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ABSTRACT Quantum computing (QC) stands apart from traditional computing systems by employing
revolutionary techniques for processing information. It leverages the power of quantum bits (qubits) and
harnesses the unique properties exhibited by subatomic particles, such as superposition, entanglement, and
interference. These quantum phenomena enable quantum computers to operate on an entirely different level,
exponentially surpassing the computational capabilities of classical computers. By manipulating qubits and
capitalising on their quantum states, QC holds the promise of solving complex problems that are currently
intractable in the case of traditional computers. The potential impact of QC extends beyond its computational
power and reaches into various critical sectors, including healthcare. Scientists and engineers are working
diligently to overcome various challenges and limitations associated with QC technology. These include
issues related to qubit stability, error correction, scalability, and noise reduction. In such a scenario, our
proposed work provides a concise summary of the most recent state of the art based on articles published
between 2018 and 2023 in the healthcare domain. Additionally, the approach follows the necessary guidelines
for conducting a systematic literature review. This includes utilising research questions and evaluating the
quality of the articles using specific metrics. Initially, a total of 2,038 records were acquired from multiple
databases, with 468 duplicate records and 1,053 records unrelated to healthcare subsequently excluded.
A further 258, 68, and 39 records were eliminated based on title, abstract, and full-text criteria, respectively.
Ultimately, the remaining 49 articles were subject to evaluation, thus providing a brief overview of the recent
literature and contributing to existing knowledge and comprehension of QuantumMachine Learning (QML)
algorithms and their applications in the healthcare sector. This analysis establishes a foundational framework
for forthcoming research and development at the intersection of QC and machine learning, ultimately paving
the way for innovative approaches to addressing complex challenges within the healthcare domain.

INDEX TERMS Quantum computing, quantummachine learning algorithms, healthcare, systematic review.

I. INTRODUCTION
Machine Learning (ML) is a rapidly emerging computer
field that is fuelled by massive amounts of data sent,
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collected, and analysed every day [1]. There are numer-
ous ML applications and implementations with QC in
the real world. The science of QC is exciting and has
many practical applications which cover a wide range of
topics [2]. The recent advancement of QC technology has
made the processing of large data scale feasible, with QC
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demonstrating that it is able to solve challenging tasks much
more quickly than classical computers [3], [4]. Quantum
methods for computing offer new concepts and strategies
to the field of machine learning and the development of
computer-based technologies grounded in the principles of
quantum theory [5]. The nature and behaviour of energy
and matter at a quantum level are described by quantum
theory, where QC constitutes a collection of bits that work
together to solve problems [6]. In the field of quantum
machine learning, classical machine learning and quantum
physics are combined. A symbiotic link exists between
the construction of quantum versions of machine learning
algorithms using quantum computers and the analysis of
quantum systems using machine learning algorithms [7].
In the past few years, there has been notable growth in deep
learning and machine learning, with these advanced tech-
nologies having found extensive application across various
industries, ranging from the military, aerospace, and agricul-
ture to banking and healthcare. Models developed through
these methods have been widely adopted in these sectors
[8], [9], [10].

Recently, the fields of machine learning and QC have been
gaining prominence and expanding opportunities in the field
of Artificial Intelligence (AI) [11], and numerous researchers
have successfully applied diverse quantum algorithms to real
healthcare datasets. Among these applications QML stands
out as a highly promising field, with multiple research teams
actively engaged in its research [12]. Particularly significant
is the exploration of novel machine learning approaches
that leverage the advantages of QC within the healthcare
domain. In this context, supervised learning has emerged as
a noteworthy QML model that has garnered considerable
attention from both academia and in healthcare. In the
case of classification and diagnosing problems, exponential
experimental improvements have been achieved through
various contributions [13]. These include the development
of quantum support vector machines (QSVM), variational
quantum classifiers (VQC), hybrid algorithms, quantum deep
learning models, and error minimisation algorithms, as well
as pre-processing techniques. The design and implementation
of Quantum Artificial Neural Networks (QANN) have pro-
vided a gateway for the application of additional algorithms
in quantum states [14], [15]. Furthermore, there are several
methods for encoding classical data into quantum states that
offer advantages such as reduced exploratory costs in terms
of resources and the incorporation of non-linearity in the
data [16]. Kernel-based methodologies have proven useful
in achieving data linearity for linear classifiers. Similar to
classical machine learning algorithms, researchers are also
now concentrating their efforts on establishing comprehen-
sive quantum algorithms capable of solving classification
problems specific to the healthcare industry. QC techniques
have been merged with classical ML for various applications,
with these algorithms using different private and publicly
available datasets such as the University of California Irvine
(UCI) ML repository, Iris, and MNIST dataset [17], [18].

QML has the potential to revolutionise healthcare by
leveraging the power of QC in order to analyse complex
healthcare data and make more accurate predictions [19].
It can process large and diverse healthcare datasets, including
electronic health records (EHRs), medical imaging data,
genomic data, and sensor data, with a view to improving
disease diagnosis and prognosis [20]. EHRs contain a
wealth of patient information, including medical history,
diagnoses, treatments, laboratory results, and so on, and these
comprehensive datasets offer great potential for advancing
healthcare research and in improving patient outcomes [21].
QML techniques can be further used to leverage the power
of QC and extract valuable insights from EHRs. Moreover,
QML holds tremendous potential in the field of medical
imaging, where it can make a significant impact. Medical
imaging techniques, such as X-rays, CT scans, MRI scans,
and ultrasound, play a critical role in diagnosing and treating
various diseases and conditions. However, these imaging
processes often require substantial computational power and
can be time-consuming, leading to delays in diagnosis and
treatment [22]. Moreover, the advent of QML brings the
promise of speeding up image processing and analysis, thus
revolutionising the field of medical imaging. By harnessing
the principles of quantum mechanics, quantum algorithms
can tackle complex computational tasks more efficiently than
classical algorithms, with this advancement opening up new
possibilities for doctors and medical professionals in provid-
ing faster and more accurate diagnoses. By analysing these
datasets, QML algorithms can identify patterns, correlations,
and bio-markers that traditional machine learning algorithms
might miss, leading to more accurate predictions of diseases
and their progression [23], [24].

II. MATERIALS AND METHOD
This review aims to demonstrate solutions and advancements
for the development and adaptation of various quantum
processing methods, quantum machine learning models, and
quantum simulation tools in the healthcare domain. The work
serves as an introduction to this emerging area, along with a
review of recent developments and a presentation of the issues
that have yet to be resolved in earlier survey studies [25],
[26], [27], [28]. In comparison to classical computing (CC),
QC is an emerging field. We will focus on the developments
and applications of the previous seven years as a result,
and will contrast the various approaches used as well as the
challenges.

A. SEARCH DATABASES
Papers that fit the criteria for this review include those that
(a) concentrate on learning patient representations, (b) use
patient data, such as EHR, images, and ECG signals, and
(c) employ quantum machine learning and quantum deep
learning models. In contrast to other techniques, ML and DL
are a practical data-driven solution to build robust representa-
tion simultaneously from a variety of resources, and it is thus
noteworthy that we consider research utilising QC techniques
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FIGURE 1. Hierarchy model for the entire manuscript.

as one criterion. This is because QC techniques have unique
characteristics that make them a viable data-driven solution.
Keyword searching queries for literature database searches
were generated by applying these criteria, and articles from
the past five years from 2019 to 2023 were extracted from
four distinct databases, including Web of Science, Scopus,
IEEE Explore Digital Library, and Springer Nature.

B. FILTERING CRITERIA
In terms of publication characteristics, we restricted our
search to English-language academic papers and concen-
trated only on conference proceedings and peer-reviewed
journals (posters and pre-prints were excluded). Only study
designs relevant to creating a quantum ML or quantum
DL based on any type of health-related dataset were taken
into account as study features. The study results should
also be used to downstream clinical prediction evaluations.
It is important to note that review papers, proceeding
summaries, and QML articles not connected to healthcare
applications were excluded from the study. By using a
snowballing strategy [29], duplicate records were eliminated
and additional records were added, which were gathered
based on references in the papers and personal readings. From
out of the total 2038 records collected from four open sources
database, 468 articles were deleted in the filtering criteria
stage which were most likely duplicated. Additionally, from
1570 records, a further 1034 were eliminated after filtering
again, because most of them were not related to QML or

considered to be other data for model evaluation purposes,
as shown in Figure 2.

C. ELIGIBILITY CRITERIA
Eligibility criteria include three essential reading techniques:
reading the title, reading the abstract, and reading the entire
article. Following filtering criteria, 272 records were consid-
ered for further processing in order to check their eligibility.
We obtained 272 records following the filtering stage, from
which 116 more records were eliminated at the title screening
stage because the topic under consideration did not meet
our specific requirements. Furthermore, 68 additional records
were excluded after reading the abstract. Any articles that
use classical ML instead of quantum ML, use text datasets,
or are related to industrial, material science, or transportation
applications were removed. From the remaining 88 records,
40 records were further excluded in accordance with the
criteria of the full text screening stage, where each study
was researched in full detail to ensure the relevant records.
Finally, 49 records were selected based on three categories:
the Electronic Healthcare Record (EHR) dataset, imaging
dataset records and biomedical signal record, which are
the most appropriate for the purpose of our proposed
work.

