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ABSTRACT The maintenance of pavements takes considerable time and poses a significant task, especially
when it comes to detecting cracks at the pixel level. Due to the complexity of pavement conditions, such as
road markings, shadows, and oil stains, deep learning techniques are still a challenge in automating crack
detection. This paper presents a novel methodology termed as CrackHAM, which is an encoder-decoder
network founded on the U-Net architecture. The primary objectives of CrackHAM are twofold: to achieve
accurate and robust pavement crack detection while reducing the parameters of the network. Our study
introduces two significant improvements to the existing neural network architecture, namely the phased
multi-fusion module and the dual attention mechanisms. These improvements improve the process of defect
extraction, resulting in an improved level of performance. Furthermore, a novel module named HASPP is
devised to augment the network’s capacity to acquire more comprehensive receptive fields. In order to lower
the number of network parameters, a technique is employed whereby only use half of the number of input
channels and output channels in the VGG16 are utilized as U-Net encoder modules. The empirical findings
demonstrate that in the Deepcrack, Crack500, and FIND public datasets, CrackHAM achieves superior
segmentation performance compared to the FCN, Deeplabv3, Swin-Unet, and U-Net models while utilizing
only one-third of the computational resources.

INDEX TERMS Pavement crack detection, deep learning, fusion module, attention mechanism, atrous
convolution.

I. INTRODUCTION
Cracks represent a major type of initial damage on pavement,
causing significant degradation in service performance and
lifespan [1]. Ensuring well-maintained roads necessitates
the diligent survey and maintenance of cracks, which
are critical responsibilities for transportation departments.
The initial step in this process involves crack detection.
Nevertheless, manual crack detection is both time-consuming
and subjective in nature. Consequently, there is a rising
need for automatic crack detection techniques, which can
increase detection efficiency and lower expenses. Missions
for pavement crack inspection have been enhanced by
using mobile devices in conjunction with remote sensing
observation and imaging techniques in recent decades.
Mobile mapping systems typically use laser scanners or
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optical sensors. For the purpose of analyzing pavement
distress, images or point clouds can quickly and completely
record the conditions and appearances of the pavement
surface [2].

Point clouds of pavement can accurately reflect cracks’
three-dimensional properties, making them useful for direct
crack parameter measurements [3]. However, shallow, nar-
row, or low-reflectivity cracks are unfriendly. Pavement
images are better for crack detection because they have a
multitude of textural intricacies and notable disparities in
intensity between cracks and other focal points [4], [5].
There has been a significant focus on computer vision, with
numerous researchers devoting considerable attention to this
field. Numerous techniques have been devised, including
image processing techniques (IPT) and machine-learning
techniques. A wavelet transform was used by [6] to automat-
ically identify and emphasize cracks. Reference [7] utilized
entropy and image dynamic thresholding to automatically
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segment pavement cracks into crack and non-crack pixels.
Despite this, these algorithms often encounter difficulties
operating effectively due to factors such as inhomogeneous
distress, shadows, and other related issues.

On the other hand, machine-learning methods use manual
features to identify areas in the image that contain cracks.
Several crack detection algorithms, [8], [9], and [10] have
been proposed that rely on feature engineering. However,
conventional machine-learning methods usually depend on
shallow learning techniques and heavily rely on handcrafted
features extracted from input images, which makes it
challenging to produce semantic segmentation outcomes.

