compared to its counterparts.

In order to evaluate the performance of the proposed
VSS-Q-Newton algorithm using a speech input signal,
we conducted the following simulation. The sampling
frequency is considered to be 8000 Hz. The speech signal
sample, as shown in Fig. 8, was taken from the TIMIT
database [38], uttering: Thus technical efficiency is achieved
at the expense of actual experience. The step-sizes and
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FIGURE 8. Speech input sample from the TIMIT database for the
evaluation of algorithms.

FIGURE 9. Comparison of NMSD of various algorithms for speech input.

other parameters are the same as those used in the previous
simulation.

Figure 9 compares the NMSD convergence behaviour
of the proposed algorithm with its counterparts for the
mentioned speech signal. As can be seen, the proposed
VSS-Q-Newton method reaches its steady state after 2 sec-
onds, while it takes 5 seconds for APA, 7 seconds for
FQ-Newton and Q-Newton, and 15 seconds for VSS-
LMS, SM-NLMS, and NLMS algorithms. Consequently,
the proposed algorithm outperforms other algorithms for
non-stationary input signals.

In the reminder, we evaluate the NMSD performance of the
proposed VSS-Q-Newton algorithm when an abrupt change
occurs in the system impulse response. To achieve this,
we consider the previous simulation configuration, wherein
the constant h(n) is considered in the initial 30000 iterations
and subsequently, an abrupt change is introduced to h(n),
wherein it transitions to a new random WGN sequence of
the same length. The input signal employed is the stationary
colored signal utilized in the preceding simulation. Similar
to [34], the parameters of the reset algorithm is assigned as
VT = 2N , VD = 0.75VT , and ϵ = 25.

Figure 10 compares the NMSD performance of VSS-Q-
Newton with Q-Newton, which has a fixed step-size. The
curves are plotted using a single trial. At themoment of abrupt
change, the NMSD error values reach around 1.5 dB and then
begin to decrease to converge again. As can be seen, after
the abrupt system change, the proposed algorithm reaches
its steady state after 10000 iterations, while the Q-Newton
reaches the steady state after 50000 iterations. As a result, the

FIGURE 10. Comparison of NMSD of VSS-Q-Newton and Q-Newton when
an abrupt impulse response change occurs at n = 30,000.

proposed VSS-Q-Newton algorithm outperforms its counter-
parts, demonstrating superior convergence performance.

V. CONCLUSION
This study introduced a novel variable step-size
regularization-based quasi-Newton adaptive algorithm
designed for system identification applications. The step-size
adjustment procedure was derived through a statistical
analysis of the mean squared deviation (MSD) convergence
behavior of the quasi-Newton algorithm. Exploiting this
analysis, the step-size was dynamically tuned by incorporat-
ing regularization in the recursive matrix inverse estimation
and aligning it with the desired MSD. The proposed
variable step-size algorithm demonstrated a high convergence
rate for both white/colored stationary and non-stationary
speech input signals. Simulation results verified the superior
performance of the proposed algorithm in terms of MSD
convergence behavior when compared to several competing
algorithms.
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