D. INCLUSION CRITERIA
Finally, in inclusion criteria, we selected 47 of those records,
which are linked to QML, QDL and QC related to healthcare
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FIGURE 2. Prisma diagram for the records selected.

applications. We also included those articles whose solutions
either use software to implement them or can be simulated
or implemented in quantum devices or simulators. Records
contained in peer-reviewed journals or conference proceed-
ings that were published between 2019 and 2023 were also
included.

E. DATA ANALYSIS
This section contains data scrutiny and data categorisation
for the records selected. All the data was analysed by
taking three different strategies into consideration, and the
corresponding complete texts of 49 records that met the
necessary requirements were deemed eligible for reviewwere
then evaluated. As a consequence, the following information
was obtained.

1) YEAR WISE EVALUATION
The records selected were assessed based on their respective
years with a view to examining the level of interest among
scholars in working with QML over the past few decades.
As shown in Figure 4, notable contributions in the field of
QML for healthcare began to emerge after 2018. In 2019,
there were 8 records, followed by 10 in 2020, 9 in 2021, 12 in
2022, and up to the present date in 2023, 15 articles in total
have been published exploring the intersection of QML and
healthcare.

2) COUNTRY WISE EVALUATION
Additionally, we conducted a country-wise analysis of the
records selected, as illustrated in Figure 5, and this evaluation
generated further interest in the subject by taking both the
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FIGURE 3. Number of papers from different data bases.

FIGURE 4. Number of papers per year.

FIGURE 5. Published articles country-wise.

publication year and the different geographical locations into
consideration. Among the research studies examining the
adoption of QML in the healthcare industry, India stands
out as the leading contributor with 14 papers, followed by
Spain as the second-highest contributor with 7 articles to
date.

3) TYPE OF SELECTED ARTICLES
Moreover, the articles that were chosen underwent a thorough
evaluation based on type of article, with Figure 6 illustrating
the various types of articles considered in this study. Out of
total records, it was found that 37 records, accounting for

FIGURE 6. Types of selected published articles.

approximately 77%, originated from international journals.
Furthermore, 7 records, constituting approximately 15%
of the total, were sourced from international conferences.
Finally, 4 records, making up approximately 8% of the total,
were selected from arXiv.

Furthermore, following evaluation and analysis of the
desired records selected, we defined a couple of research
questions and proposed a point-oriented quality based metric
as shown in Table 1 and Table 2 respectively.

III. WHAT IS QUANTUM COMPUTING
The concept of QC was introduced in the early 1980s
by Benioff and Feynman, who stated that quantum-based
computers outperformed their classical equivalents when it
came to solving particular problems [30]. Feynman suggested
that quantummechanics could be used to solve computational
problems by simulating complex quantum systems with
standard quantum systems. This approach allows problems
to be solved that classical computers are unable to solve [31].
Feynman’s idea had a direct impact on the advancement
of QC, and gave rise to the notion of a quantum Turing
machine, also leading to the theoretical proof of the existence
of universal models based on quantum mechanics [32].
Quantum algorithms can also be used to ascertain the
processing power of classical computers, with development
of one of the earliest quantum algorithms that offered a speed
advantage over its classical counterparts being provided
in [33]. The algorithm was designed to probabilistically
determine whether a two-bit function is balanced or constant
using just one function call. Researchers have proposed
subsequent quantum algorithms in [34] and [35] that
demonstrate the superiority of QC over classical computers
in solving specific problems. However, these problems
are manually designed, and their practical applications are
limited.

QC relies on the principles of quantum mechanics, which
employs observable quantum phenomena such as quantum
entanglement and quantum superposition and quantum
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TABLE 1. The point guided quality metrics proposed for selected record evaluation.

TABLE 2. Possible research questions.

interference [36]. The quantum entanglement property is a
non-intuitive phenomenon, famously referred to by Einstein
as ‘‘spooky action at a distance,’’ whereby an entangled pair
of electrons always spin in opposite directions and influence
each other through time and space, even when not physically
connected. This property provides quantum algorithms with

significantly more power than conventional ones. The
quantum superposition is the property of an electron in
which its position cannot be precisely determined at any
given time. Instead, the electron’s position is described by a
probability distribution, where it has a chance to exist in all
possible locations simultaneously, with varying probabilities.
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FIGURE 7. Quantum development timeline till to date.

The quantum interference property refers to the ability of
an individual particle, such as a photon, to interfere with its
own trajectory and alter its path’s direction. The technology
used for constructing qubits, which are the fundamental units
of quantum computers, is rapidly advancing. A quantum
computer leverages an unusual observation from quantum
physics in which a single bit can exist in both states of ’1’
and ’0’ at the same time, this unique bit being referred to as
a quantum bit or qubit [37]. By utilising these principles it
builds a highly efficient computing system that can process
multiple data pieces concurrently, resulting in the ability
to handle massive amounts of information in a real-time
scenario [38]. The basic concept of QC is to research into
the inherent challenges of data analysis, data storage and
its processing [39], and quantum mechanical systems are
established by encoding information, which is commonly
known as quantum information in terms of the state of a
quantum system [38], [40].

There are several differences between CC and QC in
terms of capabilities, computational power and error rates.
In CC, information is processed using bits that represent
0 or 1, while QC employs quantum bits or qubits capable
of representing 0, 1, or even both states simultaneously
through superposition. CC relies on multiple transistors
to create logical switches and gates, whereas QC utilises
quantum dots and superconducting loops to create qubits,
with several qubits forming a logical qubit. In terms of
scalability, CC’s computing power increases linearly with
the addition of more transistors, while QC’s potential grows
exponentially with the inclusion of more qubits. Moreover,
CC operates at room temperature with relatively low error
rates and finds applications in general-purpose computing.

Conversely, QC operates under extremely low temperatures,
has a higher error rate, and specialises in tasks such as
factoring, optimisation, and complex processing, as shown in
Figure 8.

IV. WHAT IS QUANTUM MACHINE LEARNING
In quantum machine learning, quantum algorithms have
been developed to address fundamental machine learning
challenges while using the computational capability of QC.
The standard approach to achieving this is to modify classical
algorithms or their substantial subroutines so that they may
function on a hypothetical quantum computer [41], [42].
Generally, QC and machine learning is combined in four
different ways, i.e, classical data quantum model, quantum
data classical model, classical data quantum model, and
quantum data quantummodel, as shown in Figure 9. In such a
scenario, our focus is on a third ‘‘quantum enhanced-machine
learning’’ approach which is most frequently employed for
analysis of classical data using quantummodels [43]. In order
to improve computing speed and data storage, qubits and
quantum operations are utilised in the QML algorithm, and
computationally challenging subroutines are handed off to a
quantum device in hybrid approaches that combine classical
machine learning approaches with QC, as shown in Figure 10.
On a quantum computer, such processes may be more
complex and run faster [44], [45], [46], [47].

The workflow of QML typically involves several steps,
including system backend, state preparation, feature map-
ping, unitary gate operation, and quantum measurement,
as illustrated in Figure 11. Feature mapping is the process
involving encoding classical data into a quantum state
representation. In classical machine learning, features are
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FIGURE 8. Classical computing vs quantum computing.

FIGURE 9. Matrix of various QML algorithms.

FIGURE 10. Quantum machine learning intersection.

usually represented as vectors or matrices, while in quantum
machine learning, these classical features are transformed

FIGURE 11. Basic working principle of qml models.

into quantum states by mapping them onto qubits. There
are various techniques that can be used for feature map-
ping, depending on the specific problem and the quantum
algorithms available, with one common approach being to use
quantum circuits to transform classical features into quantum
states. Once the classical data is mapped to a quantum
representation, a quantum model is then constructed in order
to process and analyse the quantum states. The quantum
model is typically composed of quantum gates, which are
operations that act on the qubits and manipulate their
quantum states. Different quantum models can be employed
depending on the specific learning task - for example,
a quantum neural network (QNN) can be constructed using
layers of quantum gates to perform computations analogous
to classical neural networks.

The parameters of the quantum gates in the model
are adjusted during the training process to optimise the
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FIGURE 12. Various type of QML models.

model’s performance. Likewise, there is the quantum support
vector machine (QSVM), which utilises quantum circuits
and quantum algorithms to perform classification tasks.
QSVM maps the input data to quantum states, performs
quantum computations on these states, and uses quantum
measurements to classify new instances.

Eventually, once the quantum model has processed the
data, a quantum measurement is then taken to obtain
classical output results. In quantum mechanics, when a
quantum system is measured, its superposition collapses
into a specific state with a certain probability, and in
the context of quantum machine learning, the quantum
measurement operation extracts classical information from
the quantum states and provides the output for the model. The
measurement outcome is typically a classical bit string repre-
senting the result of the computation. Statistical techniques
are often applied to analyse the measurement outcomes
and extract relevant information or make predictions. For
instance, in classification tasks, the measurement outcome
can correspond to a class label. It is important to note that
themeasurement operation inherently introduces randomness
due to the probabilistic nature of quantum systems, and so
consequently, quantummachine learning models may require
repeated measurements or statistical sampling in order to
obtain reliable results.