Deep convolutional neural networks (CNNs), popularized
by AlexNet’s [11] win in the 2012 ImageNet championship,
are widely used in computer vision for pavement crack
detection. Deep learning approaches possess the capability
to automatically learn features from data and optimize
model parameters. This feature’s learning ability streamlines
the model design and adjustment process. Therefore, there
are algorithms applied for pavement crack detection. For
pavement crack detection, [12] proposed a novel approach
for detecting different sorts of structural defects by utilizing
a Faster R-CNN-based algorithm [13]. Reference [14]
utilized a sliding window approach to analyze photos with
greater dimensions in order to detect concrete crack. For
pavement crack segmentation, [15] utilized U-Net [16].
Using CNN DeepLabv3+, [17] presented a method for
integrated crack detection. Deep full convolutional networks
(FCN) were proposed by [18] as a crack detection method
and successfully used to perform semantic segmentation
of pavement crack images. In [19], an encoder network
architecturewas designed that shares the same topology as the
13 convolutional layers found in the VGG16 network [20].
By deep learning with improved statistical segmentation,
it becomes possible to accomplish automated crack detection
and segmentationmore swiftly, leading to improved detection
efficiency and decreased maintenance expenses. However,
many of these algorithms are frequently designed to extract
more intricate characteristics by constructing more complex
network architectures. Consequently, these models can be
relatively large and require a substantial amount of hardware
resources for computing power.

To reduce computer resource consumption, a target
segmentation architecture based on U-Net is employed to
segment pavement cracks. The primary findings of our study
can be succinctly outlined as follows:

1) The U-Net architecture has been enhanced by our team
to develop a novel crack detection network. Despite
being over 50% smaller than U-Net, our network
exhibits superior detection performance.

2) In order to tackle the matter of potential loss of image
details resulting from the utilization of the Atrous
Spatial Pyramid Pooling (ASPP) [21] module, the
HASPPmodule is proposed. The module is designed to

proficiently capture both multi-scale features and fine-
grained details.

3) A phased multi-fusion module has been implemented
to allow for the integration of high-level features and
facilitate the merging of low-level features, enhancing
the overall feature representation. Distinct attention
mechanisms are utilized for the two types of features.
A channel attention module is implemented to pro-
vide more discriminative information for high-level
features, whereas a spatial attention module is utilized
to concentrate on pertinent details and eliminate
extraneous information for low-level features.

4) The method exhibits superior performance compared
to four other CNN models while necessitating fewer
computational resources for training.

II. RELATED WORKS
This section begins with an overview of traditional
approaches used for crack detection. Subsequently, it intro-
duces a more recent approach based on deep learning.

A. TRADITIONAL METHODS
Before the advent of deep learning, conventional image
processing-based methods and machine learning were used
for crack detection. The rapid progress in image processing
and machine learning has significantly enhanced the efficacy
and precision of crack detection. For instance, a heuristic
threshold method was proposed by [22] to detect cracks
where crack pixels are usually darker than background pixels
under normal illuminance. However, such threshold-based
methods are not effective in realistic environments due to
uneven illumination and the difficulty of determining a
suitable threshold. To overcome this limitation, [23] proposed
a percolation-based model that builds connectivity between
neighboring pixels’ gray values to ensure crack continuity.
Reference [24] utilized two post-processing steps to improve
the precision and reliability of crack detection results.
Moreover, in [25], random structure forest [26] was employed
to leverage structured information in crack patches.

B. DEEP LEARNING METHODS
Deep learning has seen significant breakthroughs in computer
vision tasks, including crack detection, recently. Some
researchers have used CNNs to perform classification of
crack images [27], while others [17], [18] have employed
semantic segmentation algorithms to classify each pixel of
an image, assigning it a label of either crack or non-crack.
Other authors have combined these approaches, such as [28],
who implemented a two-phase sequence processing method
for attaining crack detection at the pixel level on pavement
crack. The CNNs generate multi-scale features by utilizing
pooling operations, and information from these multi-scale
features [29] and [30] is blended to enhance the network’s
crack feature representation. Numerous studies [31], [32],
[33] have developed innovative network architectures that
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FIGURE 1. U-Net architecture.

effectively capture both spatial and channel-based semantic
interdependencies by leveraging attention mechanisms. The
attention-based Generative Adversarial Network (GAN) [34]
developed by [35] is proposed as a solution for the real-time
detection of internal defects in concrete members. Refer-
ence [36] utilizes a squeeze-and-excitation attention-based
encoder and a multi-head attention-based decoder to attain
enhanced crack segmentation outcomes. By incorporating
these attention mechanisms, these studies have successfully
enhanced contextual information, resulting in improved
performance and a richer understanding of the data. To detect
scattered, tiny cracks, the ASPPmodule is adapted to improve
the receptive field [37]. Reference [38] integrates the ASPP
module with separable convolution modules to construct a
computationally efficient network suitable for the purpose of
segmenting concrete cracks.

