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ABSTRACT This paper provides a study of the latest target (object) detection algorithms for underwater
wireless sensor networks (UWSNs). To ensure selection of the latest and state-of-the-art algorithms, only
algorithms developed in the last seven years are taken into account that are not entirely addressed by the
existing surveys. These algorithms are classified based on their architecture and methodologies of operation
and their applications are described that are helpful in their selection in a diverse set of applications. The
merits and demerits of the algorithms are also addressed that are helpful to improve their performance in
future investigation. Moreover, a comparative analysis of the described algorithms is also given that further
provides an insight to their selection in various applications and future enhancement. A depiction of the
addressed algorithms in various applications based on publication count over the latest decade (2023-2013)
is also given using the IEEE database that is helpful in knowing their future application trend. Finally, the
challenges associated with the underwater target detection are highlighted and the future research paradigms
are identified. The conducted study is helpful in providing a thorough analysis of the underwater target
detection algorithms, their feasibility in various applications with future challenges and defined strategies
for further investigation.

INDEX TERMS Underwater target detection, deep learning, underwater object detection, YOLO,
convolutional neural networks, ConVNNs.

I. INTRODUCTION
Underwater wireless sensor networks (UWSNs) is one of
the latest realms of research that aims to explore the
underwater environment for a number of applications. These
applications include Tsunami detection and prediction [1],
military surveillance [2], underwater navigation [3], secure
communications [4], oil detection [5], fault monitoring
in underwater cables [6], water quality monitoring [7],
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detection of crashed ships and boats [8] and target/object
detection [9], to mention a few. Underwater target/object
detection processes signals (image, audio, video, acoustic
vibrations, radio/optical radiations) and extracts the infor-
mation content that provides an ultimate insight to the
underwater environment. This information is useful in a
number of applications such as object detection and tracking
by underwater robots [10], [11], objects detections by
radars for military and civilian purposes [12], surveillance
systems [13], [14], [15], [16], ship tracking [17], [18], mine
detection [19], [20], [21], water quality and environmental
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FIGURE 1. Applications of underwater object detection in various fields.

impacts [22], [23], [24], and toxins in water [25], [26],
to mention a few. Figure 1 summarizes the various appli-
cations of underwater object detection ranging from noise
detection in underwater channel to waste products, precious
materials, mines, marine animals, radar signals, ships and
their paths and position finding, to mention a few. There are a
number of challenges inherently carried by the underwater
environment [27]. For instance, the electric and magnetic
fields of radio waves interact with water and other particles
and transfer their energy to them. Due to this, radio energy
is lost and, consequently, radio waves are not generally
preferred for underwater communications instead acoustic
waves are used. However, the speed of acoustic waves is
almost five times slower than the speed of radio waves in
water due to which underwater communications bear long
delay. In addition, the acoustic spectrum is limited (almost
to 100 kHz) that further narrows the available bandwidth
for underwater communications. Consequently, underwater
communications have low data rates. Besides, underwater
nodes have a limited battery lifetime. This restricts the life
span of UWSNs and demands for smart, efficient, reliable and
optimized operation and working strategies.

The use of deep learning algorithms for underwater
object detection has recently captured the attention of
researchers due to a number of advantages over the traditional
detection techniques in terms of accuracy of prediction,
speed, generalization and automatic processing of tasks [28],
[29]. Figure 2 shows the the basic concept of object detection
by deep learning and traditional algorithms. Both types of
algorithms perform signal operations on the input signals
(such as de-noising, filtering, image enhancement, to mention
a few). However, the operations of features extractions,

features selection and classification of signals/objects are
performed in an automated fashion by the deep learning
algorithms.

There exists a number of surveys in literature related
to underwater target detection and identification [30], [31],
[32]. However, the addressed algorithms in these surveys
are not state-of-the-art to address the requirements of the
latest applications. Besides, they lack a thorough and in-depth
insight and comparative analysis of the addressed algorithms.
Keeping in view the importance and scope of the underwater
target detection, challenges, potential applications and its
direct and in-direct effects on the planet earth, this paper
studies the latest underwater target detection algorithms
designed in the last seven years so that only the most
recent algorithms are taken into account. The algorithms are
classified into various categories based on their architecture.
These categories include algorithms based on you only look
once (YOLO) architecture, convolutional neural networks
(ConVNNs) and their various types for varied applications
and hybrid algorithms that combine various techniques
to construct a single target detection architecture. Such a
classification makes algorithms selection convenient for the
appropriate applications. The algorithms are also described in
terms of their operational strategies, merits and demerits that
helps in knowing their working mechanisms and improving
their demerits in future enhancement. In addition, the
operation of the architecture of each class of algorithm
is described with suitable figures that helps in not only
understanding of these algorithms but provides the areas
where the performance of these algorithms can excel.