V. QUANTUM MACHINE LEARNING MODELS
QML models are categorised into three basic categories:
supervised model, unsupervised and semi-supervised,
as shown in Figure 12 and as follows:

A. QUANTUM SUPERVISED MODELS
Supervised ML is a type of ML where a model learns
from labelled training data to make predictions or decisions.
According to this approach, the model is provided with input
data along with corresponding output labels or target values.
There are various supervised machine learning models
available, and the choice of model depends on the specific
problem you are trying to solve and the nature of the data.
Here are a few commonly used supervised learning models:

1) QUANTUM SUPPORT VECTOR MACHINE (QSVM)
A QSVM is an ML algorithm that combines the principles
of QC with the concept of a classical SVM. It is designed
to perform classification tasks on quantum data or to exploit
quantum effects for improved classical SVM training. For
its part, an SVM is a supervised learning algorithm used for
classification and regression tasks. Given a set of labelled
training data, the purpose of the SVM is to find a hyperplane
in a high-dimensional feature space that best separates the
data into different classes. The hyperplane is chosen to
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FIGURE 13. QSVM circuit diagram.

maximise the margin, which is the distance between the
hyperplane and the nearest data points of each class. QC,
on the other hand, leverages quantum phenomena such as
superposition and entanglement to perform computations
on quantum bits or qubits. Qubits can exist in multiple
states simultaneously, allowing for parallel processing and
potentially more efficient algorithms. In a QSVM, the
classical SVM is enhanced using quantum techniques, and
the main idea is to map the input data to a quantum feature
space, where the QSVM can perform classification, and
this mapping is done using a quantum kernel function [48].
In classical SVM, a kernel function computes the similarity or
distance between data points in the input space, while in the
case of QSVM, the quantum kernel computes the similarity
or distance between data points mapped to a quantum feature
space. The input classical data is encoded into quantum states
by using various quantum algorithms, and the quantum data
is then fed into a quantum circuit that applies the quantum
kernel function. This circuit takes advantage of quantum
operations and entanglement to perform computations on
the quantum data. As shown in Figure 13, in the case of
quantum kernel computation, measurements are taken on the
quantum circuit in order to obtain classical information and
the measurement circuit then extracts the relevant features
from the quantum state.

2) QUANTUM NEURAL NETWORK (QNN)
A computational neural networkmodel based on the principle
of quantummechanics is known as a QNN. In 1995, Kak [50]
and Ezhov and Dan [51] independently published the initial
concepts regarding quantum neural computation. Traditional
computers store and process information as binary bits,
which can represent either a 0 or a 1. In contrast, quantum
computers use quantum bits, or qubits, which can exist in
a superposition of both 0 and 1 states simultaneously. This
allows quantum computers to perform certain calculations
much faster than classical computers in the case of certain
types of problems. In QNN, the basic building block is
the addition of a quantum layer, which is analogous to the
artificial neuron in a classical neural network as shown in
Figure 14. The quantum neuron processes and transmits
information using quantum operations. Typically, a qubit is
used to represent the state of the quantum neuron, with the
state being manipulated using quantum gates. The activation
function in a classical neural network is replaced by a
quantum gate, which transforms the state of the qubit based

FIGURE 14. QNN model.

on the input. Various types of quantum gates can be used,
such as the Hadamard gate, controlled-phase gate, or any
other gate that is able to manipulate the quantum state, and
these gates introduce quantum effects, such as superposition
and entanglement, into the computation. Training a quantum
neural network involves adjusting the parameters of the
quantum gates to optimise the network’s performance in a
specific task. One of the potential advantages of quantum
neural networks is their ability to process and analyse
large amounts of data simultaneously, thanks to quantum
superposition. This can be especially useful for tasks such
as pattern recognition, optimisation, and machine learning,
where large-scale parallelism can provide computational
advantages.

3) QUANTUM K NEAREST NEIGHBOR (QKNN)
Quantum KNN is also a supervised ML algorithm, which
uses the quantum properties (superposition and parallelism)
to process the classical KNN classification algorithm. The
QKNN algorithm introduces quantum mechanics principles,
specifically quantum superposition and quantum interfer-
ence, to improve the performance of the KNN algorithm.
It utilises a quantum representation of data and exploits
quantum parallelism in order to perform the distance
calculations more efficiently, while the input training and
testing dataset can be converted into vectors. The classical
CC method requires n bit registers for the desired dataset,
while the QC needs n qubit superposition quantum states.
All of the binary numbers in the datasets can be converted
into n qubit states with the appropriate probability, which
reduces storage capacity. As shown in Figure 15, the five
registers contain five qubits, with the first auxiliary qubit
being operated by Hadamard gate. The second and third
registers are used for testing the dataset, while the fourth
and fifth registers are used for training it. In the QKNN
algorithm, quantum parallelism is leveraged to calculate the
distances between the encoded new data point and all the
encoded training data points simultaneously, with this parallel
distance calculation being obtained using quantum gates
and quantum circuits. Finally, the class label predicted is
determined based on the outcome of the measurement. The
QKNN algorithm assigns the class label that is most prevalent
among the K nearest neighbors in the collapsed quantum
state.
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FIGURE 15. QKNN circuit diagram [52].

4) QUANTUM RANDOM FOREST (QRF)
A quantum RF is a variant of the classical random forest
algorithm that incorporates principles and techniques from
QC. It leverages the power of quantum properties, such as
superposition and entanglement, to enhance performance and
capabilities of the random forest model. In a classical random
forest, multiple decision trees are created and trained on
different subsets of the training data, and each decision tree
is built using a random selection of features and employs
a majority voting scheme to make predictions. The final
prediction of the random forest is determined by aggregating
the predictions of all the individual decision trees. In a
quantum random forest, the underlying decision trees are
replaced by quantum decision trees, which are quantum
circuit representations of decision trees, and these quantum
decision trees utilise quantum gates and qubits instead
of classical bits and logic gates, as shown in Figure 16.
A qubit is the fundamental unit of quantum information,
and can exist in a superposition of states, representing both
0 and 1 simultaneously. To form a quantum random forest,
an ensemble of quantum decision trees is created through
a process called quantum bootstrap aggregating or quantum
bagging. Multiple copies of the training data are created,
and each copy is randomly perturbed to introduce diversity.
Quantum decision trees are then built on these perturbed
copies, and the final prediction is obtained by aggregating the
predictions of all the quantum decision trees throughmajority
voting.

5) QUANTUM LONG SHORT TERM MEMORY (QLSTM)
LSTMnetworks are a type of recurrent neural network (RNN)
designed to handle long-term dependencies in sequential
data. They are particularly effective in tasks such as speech
recognition, language translation, and time series analysis.
LSTMs are composed of cells that maintain an internal
memory state, allowing them to remember information over
extended time intervals. Each cell is equipped with three
main components: an input gate, a forget gate, and an output
gate, and these gates regulate the flow of information into,
out of, and within the cell. By replacing the classical neural
networks in the LSTM cells with VQCs, the classical LSTM
can likewise be transformed into the quantum state [53]. The

FIGURE 16. QRF diagram [71].

FIGURE 17. Schematic architecture of QLSTM [53].

QLSTM schematic architecture shown in Figure 17 consists
of three layers - the data encoding layer, the variational
layer, and the quantum measurement. The input classical
vector is converted into a quantum state by the data encoder
layer and the variational layer is the learnable component,
where an optimisation technique is used to update the
circuit parameters. Eventually, the quantum measurements
are employed in order to obtain the values required for further
processing.

B. UNSUPERVISED MODELS
Unsupervised learning analyses and clusters unlabelled
information using machine learning algorithms to identify
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data groupings or hidden patterns without requiring human
involvement.

1) QUANTUM PRINCIPAL COMPONENT ANALYSIS (QPCA)
Quantum PCA is a QC algorithm that is an extension of the
classical PCA technique used in machine learning and data
analysis. PCA is a dimensionality reduction method whose
purpose is to find the most significant features or patterns in
a dataset by projecting it onto a lower-dimensional subspace.
The input dataset is transformed into quantum states by
encoding it in the amplitudes of a set of quantum bits (qubits).
The number of qubits required depends on the size of the
dataset and the desired precision. The encoded quantum states
are then prepared on a quantum computer using quantum
gates and operations, and this step initialises the quantum
system in order to represent the input data. For its part, the
quantum PCA algorithm employs quantum phase estimation
to estimate the eigenvalues of the covariance matrix, with this
step being critical in determining the principal components.
The eigenvalues are estimated from the results of the quantum
phase estimation, which provides information about the
variance captured by each principal component. Estimated
eigenvalues are used to identify the principal components,
while the eigenvectors corresponding to the largest eigen-
values represent the principal components of the dataset.
The quantum states representing the principal components
are then measured to obtain classical information, although
additional classical post-processing may be required in order
to finalise the output and interpret the results.

2) QUANTUM GENERATIVE ADVERSARIAL NETWORK
(QGAN)
The quantum GAN use two neural networks a generator and
a discriminator that are simultaneously trained are used to
generate data that is identical to the original data used in
training. The generator generates fake data that mimics the
actual training dataset, while the discriminator works like
a detective, aiming to differentiate between actual and fake
data. The QGAN model is based on the patch approach [54],
which employs a number of quantum generators, each of
which is in charge of creating a small patch of the final output,
as shown in Figure 18. The generator is a quantum variational
circuit comprising alternating layers of single qubit rotation
gates and two-qubit entanglement gates. Additionally, a first
layer of Hadamard gates provides a superposition of all
computational basis states with equal weight. In the context
of training, the generator and discriminator are alternately
optimised to create a probability that closely resembles the
target distribution, while the discriminator input contains
continuous scalar real data and discrete integral fake data.