III. METHODOLOGY
A. OVERVIEW OF THE PROPOSED METHOD
TheU-Net network has been used for numerous segmentation
tasks, which have been demonstrated effectively. According
to Fig. 1, the structure is made up of two primary constituents:
a contracting pathway that acquires information about the
context of the image inputted and an expanding pathway
that produces the segmentation map. The U-Net framework
incorporates skip connections that establish connections
between the corresponding layers in the contracting and
expanding pathways. This enables the network to exploit
the high-resolution features of the contracting pathway while
producing the segmentation map of the expanding pathway.

The architectural design, named CrackHAM, is founded
on the U-Net framework. The VGG16 network was selected,
and the fully connected layers are omitted in the contracting
path. Additionally, the VGG16 network underwent a 50%
reduction in the number of input channels and output
channels in each of its layers.

CrackHAM, illustrated in Fig. 2, leverages a hierarchical
feature extraction approach that combines features from
multiple layers. The third and fourth layers of the contracting
path apply the HASPP module to introduce additional
detailed information to the network, which is described below
in detail. In light of the characteristics of different level
features, we apply different attentions (spatial attention and

FIGURE 2. Illustration of the proposed CrackHAM architecture.

channel attention) to select effective features. Besides, our
expanding path utilizes side-output features differently. After
the initial side-output layer, the subsequent three side-output
layers are accompanied by deconvolutional layers to ensure
the feature maps align with the original input image size
and a 1 × 1 convolutional layer, which adjusts the number
of channels. Side-output 1 and Side-output 2 are combined
together and then processed through a spatial attention
mechanism. Similarly, Side-output 3 and Side-output 4 were
combined together, but with the use of a channel attention
mechanism. Then these feature maps are combined through
concatenation to generate the final features.

B. HASPP MODULE
The size of the receptive field in deep neural networks
can indicate the extent to which context information is uti-
lized [39]. However, in semantic segmentation tasks, simply
expanding the receptive fields by combining convolutional
and pooling layers can result in decreased resolution and
computational inefficiency. Furthermore, research by [40]
has shown that the receptive field of CNNs is often found
to be significantly smaller than the theoretical receptive
field, particularly in higher layers. This limitation greatly
hinders CNNs’ ability to accurately predict using contextual
information. To address this, by utilizing dilated convolutions
with varying dilation rates, it becomes possible to extract con-
textual information at different scales. This technique allows
for a significantly larger receptive field, enabling the capture
of extensive details while also preserving the resolution of
the input data. The ASPP module, which employs dilated
convolution, was first proposed in DeepLab [41].

However, the ASPP module causes a loss of spatial
information. At present, the most popular dilated rates are
(6, 12, and 18) in the ASPP module. It means that the
convolutional kernels have many ‘‘holes’’. The receptive
field of a convolutional kernel is restricted to regions with
square patterns due to the filling of ‘‘holes’’ with zeros. This
implies that only those positions with non-zero values are
taken into account, resulting in the loss of some neighboring
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FIGURE 3. Illustration of the ASPP problem.

information. This issue becomes more pronounced as the
dilation rate increases, particularly in higher layers where
the receptive field is larger. The center pixel (marked in
red) is computed through three convolutional layers with
a kernel size of 3 × 3, where the pixels contributing
to this computation are identified by the blue markings.
Convolutional layers have dilation rates of r = 6, 12, and 18,
respectively, in Fig. 3. Take r = 6 as an example, where only
9 out of 169 pixels in the region are utilized for computation
(the lightest gray area in Fig. 3). As r increases to larger
values, such as r = 12 or r = 18, the input information can
become extremely sparse, which is not ideal for effective
learning as the local information is entirely missing.