A comparative analysis of the classified algorithms is
also provided that helps in selection of the specific class
of algorithms for various applications as well as provides
a path for their future improvement. For instance, a bar
chart is provided that shows the calculated accuracy in target
detection of the compared algorithms. This helps not only in
the use of these algorithms in various applications depending
upon the accuracy requirement but also provides clues for
the further investigation towards enhanced accuracy. The
described mathematical models of the algorithms further
provide an insight to their work, operation and object
detection strategies. Moreover, the use of the classified
algorithms in diverse object/target detection applications in
the latest decade (2023-2013) is graphically depicted that
provides an idea of the latest trends of these classes of
algorithms in terms of applications to real world problems.
Finally, the challenges associated with the underwater target
detection are revealed and future research directions are
specified.

In summary, this paper provides a study of the underwater
target detection algorithms developed in the last seven
years by addressing their architectures, operational strategies,
merits, demerits, comparative analysis, target detection
accuracy and applications in various fields in the latest decade
(2023-2013). Moreover, the challenges with underwater
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FIGURE 2. Object detection by (a): traditional algorithms and (b): deep learning algorithms. The latter perform features
extraction, selection and classification processes automatically by the deep networks rather than by varied techniques in
the former.

FIGURE 3. Organization and flow of the manuscript.

target detection are highlighted and the possible solution
strategies are described for future investigation.

Figure 3 shows the organization and flow of the
manuscript. The introduction discusses the importance of
underwater object detection, its applications and the contri-
butions of this paper. Sections II deals with the description

of YOLO, its basic architecture and various versions and
their comparison as well as object detection algorithms based
on YOLO. Section III discusses algorithms using ConVNNs
for underwater target detection, their architecture, operation
and sub-classification into various applications. Section IV
focuses on discussion of hybrid algorithms for underwater
target detection. A comparative analysis of the classified
algorithms is performed in Section V. Finally, Section VI
discusses the challenges in underwater target detection while
Section VII concludes the paper with directions for future
investigation.

II. UNDERWATER TARGET DETECTION USING YOLO
A. THE BASIC ARCHITECTURE OF YOLO SERIES
YOLO considers real time object detection and was first
designed by [33]. It divides an image into an S × S grid with
bounding box regression applied on each cell of the grid with
a confidence score C that measures the probability P(Obj) of
existence of an object in each box and is defined as:

C = P(Obj) × IoU truth
predicted , (1)

where IoU is the intersection over union operation having
values between 0 and 1 with the latter being the ideal value.
Union represents the total area of the predicted bounding
box and the ground truth while the intersection signifies
the overlapping area of the predicted bounding box and the
ground truth. The conditional class probability of each cell of
the grid given that it has an object is denoted by P(Classi |

Obj) and is mathematically defined as:

P(Classi | Obj) × P(Obj) × IoU truth
predicted

= P(Classi) × IoU truth
predicted . (2)

To ensure accurate object detection, the bounding box and
center of each prediction is corrected by a loss function given
by:

Loss = λCoord

s2∑
i=0

A∑
j=0

1
Obj
ij [(bxi −bx̂i )]

2
+ [(byi − bŷi )]

2
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FIGURE 4. Basic architecture of the YOLO series.

FIGURE 5. Flow chart of the basic YOLO architecture. An input image is
divided into a grid of S × S cells with each cell processed by bounding
box regression to detect object. It is followed by the intersection over
union operation for selection of objects in multiple boxes and boxes with
high detection threshold are identified.

+λCoord

s2∑
i=0

A∑
j=0

1
Obj
ij [(bwi −bŵi )]

2
+[(bhi − bĥi )]

2

+

s2∑
i=0

A∑
j=0

1
Obj
ij (Ci − Ĉi)2

+ λNoobj

s2∑
i=0

A∑
j=0

1
Noobj
ij (Ci − Ĉi)2

+

s2∑
i=0

1
Obj
i

A∑
c∈Classes

(pi(c) − p̂i(c)
2
, (3)

where A is the number of boxes assigned to each grid, bx and
by are the center co-ordinates of each prediction, bw and bh

represent the dimensions of the bounding box, the parameters
λCoord and λNoobj are used to give more weight to boxes
with objects and less weight to boxes with no objects and
p(c) represents classification prediction. The parameter 1Objij
has a unity value in case the jth bounding box in the ith cell
predicts an object, otherwise its value is zero. Similarly, if the
predicted object is in the ith cell then 1

Obj
i is unity else it

is zero. Figure 4 shows the basic architecture of the YOLO
series. The input images are processed by the ConvNNs for
features extraction. The fully connected layer reduces the
dimensions of the extracted features and obtains a features
map and classifies it. The bounding box regression assigns
attributes to the classified features. Figure 5 shows flow chart
of the basic YOLO architecture in which an input image is
divided into an S × S grid with bounding box regression to
identify the objects. The intersection over union operation is
then applied to find objects in multiple boxes followed by
identifying boxes with high detection content.