3) QUANTUM CLUSTERING
Clustering is the process of grouping similar data points
together based on their characteristics or proximity. Tra-
ditional clustering methods, such as k-means, partition

FIGURE 18. Schematic diagram of QGAN model [55].

FIGURE 19. K mean clustering vs quantum clustering [56].

data into clusters based on classical distance measures.
In quantum clustering, the data points are represented as
quantum states instead of using classical distance measures,
and these quantum states can be created using techniques
such as quantum superposition and quantum entanglement.
By encoding the data into quantum states, quantum clustering
allows for the exploration of complex relationships and inter-
actions among data points. The quantum clustering algorithm
operates by applying quantum gates and measurements to the
quantum states representing the data. These operations can
manipulate the quantum states to reveal underlying patterns
and structures in the data, the goal being to find clusters
that have close intra-cluster similarity and low inter-cluster
similarity. Figure 19 indicates the key advantages of quantum
clustering by handling the high-dimensional and complex
data more effectively than classical clustering methods.
Quantum systems can simultaneously process multiple states
and explore a much larger search space, potentially leading
to more accurate clustering results.

4) QUANTUM AUTOENCODER
A quantum autoencoder is a quantum machine learning
algorithm that leverages the principles of quantummechanics
in order to perform data compression and feature extraction.
A quantum autoencoder follows a similar principle, but
instead of using classical bits, operates on quantum bits or
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FIGURE 20. Structural diagram of quantum autoencoder [56].

qubits. Qubits can exist in superpositions of 0 and 1, allowing
for more complex representations and computations. Quan-
tum autoencoders are typically implemented using quantum
circuits and quantum gates, and their architecture consists of
two main components: the quantum encoder and the quantum
decoder, as shown in Figure 20. The quantum encoder maps
the input data, represented as quantum states, into a lower-
dimensional code. This is achieved by applying a series of
quantum gates and transformations to the input qubits, with
the resulting code qubits capturing the essential features of
the input data. Once the input data is encoded, the quantum
decoder then performs the reverse process, transforming the
code qubits back into an output state that approximates the
original input data. The aim of the decoder is to reconstruct
the data with minimal error, while the reconstruction process
involves applying a series of quantum gates and operations
that are the reverse of those used in the encoder. Quantum
autoencoders have the potential to offer advantages over
classical autoencoders in certain scenarios, while quantum
systems can capture complex relationships and correlations
that may be challenging for classical systems. Additionally,
quantum autoencoders can exploit the properties of quantum
entanglement and superposition in order to represent and
process information in more powerful ways.

C. SEMI-SUPERVISED MODELS
Semi-supervised learning is a type of machine learning that
builds models using both an enormous quantity of unlabelled
data and a small amount of labelled data.

1) VARIATIONAL QUANTUM CLASSIFIER (VQC)
VQC is a semi-supervised QML approach that enables the
use of NISQ devices to acquire experimental results without
the use of extra error-correction methods. This technique is
a hybrid approach whereby the parameters are updated and
optimised in a traditional computer, allowing for optimisation
without improving the coherence times required. The device’s
iterative measurements are used to calculate the cost function,
which is based on a system aimed at reducing errors by inte-
grating noisymeasurements in optimisation calculations [57].
The amplitude encoding, which maps features to quantum
states, is an appropriate solution for data pre-processing
when utilising the VQC model, as demonstrated in [58]
and [59]. The feature map is one of the major components
which transform data into a quantum system’s potentially
substantially higher-dimensional Hilbert space, making it

FIGURE 21. Block diagram of VQC.

possible to efficiently compute across non-linear fundamental
functions on the feature space. As shown in Figure 21,
a VQC model contains 3 main components: a feature map
that converts classical data into quantum states; a variational
circuit with layers of short depth unitary circuits and θ -
parameters that is iteratively tuned and has been trained by
minimising a cost function in a classical device; and at the
end of the VQC model, a measurement circuit is used which
returns the quantum variable decoded into classical output.

2) QUANTUM LEAST SQUARE SVM (QLS-SVM)
A QLS-SVM is a variant of the traditional SVM algorithm.
The aim of the QLS-SVM is to find a linear or non-linear
hyperplane that best separates classes in a dataset by
minimising the squared error rather than maximising the
margin as in the standard SVM. Like classical SVM, QLS-
SVM operates in a high-dimensional feature space. The input
data consists of labelled examples, whereby each example is
represented by a feature vector and belongs to a specific class,
and uses a kernel function to implicitly map the input data
into a high-dimensional feature space. This transformation
allows the algorithm to find non-linear decision boundaries
in the original input space, formulating the classification
problem as a constrained optimisation problem. The goal is
to minimise the sum of squared errors between predicted
outputs and desired outputs, subject to some constraints. The
desired outputs are typically represented as +1 or −1 in the
case of binary classification tasks. To solve the optimisation
problem, QLS-SVMemploys a technique known as Lagrange
multipliers - by introducing these, the problem is transformed
into a dual problem that can be solved more efficiently. The
solution involves finding the support vectors, which will be
the data points that lie closest to the decision boundary. Once
the QLS-SVM model is trained, it can be used to make
predictions on new, unseen data, with prediction being based
on the sign of the learned function, which determines the class
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FIGURE 22. QML applications in the healthcare industry.

label. If the output is positive, the sample is classified as one
class, and if negative, it belongs to the other class.

VI. QML APPLICATIONS
Healthcare industry has made significant advancements
with QC interms of data management, clinical studies,
disease diagnosing, EHR, and medical device inspections.
Moreover, QML is widely been using in various healthcare
applications,i.e, molecular simulation, medical precision,
radiotherapy, drug development, clinical trials and diagnose
assistant as shown in Figure 22. It also offers a significant
increase in processing capacity, which resulted in improve-
ments in the healthcare industry. Personalised treatment is
provided using deoxyribonucleic acid (DNA) [60] sequenc-
ing with QC, and advanced therapies and medications are
created using systematic modeling. QC addresses complex
optimisation challenges, such as devising effective radiation
plans to eradicate specific cancer cells while minimising
harm to healthy organs and body parts [61], [62]. Qubit
processing allows the quick sequencing and analysis of
genomes, and cloud-based hospital infrastructure migration
makes it possible to forecast chronic disease issues and
protect medical data. Integrating QC into healthcare systems
brings a substantial advantages, including enhanced patient
management, improved medical professional experiences,
reduced costs, and superior patient treatment outcomes [63],
[64].

A. DIAGNOSIS ASSISTANCE
QML algorithms are utilised to provide early-stage disease
detection, leading to reduced healthcare costs and improved
diagnosis and treatment. For example, early detection of
cancer and Covid-19 can significantly decrease treatment

expenses. While diagnosis tools such as X-rays, MRIs, and
CT scans are expensive computer-aided devices that are
evolving rapidly [65], and still facing challenges related
to noise, quality, replicability, and safety. In this regard,
QC aids diagnosis by examining medical images through
edge detection and enhancing the diagnosis more quickly.
Moreover, categorising cells based on biochemical and
physical characteristics requires ample space due to the
abundance of predictor variables [66]. These challenges
can be addressed by leveraging quantum-enhanced ML
techniques such as quantum vector space, which in turn
enhances single-cell diagnosis. The integration of QC enables
repetitive diagnosis and treatment to be avoid and allows for
regular monitoring of individual health.

B. MOLECULAR SIMULATIONS
Quantum computers offer a fundamentally different approach
to data processing compared to classical computing, which
relies integrated circuits for speed. Quantum computers
utilise qubits and leverage quantum entanglement, allowing
for the development of quantum algorithms that exploit
quantum phenomena. In the healthcare industry, quantum
computers can be utilised to enhance ML techniques,
optimisation, AI techniques for complex simulations. This is
particularly valuable in modelling complex correlations and
dependencies among highly interconnected elements, such as
molecular structures where multiple electrons may interact.
QML provides an efficient means of analysing healthcare
processes. Additionally, QC enables complex simulations
to be undertaken that would otherwise be challenging for
classical algorithms due to scaling limitations. As the size
of the problem increases, classical algorithms often face
exponential increases in resource requirement, while QC
offers a potential solution to managing these challenges
effectively.

C. MEDICAL PRECISION
The aim of medical precision is to provide personalised
treatment to individual patients based on their specific
diseases. Consequently, in the coming years, patient-focused
medical care will be crucial in dealing with the intricate
biological systems of human beings. However, medical
expenses constitute only 10%−20% of healthcare costs,
with the remaining 80%−90% associated with various other
factors such as socio-economic conditions, environmental
influences, and challenges related to health behaviour.
Additionally, conventional drug-based therapies may not
yield effective results in the case of certain individuals and
could even lead to fatal drug reactions. Therefore, early
intervention and preventive measures can improve healthcare
goals and reduce expenses through QML and QC techniques.
Traditional approaches are reasonably effective in predicting
future risks of disease while rendering noise, low data
quality, small size, and high complexity. Therefore, quantum-
based ML techniques enhance the accuracy of early disease
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detection. Healthcare practitioners can leverage medical
devices to facilitate disease identification and manage risks
through continuous monitoring and providing appropriate
treatment. As a result, QML can enhance patient-centered
treatment by continuously streaming data from medical
devices, enabling uninterrupted services to patients to be
provided.