In this study, a novel network model, called the HASPP
module, draws inspiration from the work of [42] and [43].
The objective of this model is to tackle the problem of spatial
information degradation. The HASPP’s operation, divided
into four parts, is presented in a schematic diagram in Fig. 4.
In part one, a convolutional layer is executed on a feature
map utilizing a kernel size of 1. In part two, the feature map
undergoes a cascading process that involves five layers of
CNNs with increasing rates of dilation, specifically 1, 2, 3,
4, and 5 times the original dilation rate, but the outputs of the
layers of CNNswith 2, 3, and 4 times the original dilation rate
will be concatenated with the output of part one, respectively.
Additionally, a skip connection will be applied between the
layer of CNNs 3 times the original dilation rate and the layer
of CNNs with 5 times the original dilation rate. In part three,
the output of part one is concatenated with the feature maps
obtained by layering CNNs with 3, 4, and 5 times the rate
of dilatation in part two, as well as the input feature map.
Then AdaptiveAvgPool is applied on the resulting feature
maps. In part four, the outputs from the first, second, and
third parts are concatenated with the input feature map. A
1 × 1 convolution is then applied to adjust the number of
channels to match the channel number of the input feature
map.

In cascading mode, an upper dilated layer accepts the
output of a lower dilated layer, enabling the efficient
production of large receptive fields, as shown in Fig. 5. Each
color in the figure represents a different dilated convolutional
dilation rate of 1, 2, 3, 4, and 5, respectively. The range of the
receptive field for each dilated inference is showcased on the

FIGURE 4. Illustration of HASPP module.

FIGURE 5. Illustrates part two which shows the cascading of several
dilated convolutional layers.

feature map using different colors to represent it. Each layer
applies padding equal to its corresponding dilation rate, and
the dilated layers obtain all the information from the input
feature map.

C. PHASED MULTI-FUSION MODULE
To address the issue of losing important information and
the absence of linkage between global and local information
in fully convolutional neural networks with pooling layers,
[44] proposed the Multi-Fusion U-Net architecture. This
approach aggregates contextual information from feature
maps of varying sizes during the downsampling phase,
allowing for the extraction of detail-space features from
global images. However, the architecture of Multi-Fusion
U-Net overlooks the distinct characteristics of features at
different levels. Edge information is plentiful in low-level
features, but they also contain considerable noise. Similarly,
high-level features capture extensive contextual information,
yet they may produce less detailed outcomes.

Therefore, based on the idea of a multi-fusion module,
the proposed improved module, called a phased multi-fusion
module, extracts features at multiple scales from different
layers of the network, facilitating more accurate predictions.
Fig. 6 illustrates how the proposed phased multi-fusion
module applies upsampling in a top-to-bottom approach with
different factors of 8, 4, 2, and 1. Next, a 1 × 1 convolution
is used to directly adjust the feature channels to a size of
32. Different from the architecture of Multi-Fusion U-Net,
the outputs of the high-level features (the first and second
layers) are concatenated, and then the number of channels
can be adjusted using a 1 × 1 convolutional kernel. Then the
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FIGURE 6. The proposed phased multi-fusion module.

channel attention mechanism can be applied. Similarly, the
outputs of the low-level features (the third and fourth layers)
can be concatenated, and then the number of channels can
be adjusted using a 1 × 1 convolutional kernel. Finally, the
spatial attention mechanism can be applied. Lastly, the two
output results can be concatenated and then outputted.

D. ATTENTION MECHANISMS
In the context of crack detection, the low-level feature encom-
passes a significant amount of detailed information, but
accompanied by a considerable amount of noise. Conversely,
the high-level feature encompasses a wealth of abstract
semantic information, which might result in indistinct out-
comes. Inspired by the CBAM attention module [45], taking
into consideration the distinctive characteristics of different-
level features, spatial attention is utilized in convolution
stages 1-2 to concentrate on low-level features, while channel
attention is employed in convolution stages 3-5 to accentuate
high-level features.