In the lines to follow, the algorithms using the YOLO
series for objects detection are considered. Table 1 shows
a comparison among the various versions of the YOLO
architecture with enhancements and added features as the
architecture evolved from the the initial to the latest version.
It shows that the evolution of YOLO started with real-time
object detection and with the development and progression,
it continued to include more features. Each version puts
emphasis on the overall better, more efficient, reliable and
accurate detection of objects that the earlier version(s).

B. OBJECT DETECTION USING YOLOV8 AND V7
A comparison of the various YOLO algorithms is made
in [34] for synthetic and real world data and concludes
that YOLOv5 exhibits the best results on synthetic data
while YOLOv8 outperforms all the other versions on real
datasets. The authors in [35] conclude that YOLOv7 is the
best when compared with faster region-based ConVNNs
(R-ConVNNs), single-shot detector (SSD) and Centernet for
land and aquatic small object detection. The authors in [36]
compare YOLOv7 with YOLOv5 series and find it better in
terms of object detection accuracy and performance in image
challenging conditions. A loss function is proposed in [37] for
YOLOv7 based on the concept of a bag of features to optimize
the error and enhance the accuracy and speed of marine
object detection and classification. The concept of supervised
features learning is introduced in [38] based on efficient
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TABLE 1. A comparison of the various YOLO versions.

aggregation network to improve the scaling calculation on
objects.

C. OBJECT DETECTION USING YOLOv5
The images are first processed by the deep wave net scheme
in [40] that uses ConVNNs for enhancement and then feeds
the output to YOLOv5 for object detection. The authors
in [41] first enhance the images using Gridmask method fol-
lowed by adding intersection over union to the non-maximum
suppression method to improve detection accuracy when
the detected objects overlap. The features pyramid network
(FPN) in the main architecture is modified to detect small
objects. Drones are used in [42] to utilize YOLOv5s to detect
submerged objects in water with an effective accuracy and
precision. The authors in [43] analyse the vocal behaviour
of mammals by processing their signals using YOLOv5.
The obtained information, such as central frequency of the
signals, duration and bandwidth are effective in knowing
the behaviour of these mammals. The network parameters
of YOLOv5 are first reduced by using GhostBottleneck
in [44] and then important features weight is increased by
the addition of a convolutional block attention layer to the
final layer of the backbone architecture and the intersection
over union feature is modified to enhance the accuracy of
the overlapped objects. The methodology in [45] uses the
coordinate attention mechanism and a bidirectional feature
pyramid network to improve the target detection accuracy of
YOLOv5 for ship target detection. A comparison of YOLOv5
is made with YOLOv3 for seaweeds detection in [46] and it is
found that the former is faster than the later but with a reduced

detection accuracy of 3-5 %. The authors in [47] make
three changes to the YOLOv5s to improve its performance.
First, they use a multi-head self-attention technique having
contextual information that replaces the convolutional block
for better features extraction. Second, a hybrid convolutional
module is added for reduction in parameters number. Third,
a path aggregation network is used to collect features from the
shallow and deep layers. Sonar images are first pre-processed
in [48] to overcome the internal and external noise and then
the improved YOLO5 is used for enhanced accuracy of object
detection, especially in overlapped objects.

The concept in [49] embeds a camera with an autonomous
underwater vehicle (AUV) that captures underwater images
of the target in a swimming pool, which are then detected by
the YOLOv5 and the information is extracted. The training
of the deep learning module is performed by the images
processed on the Google-Collab over the cloud and the output
is then processed by the on-board computer of the AUV that
consists of Raspberry-Pi4 having a coral USB accelerator.
In [50], the realization of detection and tracking of the
target is performed by the deep sort algorithm. Due to poor
lightening conditions, the obtained images are also enhanced
leading to an overall 96% detection accuracy. The concept
in [51] optimizes the performance of the original YOLOv5 by
optimizing its main architecture (CSPDarknet). The features
are selected and extracted using the cross stage partial
(CSPNet), a convolutional layer that utilizes the contextual
block streaming (CBS) as its fundamental architecture for the
recognition of useful information. The elementary layers are
changed by ConVNNs followed by swin transformer.
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TABLE 2. Target Detection using YOLOv8 [34], YOLOv7 [35], [36], [37], [38] and YOLOv5 [39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51],
[52], [53], [54], [55], [56], [57], [58], [59], [60]. The symbol x represents the unspecified value.