D. RADIOTHERAPY
Radiotherapy is a cancer treatment method that utilises
electromagnetic energy to destroy cancer cells and prevent
their growth. However, it is a delicate technique that is
essential for meticulous calculations in order to accurately
target the disease without causing harm to healthy organs.
The administering of radiotherapy involves the use of highly
precise devices that require complex optimisation problems
to be solved using a high level of precision. Thus, ensuring
precise radiographic procedures entails conducting multiple
accurate and sophisticated simulations in order to find an
effective solution. The adoption of QC enables various
simulation recommendations to be implemented, allowing
for the concurrent execution of numerous simulations and
facilitating enabling an effective solution to be determined
faster.

E. DRUG DEVELOPMENT
Medical professionals can now model intricate chemical
interactions at an atomic level thanks toQC,which is essential
for medical research, i.e, disease diagnosing, and treatment.
The ability to encode proteins in the human genome and
simulate their interactions with current medication has been
made possible by developments in QC, and applying AI
methods to assist in patient diagnosis is becoming more and
more popular. The vast majority of ML techniques currently
in use are pattern recognition techniques, where various ML
models are trained utilising a large amount of patient data to
create computer-assisted diagnosis systems. QC significantly
enhances the processing of information far more efficiently
than conventional computing methods. In such a scenario,
the objective may involve leveraging the aforementioned
comparisons in order to facilitate accurate diagnosis.

F. CLINICAL TRIALS
QC and QML can be used to revolutionize clinical trials
in several ways, i.e, quantum computers can process vast
amounts of clinical data much faster, which allowsmore com-
plex and comprehensive data analysis, identifying patterns
and correlations. Furthermore, QML can optimize clinical
trial designs by accurately predicting patient outcomes and
treatment efficacy. This leads to more efficient trials with a
higher chance of success. QC can enhance medical imaging
techniques, providing clearer and more detailed images,
which are crucial for accurate diagnosis and treatment
planning. QML can process real-time data from clinical
trials, allowing for immediate adjustments and interventions,
thereby increasing the safety and effectiveness of trials.

QC facilitates the sharing and analysis of clinical data
across different geographical locations, promoting global
collaboration in medical research and trials.

G. DRUG DISCOVERY
Novel opportunities for medication discovery are presented
by QML and QC. They facilitate accurate drug-biotarget
interaction modelling by emulating molecular interactions at
the quantum level. Compared to conventional approaches,
this sophisticated modelling aids in the more precise pre-
diction of pharmacological features including toxicity and
efficacy. The identification of interesting chemicals, the opti-
misation of medication formulations, and the customisation
of treatments to individual genetic profiles can all be greatly
accelerated by quantum algorithms. The pharmaceutical
business could undergo a transformation thanks to this
technology, which offers the promise of personalised therapy
quicker, and more affordable in medical development.

VII. THE EMERGENCE OF QML IN HEALTHCARE
The promise of QML in healthcare is becoming more
and more apparent. As healthcare organisations work to
enhance patient outcomes and reduce expenses, QML offers
great potential. QC is used by QML, a type of artificial
intelligence (AI), to analyse and predict enormous amounts
of data. It relies on the concepts of quantum mechanics,
which perform considerably faster data manipulation than
is possible with conventional computing. Considering the
complexity and size of the data in healthcare applications,
QML is especially well suited to such applications. Identi-
fying patterns in data that might normally be too challenging
can be found easily using QML - for instance, it can be used
to identify possible drug targets, find early disease symptoms,
and predict how well treatments would work. Additionally,
it can be utilised to examine patient records and provide
individualised therapies.

A. MEDICAL HEALTHCARE RECORD (MHR)
Medical Healthcare Records (MHRs) play a vital role in
the field of healthcare, providing a comprehensive and
digitised collection of patients’ medical information. With
the advent of cutting-edge technologies like QML models,
the importance of MHRs has become even more pronounced
in predicting and improving patient outcomes. QML models
have the potential to revolutionide healthcare by offering
enhanced predictive capabilities and personalised treatment
strategies. MHRs act as a repository for patient data,
containing a variety of data including medical history,
diagnosis, medication, lab results, imaging studies, and other
disease-related parameters. Obtaining longitudinal patient
data is one of the main benefits of using MHRs for
QML model predictions, and MHRs offer a comprehensive
overview of a patient’s medical history throughout time,
allowing physicians to track the occurrence of diseases and
spot patterns that might otherwise be difficult to pinpoint.
Furthermore,MHRs also include a significant amount of both
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structured and unstructured data. Unstructured data consists
of clinical notes, medical imaging reports, and pathology
reports, whereas structured data consists of information such
as demographics, vital signs, and lab values.

Recently, there has been growing interest in utilising
QML models for various healthcare tasks. These models,
such as Quantum Support Vector Machines (QSVM), Quan-
tum Random Forests (QRF), Quantum Neural Networks
(QNN), Quantum Convolutional Neural Networks (QCNN),
Variational Quantum Classifier (VQC), Quantum K-Nearest
Neighbor (QKNN), and Quantum Decision Trees (QDT),
have the potential to reform the healthcare sector by
offering enhanced predictive capabilities and personalised
treatment strategies. To classify cardio disease [67] an opti-
mised QSVM and Hybrid Quantum Multi Layer Perception
(HQMLP) models were combined using a privet MHR
cardio dataset, while feature dimensions were reduced using
the wrapper and filter method. The proposed models are
compared to their classical version and their competency
ensured, and the distinction between classical and quantum
ML shown in [68]. To classify mellitus diabetes, the classical
SVM and DT models are compared to the Qboost classifier
by taking the kernel PCA method into consideration. The
quantummodel improves accuracy by 10%-15% by correctly
observing the pattern for the desired dataset. In QML,
ensemble learning is a popular ML approach that combines
several QML models in order to make more precise
predictions, while in [69], three QML models - QSVC, QNN
and VQC - are combined to undertake ensemble learning in
order to classify heart disease. The UCI Cleveland dataset is
used and the results are compared to the classical ensemble
model, with results demonstrating that the bagging ensemble
model is effective in improving quantum classifiers with a
view to ensuring accurate prediction. Breast cancer, which
is discussed in [70], is one of the leading causes of death in
women worldwide. A VQC model with amplitude encoding
along with an EfficientSU2 circuit made up of a single
qubit layer using CX entanglements was considered for such
purpose. The publicly available breast cancer dataset with
2 feature and 4 feature datasets obtains the greatest accuracy
- 95% and 94% - in the case of the quantum VQC model.
Moreover, Ullah et al. [71] proposed two quantum models
to classify Covid-19. The enhanced QSVM and Quantum
Random Forest (QRF) classifiers with 10 features on a privet
dataset were used for such purpose, and the competency
of the models was ensured by comparing them to classical
models and previous quantum models. The hybrid technique
also proves fruitful in QML for tackling some classification
problems, while the QML framework with classical DL was
described in [72], where a PIMA Indian diabetes dataset was
used for the VQCmodel, and pre-processing and exploratory-
data analysis was explored and found essential for the purpose
of robust prediction. Another hybrid QNN and hybrid QRF
for early heart disease detection using the Cleveland and
Statlog heart disease dataset was also described in [73],

with the models having been evaluated by adopting 10-fold
cross validation with different qubits and different layers,
and where the results show the robustness of the models.
Currently, the QCNN model can be used to predict ischemic
heart disease earlier by collecting heart patients’ data [74],
while the data cleaning technique and selection of important
features is also important when simulating a predictivemodel.
These combinations, along with an appropriate state of
preparation, results in accurate prediction.