1) SPATIAL ATTENTION MODULE
The structure of the spatial attention module is depicted in
Fig. 7. Firstly, the input features, which have a size of H ×

W × C, undergo separate max pooling and average pooling
operations, generating two feature maps of size H × W × 1.
Subsequently, these feature maps are concatenated by means
of channel splicing, thereby creating a unified feature map of
size H × W × 2. After a 7 × 7 convolution operation, this
unified feature map is compressed into a single feature map
of size H × W × 1. Finally, the feature map obtained is fed
into a sigmoid activation function, producing spatial attention
features.

S(F) = σC7×7[(Favg + Fmax)] (1)

where σ means the sigmoid function, C7×7 denotes the
convolution operation with a filter size of 7×7,Favg refers the
feature map after average pooling, and Fmax refers the feature
map after max pooling. S(F) denotes spatial attention weight.

FIGURE 7. The spatial attention.

FIGURE 8. The channel attention.

2) CHANNEL ATTENTION MODULE
Fig. 8 illustrates the structure of the channel attentionmodule.
The input features of sizeH×W ×C for spatial attention are
subjected to global max pooling and global average pooling
operations, resulting in two feature maps. These feature maps
are then compressed using a 1× 1 convolution operation to a
size of 1×1×C/R, where R is the compression rate set to 16.
The Rectified Linear Unit (ReLU) activation function is then
applied to each compressed feature map. Following this, the
two feature maps are again compressed to a size of 1×1×C
individually through another 1×1 convolution operation. The
resulting output features from the ReLU activation function
are added together and passed through the sigmoid activation
function to generate the channel attention features.

C(F) = σ
{
C2(R(C1(Favg))) + C2(R(C1(Fmax)))

}
(2)

where σ means the sigmoid function, C1 denotes the
convolution operation with a filter size of 1 × 1 and input
channels to C, which outputs channels to C/R channels.
Similarly, C2 signifies convolution with a filter size of 1× 1,
input channels to C/R, which outputs to C channels. Favg
refers the feature map after applying global average pooling
and Fmax refers to the feature map after applying global max
pooling. Finally, C(F) denotes channel attention weight.

IV. EXPERIMENT
A. DATASETS
For three public pavement datasets: the Crack 500 [46],
DeepCrack [30], and FIND [47]. There are some samples for
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TABLE 1. The detail of public pavement crack datasets.

FIGURE 9. Dataset sample.

FIGURE 10. Techniques sample.

datasets, shown in Fig. 9. We randomly select 80%–90% of
the samples from each dataset as the training set and leave
the remaining samples as the testing set. During the training
process, a validation set is selected by randomly choosing
20% of the training dataset. The detailed information can be
found in TABLE 1. Due to the relatively small scales of the
three public datasets, they might not provide enough training
data to achieve effective results. To address this challenge,
various techniques are employed to augment the dataset
and expand the number of image patches. These techniques
include rotation (anticlockwise 90◦), random adjustments of
brightness and contrast, elastic deformation, and mirroring
(left-right and top-bottom), shown in Fig. 10.

B. TRAINING SETTINGS
This experiment used PyTorch deep learning software and
Python 3.6.0. The experimental environment has an Intel(R)
i5-12600KF CPU, 12GB memory, an NVIDIA GeForce
RTX3080 Ti GPU, and Windows 10. Due to computer
memory constraints and the need for fair model testing, the

FIGURE 11. Learning rate.

epoch was set to 1000, batch size was 8 for 448× 448, 24 for
256× 256, and shuffle was True. Adam [48] was used as the
optimizer. Training begins with a learning rate of 0.001 and
is reduced by simulated annealing with the Cosine Annealing
Schedule [49] to 0.00001, as shown in Fig. 11. The loss
function utilized in this study was BCE-Dice loss [50]. BCE-
Dice loss is a method that combines binary cross-entropy
loss and Dice coefficient. Pretraining is not considered in
our network to ensure fairness in comparison with other
networks. The paper’s training indicator is the validation set’s
Intersection over Union (IoU) result. The model weights are
saved when the validation set yields the best IoU value.