Moreover, a quantum-inspired approach with ensemble
learning was modelled in [75], where the pima indian
dataset was considered for decision-making purposes. The
quantum encoding contains object encoding and an RF
classifier is used for ensemble learning, which results in
accurate prediction. A VQC model for heart disease and
breast cancer prediction which takes different encoding
techniques into consideration is also described in [76]. During
pre-processing a quantum random access coding (QRAC)
was used to map the discrete future, which outperforms
in terms of accuracy compared to the ZZ-FeatureMaping
technique. Another contribution using amplitude encoded
VQC and QSVM models for diabetes classification was
modelled in [77], whereby the feature dimension was reduced
in pre-processing by taking the intersection of RF, LR and
SVM outputs. Reference [78] demonstrated the importance
of the pre-processing technique for the quantum model and
claimed that it reduces model complexity. The quantum
version of SVM was used after reducing the dimension
of the breast cancer dataset, which improves prediction
accuracy. For its part, the practical implementation of a
kernel based QSVM algorithm to tackle a classification
problem using breast cancer Wisconsin datasets is shown
in [79], which demonstrates that quantum-driven ML could
deliver a quantum speedup in solving many challenging
tasks. The results claimed that the quantum computer is
much faster than the classical computer. The hybrid feature
selection approach was used in [80], taking quantum Oracle
operation, amplitude estimation and amplitude amplification
into consideration for the breast cancer dataset, with results
indicating the strong performance and major searchability,
with a high level of efficiency and less complexity than the
classical method. Most QML models are based on use of the
classical model, as discussed in [81], where various models
are used to create a new voting model results in ensemble
learning. Furthermore, the diabetes dataset contains theMHR
records of various patients used to evaluate the model; in
comparison to classical models, the new quantum model
is 55 times computationally faster. The importance of state
preparation for the VQC model is also researched by the
authors [82], and the diabetes dataset wasmapped using stock
parameters to solve the Noisy Intermediate Scale Quantum
device (NISQ) classification problem. The Poincaré sphere
representation is used with two experiments for 2 qubit and
3 qubit, obtaining the greatest accuracy of 70% and 72%
respectively, while the classical quantum hybrid algorithm for
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supervised binary classification task was modelled in [83],
where a VQC model was used to classify the UCI ML breast
cancer dataset. The highest testing accuracy of 2 and 3 qubits
with 2000 shots was recorded as 91% and 73% respectively.
The VQC is now garnering a lot of interest, since it can be
used with upcoming quantum computers - the framework,
whereby the classical ML is merged with the VQC model for
classification of MNIST breast cancer dataset, is described
in [84], and in the case of back propagation, various
optimisers were used to reduce the loss. The healthcare
sector has been further revolutionised using unsupervised
models for disease classification. Additionally, three quantum
distances prototypes-based clustering models are analysed
and compared in [85], where K-means outperform other
clustering approaches. The work concluded that the quantum
version K-means models take logarithmic time while the
classical one takes polynomial time complexity. A quantum-
inspired neural network based on fuzzy logic was also
published in [86]; Fuzzy C-Means (FCM) clustering is used
in learning, and neurons are added to the hidden layer
in order to constructively develop NN architecture. Lastly,
various healthcare datasets - i.e, breast cancer, diabetes, liver
disorder, and heart disease - are taken into consideration,
and an overview of medical healthcare records is shown in
Table 3

B. MEDICAL IMAGING DATA
QC provides exponentially higher computational power,
which enables large-scale medical imaging datasets to be
processed and analysed with increased speed and efficiency.
Complex algorithms for tasks such as image reconstruction,
feature extraction, and classification can be executed more
quickly, allowing for faster and more accurate diagnoses. For
effective processing and analysing of imaging data, quantum
algorithms can enhance the accuracy of disease detection,
image segmentation, and classification, which can lead to
more precise diagnoses and personalised treatment plans.
Furthermore, feature selection is a critical step in medical
image analysis. Quantum machine learning algorithms can
efficiently explore vast feature spaces and identify the
most relevant and informative features for the purposes of
diagnosis, which leads to improved accuracy by reducing
noise, irrelevant data, and the risk of overfitting. Image
reconstruction techniques, such as CT scan or MRI, can
benefit from quantum machine learning algorithms, while
quantum-enhanced optimisation algorithms can improve
the quality of reconstructed images by solving complex
inverse problems more effectively. It can also enhance image
segmentation - the process involving delineating different
regions or structures within medical images. Quantum
algorithms can optimise the segmentation algorithms, leading
to more accurate and efficient delineation of organs, tumors,
and other pathological regions. In such a scenario, neuro-
degenerative disease may be diagnosed as in [87], where
the classical AlexNet is used with a VQC model to form a

hybrid by taking two MRI datasets from PPMI and ADNI
into consideration. The results indicate that the classical
model helps the quantum model by securing the greatest
accuracy of 97% and 96% respectively. Another improved
hybrid model including additional explainable strategy is
described in [88]. To diagnose abnormal activities in breast
cancer and knees, a local interpretable model explanation
is merged with quantum K-means algorithm using MRI
images, and this improved model performed well in terms
of accuracy with 92.6% and 93.7% in the case of breast
cancer and kneeMRI datasets. A 3D self supervised quantum
inspiredNN for diagnosingmedical data is introduced in [89],
whereby MR brain images and liver tumor data is used,
and a quantum fuzzy logic processes the information of low
level and high level features of the local image in order
to form accurate segmentation of the 3D medical data and
obtain the greatest accuracy of 99% and 98.9% respectively.
For cervical cancer classification, further quantum inspired
weed optimisation with DL is described in [90]. A Gabor
filtering is used during pre-processing, whereby features are
extracted using a DCNN based on the SqueezeNet approach,
and a deep variational autoencoder is used and maximum
accuracy of 99.07 obtained%. Furthermore, research into
feasibility utilising QML on a real healthcare dataset is
described by Moradi et al. [91]. Using IBM hardware the
two QML algorithms - i.e, quantum distance classifier (qDS)
and simplified quantum kernel SVM (sqkSVM) - were
proposed, and the models were tested using the breast cancer
dataset, bone narrow transplant dataset and heart failure
dataset with maximum accuracy of 91% and 87%. For the
classification and prediction of COVID-19, [92] provides
the hybrid quantum-classical convolutional neural network
(HQ-CNN) model, whereby the main model was divided
into two categories: quantum and classical. The quantum
section used a quantum convolutional layer, whereas the
traditional network included two convolutional layers, three
maximum pooling layers, and two fully connected layers.
In the case of the Covid-19 X-ray image dataset, extensive
trials showed that current CNNs perform better. Another
2-qubit quantum CNN model referred to as Javeria was
described in [93], where the encrypted brain tumor data
was obtained using the SHA-256 algorithm. The model
consists of two dense layers and a Keras layer with Softmax
activation function. Four brain image datasets - BraTS2018
with 191 samples, BraTS2019 with 335 samples, BraTS2020
with 335 samples and BraTS2021 with 1251 samples were
taken into consideration and maximum accuracy obtained of
98%, recall 99%, F1-score 98%, and precision 99%. The
article [94] describes a quantum-inspired deep probabilistic
learning ordinal regression model for diagnosing medical
images that makes use of the representational strength of
deep learning and the inherent ordinal information of disease.
Two distinct medical image analysis tasks are used to
gauge the model’s performance. Using eye fundus images,
prostate cancer is diagnosed and the degree of diabetic
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TABLE 3. Overview of medical history record articles.

retinopathy estimated, with the model rendering promising
results. A quantum clustering technique is described in [95]

to identify prostate cancer using an MR image brain tumor
dataset. For classification purposes, a prostate radiation
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protocol with 100 to 170 slice images per patient, minimum
pixel sizes between 256 × 256, a resolution plane of less
than 1 mm, and slice thickness ranging from 1 mm to
2 mm were taken into consideration. Reference [96] used
conventional methods to undertake image processing and
feature extraction operations on the data, and then train a
VQC model with a 4-qubit quantum processor in order to
recognise CT images of COVID-19-healthy and infected
patients. The results demonstrated that the quantum computer
provided a competitive edge in COVID-19 images with
classification accuracy of 90.9% - 97.7%. In order to expand
the size of the dataset and improve accuracy, Amin et al.
[97] first used a Conditional-GAN (CGAN) to create CT
images, whereby two models - CML and QNN - were
described for classification of Covid-19, with different layers,
sets of parameters and activation functions. Both the models
performed well and obtained maximum accuracy of 93%
and 80% in the case of the UCSD-AI4H and POF hospital
dataset. Reference [98] used quantum circuits to train a
classical neural network termed quantum-assistedNN (qNN),
where QNN was executed in parallel by a quantum circuit
and was discovered to be significantly faster. Furthermore,
orthogonal weight matrices were developed to train quantum
orthogonal networks (qOrthNN) in order to avoid gradient
explosion and improve accuracy. Chest X-ray images were
also used from PneumoniaMNIST and RetinaMNIST and
maximum accuracy of 86% and 78% obtained respectively.
For its part, a locally order-less tensor network model
(LoTeNet) with fewer computational resources using few
model hyper parameters and GPU memory is described by
Selven in [99], with accuracy of the experimental results for
binary classification experiments on the PCam and LIDC
datasets of 94.3% and 87.4% being obtained, respectively.
Reference [100] developed a quantum based on variational
algorithms in order to categorise data by employing quantum
feature mapping with a significantly smaller number of
training parameters. The breast cancer datasets were used
to train the classifier, and the results (93.7%) showed that
it performed better in binary and multi classification than
the conventional neural network model, whether using linear
or non-linear separable data. QNN implementation is the
best solution for the purpose of identifying some specific
diseases. Reference [101] demonstrated that there are two
distinct components of QML: 1) adding quantum data to
neural networks; and 2) utilising hybrid MIA technology
to complete information about disease identification. For
classification and detection of medical CT Scan imagesmaxi-
mum accuracy of 94.3% and 87% was obtained, respectively.
In order to conduct quantum feature selection, [80] suggested
a hybrid quantum feature selection algorithm (HQFSA) that
made use of graph theory. The suitability for dimensionality
reduction was ascertained, and then an important set of
features extracted using the Grover algorithm and amplitude
amplification method, using the UCI breast cancer dataset
and with the greatest accuracy of 96% being obtained.
Reference [102] used BQ-CNN, a quantum particle swarm

optimisation technique that evolves CNN structure based on
binary coding for image classification tasks. On the MNIST
images dataset, experiments showed that the technique
improved performance with an accuracy of 96% and 85% in
the case of the CS and MDRBI dataset. The quantum SVM
algorithm, which is claimed to offer exponential speedup for
least squares SVM (LS-SVM), was described with a view
to addressing the big-data challenge [103], and the classifi-
cation task was accelerated exponentially, demonstrating the
algorithm’s feasibility. The proposed model was evaluated by
taking two privet datasets into consideration with an accuracy
of 84.9% and 91.4% respectively. Practical applications for
NISQ computers are also possible thanks to hybrid quantum-
classical algorithms. Additionally, the data drive quantum
circuit learning (DDQCL) approach is provided in [104]
and can be used to train shallow circuits for generative
applications as well as help characterise the quantum devices.
The three Synthetic datasets with 1000 data points sample
has been taken into consideration and get good results
other than architectural circuit design obtained, while a new
quantum-based autonomous perceptron model (APM) was
developed by Sagheer et al. [105] to address categorisation
issues and boost learning effectiveness. Furthermore, for
pattern classification purposes, research was conducted into
synthetic and breast cancer datasets, which demonstrated
benefits in terms of computing speed and maximum accuracy
of 99% and 98% respectively, and described in 4.

C. BIOMEDICAL SIGNAL DATASETS
In the healthcare industry, biosignals play an important role
in diagnosing some disorders. The term ‘‘biosignal’’ refers to
electrical impulses generated by brain neurons, tissues and
muscles, and monitored by biomedical sensors [106]. The
brain’s activity can be monitored by a computer with the
use of a BioSignal interface, which comprises hardware and
software [107]. The four main components of the BioSignal
system are filter, control devices, amplifiers and sensors.
These signals come from the body and are enabled by the
machine and encoded, decoded, and processed by body
interfaces. Neurons in the human brain produce signals
as a result of both reflexive and voluntarily performed
actions [108]. Biosignal accretion methods are further
classified as invasive and non-invasive. Invasive procedures
such as electrocorticography (ECOG) [109] involve the
insertion of sensors into the human body, while non-invasive
data which does not involve the skin breaking involves an
electrocardiogram (ECG) [110], magnetoencephalography
(MEG) [111], electroencephalograms (EEG), and Functional
Near-Infrared Spectroscopy (fNIRS) [112]. ECG examines
the electrical activity of the heart and diagnoses cardiovas-
cular disease, and EEG is used to identify disorders of the
brain, such as Alzheimer’s, while EOG is used to monitors
the cornea-retinal of the front and rear of the human eye
and conducts ophthalmological and eyemovement diagnoses.
Furthermore, electromyograms (EMG) [113] assess the
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TABLE 4. Overview of imaging articles in healthcare.
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TABLE 5. Overview of biosignal articles in healthcare.

electrical activity of prosthetic function as well as the ability
of skeletal muscles. For their part, quantum sensors are
devices that exploit quantum effects in order to achieve
enhanced sensitivity and precision in measuring physical
quantities. Integrating quantum sensors with ECG or EEG
monitoring systems could enable more accurate and detailed
data to be gathered. The high sensitivity and noise reduction
capabilities of quantum sensors may contribute to improved
biosignal analysis in QML models, mitigated through the use
of silico tests, where quantum computers simulate human
beings. ECG and EEG data include useful information that
can be retrieved and used in ML models as features. One
approach in the context of QML is to use quantum algorithms
or quantum-inspired techniques to extract features from
biosignal data, which can then be supplied to QML models
to be analysed and classified. In contrast to MHR and Image
datasets, the majority of researchers working on QML also
use biosignal data to identify specific diseases. A paradigm
for feature engineering based on QC was proposed in [114],
by employing LOSO and K-fold cross validation, whereby a
publicly available EEG dataset measuring the performance
of a mental arithmetic activity including 20-channel EEG
signal segments is taken into consideration. The data was

collected from 36 healthy right-handed volunteers separated
into two groups containing 10 bad counters and 26 good
counters. Using LOSO and 10-fold CVs, the model obtained
accuracy of 93.40% and 97.88%, with geometric means of
88.44% and 96.42% respectively. A new approach for feature
extraction and classification that involves a 1D CNN model
using the hybrid classical-quantum layers was proposed
in [115]. In the Bonn EEG dataset for the binary classification
task, the proposed model obtained maximum accuracy and
specificity of 100% while reducing model complexity with
the least learning parameters. Additionally, by introducing
Gaussian noise into the EEG signal, the proposed technique’s
robustness was also assessed. Reference [116] offers a hybrid
quantum-classical NN model for EEG, EMG, and ECOG
analysis that combines a VQC model with a DNN model.
Additionally, it also shows that the proposed QNN delivers
state-of-art performance while maintaining a small number
of trainable parameters for VQC. The model was evaluated
using a variety of EEG data sets - stress, RSVP, and
MI - and obtained maximum accuracy of 87.23%, 95.12%,
and 60.22%, respectively. A parameterised quantum circuit
is merged with a traditional LSTM model in [117] to
increase the learning capacity and accuracy of predictions,
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and on a variety of sensor data from the SWELL-KW [118]
dataset, the efficiency of the proposed method was evaluated
with 87.67% accuracy. The time series dataset includes
data from worker information interactions with computers,
facial expressions, body postures, heart rates (variability),
and skin conductance, which were captured under various
working environments. According to Sridevi et al. [119],
discrete wavelet transform is suggested for decomposing
ECG signals, and this is followed by computing a 2D
scalogram in order to acquire time frequency features and by
applying a quanvolutional neural network to categorise the
scalogram images in order to detect arrhythmia. The accuracy
and operating curve score of a publicly accessible physio
net MITBIH arrhythmia database were recorded as 98% and
100% respectively. Quantum annealing (QA) is an innovative
method that was introduced in [120] for important feature
selection using physiological signals, whereby four features
are extracted from the signal source - respiration, ECG, hand
and foot EDAs - for the purpose of stress detection. The
Pearson correlation coefficient among the attribute variable
and the target variable is used to calculate the bias of
feature variable, with results demonstrating the promise of
quantum annealing in optimising the training phase of a
ML classifier, particularly under situations involving data
uncertainty. The cognitive processes of human behavioural
outcomes were taken into account by Aishwarya et al. [121],
taking into consideration different QML classifiers, i.e, VQC,
QA classifier and hybrid quantum classical NN. These mod-
els were compared, and predictions of upcoming cognitive
responses made using EEG data. The preliminary findings
of these approaches are shown, and they are quite positive,
with up to 61.53% validation accuracy. Reference [122]
describes hierarchic quantum mechanics-based architecture
for implementing feature extraction and classification in EEG
signals, whereby a quantum state was formed via the quantum
wavelet packet transformation (QWPT) after the classical
EEG signal dataset was created as a quantum state. The
random non-linear kernel from the modified QSVM model
is used to predict the label of the EEG signal and obtained
maximum accuracy of 95.14%. Another novel hybrid method
for classifying two types of EEG signals using an auto
regressive model was also described in [123], whereby the
key features from EEG data were extracted using two distinct
element extraction approaches. Back propagation is utilised
to train the proposed QRNN model, which is then compared
to QNN and Quantum Wavelet NN. As demonstrated in
Table 5, the experimental results show that the proposed
model obtained maximum accuracy of 88.28% with a fastest
processing time of 6 seconds.

VIII. DISCUSSION
The aim of this section is to address the responses of all
the potential research questions outlined in Table 2. This
involves summarising and evaluating the records selected
from the state of the art, which will serve as a guideline for
future researchers working onQML in the healthcare domain.

The quality of each article was ensured after analysing and
evaluating each article based on the information provided in
Table 1. The study encompasses a comprehensive analysis
of 49 recent articles published between 2018 and 2023, and
evaluation was conducted by constructing a set of quality
metrics as shown in Table 6.

How QML algorithms can be utilised to enhance medi-
cal data analysis, such as improving disease segmentation,
classification, or anomaly detection: As discussed briefly
in the state of art, QML algorithms have the potential to
enhance medical data analysis in several ways, including
improving disease segmentation, classification, and anomaly
detection. The quantum-enhanced feature selection technique
is an important step in medical data analysis, whereby
relevant features are selected with a view to building accurate
models. Quantum machine learning algorithms can assist
in identifying the most informative features from complex
medical datasets, leading to improved disease segmentation
and classification. Moreover, QSVM [124], QRF [125],
QKNN [126], QNN [127], VQC [57], and QCNN [128]
are the popular algorithms for classification tasks, and these
algorithms can leverage the power of QC to enhance clas-
sification accuracy, enabling diseases or medical conditions
based on patient data to be better identified. Quantum algo-
rithms, such as quantum k-means [129] or quantum spectral
clustering [130], can aid in grouping similar data points
together, allowing for better disease segmentation, which can
be particularly helpful in medical imaging analysis, where
accurate segmentation of organs or tissues is crucial for
diagnosis and treatment planning. Detecting anomalies in
medical data is vital for early diagnosis and treatment of
diseases. Quantum machine learning algorithms can assist
in identifying abnormal patterns or outliers in large-scale
medical datasets, enabling early detection of diseases or
unusual patient conditions. By using the unique quantum
effects, such as quantum superposition and entanglement,
these networks can potentially provide enhanced capabilities
for medical data analysis and improve pattern recognition,
feature extraction, and classification tasks in medical data
analysis.