C. EVALUATION CRITERIA
Multiple metrics are employed in our semantic segmentation
evaluation to evaluate its performance. These metrics include
Precision(P), Recall(R), F1-measure (F1), IoU, and Average
Precision (AP). The ratio of positive pixels predicted as crack
types is precision. Recall is the percentage of crack pixels in
the image that are correctly predicted as crack. The precision-
recall curve’s area is calculated by AP. The F1-measure is
the arithmetic mean of Precision and Recall. The predicted
crack region’s overlap with the ground truth crack region is
measured by IoU. Definitions of Precision, Recall, F1, IoU
and AP:

Precision =
TP

TP+ FP
(3)

Recall =
TP

TP+ FN
(4)

F1 =
2TP

2TP+ FP+ FN
(5)

IoU =
TP

TP+ FP+ FN
(6)

AP =

∫ 1

R=0
P (R) dR (7)

where TP (True Positive) refers to the count of crack pixels
that are correctly predicted as cracks. FP (False Positive)
represents the number of pavement pixels that are incorrectly
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classified as cracks. FN (False Negative) denotes the count of
crack pixels that aremistakenly predicted as non-crack pixels.

In addition, parameters and floating point of operations
(FLOPs) are key indicators of model complexity. Calculating
convolutional layer parameters:

Parameter = K 2
× Cin × Cout (8)

where K is the size of convolution kernel. And Cin, Cout
represent the number of channels for the input and output
feature maps, respectively.

D. ABLATION EXPERIMENT
Table 2 is utilized to compare various module combinations
to evaluate the performance of the proposed network. Four
model structures, named CrackHAM _B, CrackHAM _F,
CrackHAM _F _A, and CrackHAM, are created by incor-
porating the phased multi-fusion module, attention mecha-
nisms, and HASPP into the backbone network. To assess
the performance differences between the HASPP and HAPP
modules, a network called CrackHAM_ASPP is constructed.
The hyperparameter settings for network training are in
accordance with the guidelines outlined in Section IV-B. The
suitability of the FIND dataset for ablation experiment is
attributed to its large quantity and small size.

From Fig. 12, it is evident that each of the proposed
components contributed to the enhancement of the effec-
tiveness of the detection during the training and validation
processes. The absence of overfitting and the achievement of
convergence can be inferred from the performance of models
in both the training and validation processes. Furthermore,
the comparison between CrackHAM _F _A and CrackHAM
revealed significant improvements in IoU, demonstrating
that extending the receptive field by adding HASPP can
significantly improve detection performance.

As indicated in Table 3, the CrackHAM achieves the
highest IoU, Precision, Recall, and F1 values on the test
images, which are 0.765, 0.864, 0.850, and 0.854, respec-
tively. When comparing CrackHAM_B to CrackHAM_F,
there is an improvement of 0.7% in precision, 0.8% in
recall, 0.9% in F1, and 0.9% in IoU score. Similarly, when
comparing CrackHAM_F_A to CrackHAM_F, there is an
improvement of 0.5% in precision, 0.5% in recall, 0.5% in F1,
and 0.7% in IoU score. Furthermore, comparing CrackHAM
to CrackHAM_F_A, there is an improvement of 0.1% in
precision, 0.6% in recall, 0.4% in F1, and 0.8% in IoU score.
These findings highlight the effectiveness of phrase fusion
modules, attention mechanisms, and the HASPP module in
enhancing segmentation performance. After replacing the
HASPP structure with the ASPP structure, the network’s
performance degraded. As a result, the decision is made to opt
for the HASS module. To provide a clearer depiction, please
consult Fig. 13.

E. COMPARISON OF DIFFERENT NETWORKS
The CrackHAM model has demonstrated superior perfor-
mance in crack segmentation when compared to recently

TABLE 2. Network alternatives considered for training.

TABLE 3. Results of ablation experiment for testing FIND dataset.

FIGURE 12. The performance of different modules.

developed networks that have attained cutting-edge outcomes
in the task of semantic segmentation, including FCN [51],
Deeplabv3 [21], Swin-Unet [52], U-Net, CrackSeg [53],
ATT- Unet [54] and U-net++ [55]. Details of their param-
eters and FLOPs are provided in Table 4. It is worth noting
that both FCN and Deeplabv3 incorporate ResNet50 [56] as
the backbone architecture for their networks and Swin-Unet
utilizes Swin transformer [57] as the backbone. The FLOPs
of the CrackSeg, ATT-Unet and U-net++ exhibit a notable
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FIGURE 13. IoU, precision, recall, and F1 results.

FIGURE 14. Visualization results of different methods of the FCN,
Swin-Unet, Deeplabv3, U-net, CrackHAM on different datasets.

superiority over the remaining models. As a result, in the
succeeding trials, the channels are halved in size throughout
the training process. To ensure equitable comparison, the
networks underwent training and testing using identical
sets of training, validation, and test data. Additionally, the
same data augmentation technique was employed throughout
the process. The training phase involved applying Loss to
track the progress of parameter learning, while the model’s
performance during validation was measured using IoU.

Fig. 14 shows visual comparisons of crack identification
for the proposed approach and the comparative methods
using six common input photos. Crack500, DeepCrack, and
FIND provide input images. The first two rows represent
images from Crack500, while the middle two rows showcase
images from DeepCrack. Finally, the last two rows exhibit
input images from FIND. All deep models are capable of
generating satisfactory results. In cases where the presence
of pavement traces influences the results, the models FCN,
DeeplabV3, and U-Net may exhibit error detection, while

TABLE 4. The complexity of different networks.

CrackHAM and Swin-Unet make the correct decision in
the first row. The models FCN, DeeplabV3, Swin-Unet
and U-Net tend to produce under-segmented crack regions,
meaning that they may not accurately identify the boundaries
of the cracks. On the other hand, the CrackHAM model
demonstrates better precision in determining the crack paths,
as evident in the second and third rows of the results.
In particular, in the fourth row, the CrackHAM model
correctly detects small localized features. This can be
attributed to the inclusion of the HASPP module, which
makes the network more sensitive to detailed information
so that it captures fine-grained features and improves its
overall performance in detecting cracks, even in challenging
cases. In the last two rows of the table, although all
five models successfully detect the cracks, the segmen-
tation results of FCN and Deeplabv3 are wider than the
ground truth. This may be due to the fact that FCN and
Deeplabv3 lack skip connection layers and phased multi-
fusion modules, which help capture multi-scale and multi-
level information and enhance the precision and resilience of
the model.

1) THE RESULTS OF DEEPCRACK
Fig. 15 illustrates the loss curve during training and the
IoU curve during validation over the 1000 epochs. It can be
found that the CrackHAM, U-Net, Swin-Unet, Deeplabv3,
and FCN perform similarly in terms of Loss and IoU,
respectively. At Fig. 15(b), the IoU values fluctuate greatly on
the validation set, but they finally reach convergence, which
is maybe caused by a too high learning rate. Because in
the early stage, the learning rate is relatively large, close to
0.001, and after it reaches 700 epochs, the learning rate is
smaller than 0.0002, as shown in Fig. 11. We don’t modify
hyperparameters since, as the training proceeds, the model
gradually approaches the optimal solution, the parameter
updates become more stable, and the loss and IoU values
gradually stabilize and eventually converge to a fixed value.
Another reason is keeping the hyperparameters the same to
evaluate different models accurately.

CrackHAM exhibits a curve that is closest to the upper-
right corner, indicating its superior performance. It achieves
the highest precision and recall values among the compared
methods, as shown in Fig. 16. The performances of Crack-
HAM, U-Net, and CrackSeg are very close, which is about
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FIGURE 15. Loss (a) curves during training and IoU (b) curves during
validation.

FIGURE 16. Precision-Recall curves on the DeepCrack dataset.

0.96. Similarly, Swin-Unet, Deeplabv3, and FCN exhibit
closely aligned performances, while ATT-Unet and U-net++

also demonstrate similar performance levels.
The quantitative results in Table 5 show that our method

gets the best results on the Precision, Recall, F1, IoU, and
AP evaluation criteria. The most important point is that our
model has the smallest number of parameters, only 1/3 of
other models, which is 13.90M. Obviously, the CrackHAM
significantly reduces the computational cost, and splitting
performance has also been improved.