How QML models can be integrated with classical
machine learning approaches in order to leverage the
strengths of both in healthcare data analysis: Integrating
quantum machine learning models with classical machine
learning approaches can potentially leverage the strengths of
both in healthcare data analysis. A hybrid quantum-classical
machine learning model combines classical machine learning
algorithms with QC techniques in order to leverage the
power of both paradigms. QC has the potential to process
information exponentially faster than classical computers
in certain scenarios, which makes it an exciting field
for various applications, including healthcare and disease
diagnosis. The working process for the quantum model uses
the same classical classical algorithms, the only difference
being the data encoding technique. The classical model uses
the classical input information of 0 or 1, known as bits,
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TABLE 6. Content of evaluated research articles taken into consideration based on merit points.

and processes this data using a classical ML algorithm,
providing two exclusive possible states. In the case of the
quantum model, the classical one is first converted into
a quantum state known as qubits using Feature-Mapping
through a unitary gate operation. A quantum feature map
utilises a quantum circuit based on the conventional machine
learning kernel method in order to represent classical data

within the quantum state domain. In order to classify
non-linear data by locating distinct hyperplanes, the data is
then transformed into a higher-dimensional Hilbert space.
The feature map encodes classical input into a quantum
variable by employing N unitary gates in order to undertake
a ground state transformation. A quantum model contains
a quantum layer, quantum circuits, quantum gates, and
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quantum registers, where the quantum parameters are used
for computation. At the output of the quantum model,
a measurement circuit is used to decode the quantum variable
back into classical data. QML models can be used to
optimise complex healthcare systems, such as drug discovery,
treatment planning, or resource allocation, by finding the
most efficient solutions more quickly than the CC method.

What the fundamental limitations and advantages of
QML models are in handling healthcare data compared
to classical machine learning models: Researchers often
encounter the persistent challenge of isolation, which stems
from various factors. Quantum decoherence, triggered by
heat and light, poses a significant threat: when qubits are
exposed to such conditions, they may lose their quantum
properties, including entanglement, resulting in data loss
stored within these qubits. Additionally, rotations in logic
gates of quantum computers are susceptible to errors. Fur-
thermore, the field of quantum machine learning relies on the
utilisation of computers with extended circuit length and error
correction, which entails redundancy for each qubit. QML
also faces a limitation concerning the utilisation of a limited
number of data samples relative to the number of qubits
available. To accommodate larger datasets and additional
qubits, QC devices necessitate an increased number of
logic gates which, in turn, means that the computational
cost escalates and prolongs model execution time. These
limitations can potentially impact the quantum states, as an
incorrect rotation may lead to errors in the final results.
Developers of algorithms for quantum computers must pay
close attention to the underlying physics - unlike classical
algorithms that can be developed following the principles
of the Turing machine, designing an algorithm for quantum
computers requires a foundation based on the intricacies of
raw physics. There are no straightforward formulas that can
directly relate it to logical operations, making the develop-
ment process more nuanced and complex. QML enhances
computational speed and facilitates data storage undertaken
by algorithms within a programme - it expands learning
validation by executing machine learning algorithms on
emerging computing devices known as quantum computers.
The processing of information relies on the principles of
quantum physics, which significantly diverge from traditional
computer models.

What the considerations and methodologies for evalu-
ating the robustness and generalisability of QML models
are when applied to diverse healthcare datasets, including
data from different hospitals, regions, or demographic
groups: Evaluating the robustness and generalisability of
QML models when applied to diverse healthcare datasets,
including data from different hospitals, regions, or demo-
graphic groups, requires careful consideration of several
factors. The first step is data representation, because QML
often involves mapping classical data into quantum states.
The choice of data representation can impact the model’s
ability to generalise across diverse datasets, and so it is
crucial to select a representation that preserves the relevant

features of the data and is robust in terms of variations
in data sources. Secondly, to evaluate generalisability, it is
essential to gain access to diverse datasets that encompass
different hospitals and regions, which ensures that the
model’s performance is not limited to specific subsets of the
data and can handle any inherent variations in healthcare
data. A proper pre-processing of healthcare data is then
also important, standardising and normalising the data to
remove any biases or inconsistencies. Additionally, missing
data needs to be handled appropriately to prevent any bias in
the model’s performance, and ensemble methods employed
by combining multiple QML models trained on different
datasets or with varied initialisations. Ensemble methods
can enhance robustness and generalisability by reducing the
impact of individual model biases and errors. The presence
of such biases and errors to ensure fairness in predictions
across diverse groups also needs to be analysed, and
the model’s performance evaluated separately for different
groups of datasets in order to identify any discrepancies
or disparities. Performance of the QML model on any
external datasets that were not used during training or model
development also needs to be validated, as this helps assess
the model’s ability to generalise completely unseen data
sources. Finally, model interpretability and explainability can
be taken into consideration, these being crucial, especially
in healthcare applications. Techniques used to explain the
model’s predictions also have to be developed, providing
insights into how the model incorporates different features
and influences decision-making.

Which types of data can be used for adoption of a
quantum predictive model, and is it feasible to use open
access datasets for evaluating such models? Additionally,
what specific quantum computing devices are applicable
for evaluating QML models using healthcare data: Eval-
uation of QML models can be conducted using various types
of healthcare datasets. These datasets can be categorised
into two main types: private datasets [67], [71] [74], [77]
and publicly available open access datasets [69], [72] [75],
[84]. Private datasets are collected from multiple sources
such as hospitals, healthcare facilities, and clinical centres,
and these datasets comprise healthcare images, electronic
healthcare records, or biomedical signals. They contain
sensitive and confidential information and are typically not
accessible to the general public. On the other hand, publicly
available datasets are openly accessible to anyone interested
in using them for research or analysis. These datasets also
consist of healthcare images, electronic healthcare records,
or biomedical signals, but they do not contain sensitive patient
information - they are specifically created and made publicly
available for research purposes, allowing researchers and
developers to test and evaluate their QML models.

There are various QC systems used for executing QML
models. For instance, IBM Qiskit [131] is an open-source
QC framework developed by IBM, providing a set of tools,
libraries, and APIs that allow users to create, compile, and
run quantum programs on IBM’s quantum systems. IBM has
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a collection of quantum processors with varying numbers of
qubits, which are the basic units of quantum information.
For its part, Qiskit supports a range of quantum algorithms
and provides a high-level interface for developing quantum
machine learning models, being widely used by researchers,
developers, and enthusiasts in the QC community. There is
also D-Wave quantum annealing [132], which is a specialist
approach to QC that focuses on solving optimisation
problems, while Google Cirq [133] is an open-source QC
framework developed by Google that is designed to create,
control, and simulate quantum circuits on both universal
and adiabatic quantum systems. Adiabatic QC is another
approach to quantum computation, where the system slowly
evolves from an initial state to a target state that represents
the solution to a problem.

IX. CONCLUSION
This work is based on a systematic review, where various
QML algorithms that take healthcare datasets into considera-
tion are reviewed and analysed. Initially, we gathered a total
of 2038 articles from four distinct databases - namely, Web
of Science, Scopus, IEEE Digital Library, and Springer Link.
These articles covered the specific field of study and were
published between 2018 and 2023. A meticulous evaluation
process was then conducted to ensure impartiality and elim-
inate any biases. To streamline the research, we employed
several criteria to remove duplicate articles and applied
various elimination measures and quality assessments. As a
result, we successfully reduced the initial pool of articles
and ultimately identified 49 articles that were deemed highly
relevant to our study, and these selected articles served
as the primary focus and foundation for our research. All
articles that fit the criteria for this review include those that
(a) concentrate on learning patient representations, (b) use
patient data, such as EHR, images, and ECG signals, and
(c) employ quantum machine learning and quantum deep
learning models. This systematic review is divided into two
parts: creating a potential research questionnaire and defining
quality criteria for the records selected, which will serve
as a framework for future research and development at the
interface of QC and machine learning. Based on the analysis
of these papers, we identified several distinct QML designs
and implementations, with the primary focus notably seeming
to be on applying neural networks within the quantum realm.
Among the prominent QML models, we encountered various
quantum networks, each serving specific purposes. These
included QSVM, QRF, QKNN, QCNN, QLSTM, and VQC
algorithms. Interestingly, these quantum algorithms were
extensively explored and tested in the context of EHRs,
medical images, and biosignal healthcare datasets, which
indicates a significant interest in leveraging QC with a view
to addressing critical challenges in the healthcare domain,
potentially unlocking new avenues for medical advancements
and diagnostic improvements.

One of the possible limitations of this study is the difficulty
in identifying all the relevant papers that meet our inclusion

criteria. The challenge arises from the wide variety of
methods used in healthcare, making a comprehensive search
using automated keyword queries complex. Furthermore,
it is important to highlight the fact that most existing
QML algorithms are presently being assessed in classical
environments rather than genuine quantum settings. This
limitation is attributed to the scarcity of quantum-ready
data for conducting QML experiments and the substantial
effort involved in converting classical data into quantum
data. Consequently, a promising direction for future research
involves the development of more efficient encodingmethods
in order to tackle this issue.
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