TABLE 5. Test results of compared methods for DeepCrack.

FIGURE 17. Loss (a) curves during training and IoU (b) curves during
validation.

2) THE RESULTS OF CRACK500
Fig. 17 depicts the loss curve observed during the training
process and the IoU curve representing the model’s perfor-
mance during validation. Analysis reveals that CrackHAM,
U-Net, Deeplabv3, FCN, CrackSeg, ATT-Unet and Unet++

exhibit comparable performance in terms of IoU. However,
when it comes to Swin-Unet, its performance is notably
inferior. From Fig. 17(a), each model has reached conver-
gence after 900 epochs. The IoU finally reaches convergence
although its values fluctuate greatly on the validation set
(Fig. 17(b)).
Fig. 18 shows precision-recall curves for five different

models. The curves of FCN, Deeplabv3, U-Net, CrackHAM,
CrackSeg, ATT-Unet, and Unet++ overlap for the most part,
indicating that the models have similar performance on the
dataset being evaluated.
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FIGURE 18. Precision-Recall curves on the Crack500 dateset.

TABLE 6. Test results of compared methods for Crack500.

TABLE 7. Test results of compared methods for FIND.

Table 6 presents the quantitative results of five models
evaluated on the test set. The performance of the CrackHAM
model is very impressive, as it achieves the highest scores for
evaluation metrics such as IoU, Precision, and F1 among all
five models.

3) THE RESULTS OF FIND
Fig. 19 displays the loss and IoU curves during training
and validation across 1000 epochs. The results show that
U-Net and CrackHAM exhibit comparable performance,
while FCN, Swin-Unet, and Deeplabv3 exhibit similar results
in terms of IoU and loss.

Fig. 20 shows the precision-recall curves, where U-Net
achieves the highest performance on FIND with a
score of 0.9461, outperforming all compared methods.
CrackHAM ranks second with an AP value of 0.9440.

FIGURE 19. Loss (a) curves during training and IoU (b) curves during
validation.

FIGURE 20. Precision-Recall curves on the FIND dataset.

However, Swin-Unet, Deeplabv3, FCN, CrackSeg, ATT-
Unet and U-net++ yield poor results, as they can
not fully segment the test dataset, as demonstrated
in Fig. 19.

Table 7 presents the quantitative results, which demon-
strate that our model achieves the highest performance on
the Recall evaluation metric. Meanwhile, the other metrics
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show similar values to the U-Net and our model stands
out since our model distinguishes itself by virtue of its
reduced parameter count. The performance of the ATT-Unet
and U-Net++ models, specifically CrackSeg, is noticeably
lower when compared to the performance of the CrackHAM
model.

V. CONCLUSION
In this paper, we introduce a novel automatic crack detection
network that incorporates several innovative modules to
enhance performance while reducing computational costs.
Our network architecture consists of the HASPP module,
phased multi-fusion module, and attention mechanisms,
which collectively contribute to improved segmentation
results compared to existing mainstream network structures.

The HASPP module comprises cascading and parallel
dilated convolutional layers with varying dilation rates, which
expand the receptive field and capture more detailed spatial
information. To capture abundant contextual information for
high-level features, we employ the channel attention module.
For low-level features, we leverage the spatial attention
module to extract rich edge information. Meanwhile, the
phased multi-fusion module is designed to extract features
at varying scales from distinct network layers to facilitate
prediction.

Moving forward, our future plans involve delving deeper
into the extraction of specific and valuable information from
crack images during the feature extraction stage, such as
quantifying the length, width, and even depth of cracks.
Furthermore, we intend to leverage the segmentation results
to enable continuous monitoring of pavement conditions over
an extended period. Additionally, we aim to apply thismethod
to lightweight devices like unmanned aerial vehicles (UAVs),
enhancing their capabilities in this domain.

This paper does not address the common challenge of
operating on handheld devices or embedded platforms, which
stands as a limitation. Future research endeavors will focus on
investigating and addressing this challenge.
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