The authors in [52] argue that underwater target tracking
requires precision and accuracy and for this purpose the

architecture of the YOLOv5 is modified in three ways.
Firstly, the bottleneck count is increased from one to three.
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Secondly, the bottleneck module is replaced by a module
with coordinated attention so as to enhance the level of
attention in the image of the target object. Thirdly, a module is
introduced to the backbone of themodel for further enhancing
the attention level of the image and ignoring the unimportant
features of the image. The approach adopted in [53] first
detects and then locates the position of underwater objects.
It modifies the YOLOv5 model for detection time and
accuracy efficiency. First it downsamples the target image and
extracts the features followed by the fusion to obtain a map of
features. Then the image features coordinates and the imaging
system coordinates determine the position of the target. The
method given in [54] first applies the image enhancement
on the objects followed by the YOLOv5 with ghost modules
(instead of backbone features extraction) to detect objects
with reduced parameters and computation. Moreover, the
selective kernel convolution is applied for features extraction
that has better results than the traditional convolution. Finally,
the positive and negative sample imbalance is overcome by
the focal loss optimization. The authors in [55] first apply the
various image enhancement algorithms on various detection
techniques and find that the YOLOv5 is the best in terms of
objection detection and differentiation from background in
underwater images. The small target objects are detected in
side-scan sonar images in [56] by the modified YOLOv5. The
re-clustering of the anchor frames of the target is performed in
the first stage using K-means. It is followed by a new layer for
capturing shallow features and then an attention mechanism
for extracting deep features. Small samples overfitting is
overcome by new connections. The authors in [57] use
the YOLOv5 model to detect two similar objects in an
underwater sonar image. The knowledge obtained for training
images is used to identify similar images and the objects in
them. A method for underwater plastic waste is proposed
in [58]. It modifies the YOLOv5n by reducing its backbone
size and the problem of insufficient features is overcome by
modifying the feature pyramid, followed by inserting a loss
function in the bounding box regression loss of the model.
A comparison of the YOLOv5, YOLOv5-TR and YOLOX
is performed in [59] for real-time detection and localization
of target (a harbor’s wall) and proves that the YOLOX has
the best detection rate of 91.3 %. The concept given in [60]
modifies the YOLOv5 by pre-training, clustering, fine-tuning
the pre-training and adding features extraction for high-level
features for forward-looking sonar images.

D. TARGET DETECTION USING YOLOv4 AND YOLOv3
The authors in [61] modify YOLOv4. They add a deep
separable convolutional layer to the backbone of the network
with a feature that allows detection of small objects followed
by K-clustering of the bounding box of the dataset with
improved size of the box according to the clustering. Also,
a spatial pyramid pooling module is added that increases
the complexity but also enhances the accuracy. In the last
phase, multi-scale training of the model is performed for
effective results. The concept in [62] combines YOLOv4

with a fusion mechanism that uses attention mechanism for
multiple features; that learns and obtains the features of a
number of characteristics utilized for object detection. This
approach provides a balance between speedy of detection
and accuracy. The framework in [63] also uses YOLOv4 and
obtains encouraging detection rate. The technique in [64]
studies the YOLOv3 and the deep-sort-multi-target tracking
algorithm for fish detection. The research considers the
coordinates of a fish to track the path it follows.

The authors in [65] use the YOLOv3 model that makes
use of marine pasture biological targets and uses open source
images to train the model. It is followed by the testing
phase along with optimizing the tuning parameters of the
learning process. The output of the learning then results
in knowing the objects in the images, their locations and
the classification. The image detection module is based on
the Pytorch framework and is trained by the open source
SeaCLEF image database until the desired optimization level
is achieved. The underwater images have usually low light
conditions and contrast and, therefore, they are treated based
on Fuzzy contrast and enhanced in [66] using a self-adaptive
technique followed by the application of YOLOv3 for object
detection. The target detection is performed in [67] using the
YOLOv3model in an underwater sonar image and its position
is also identified followed by the recurrent neural networks
for tracking the path of a dynamic target. The YOLOv3
model is modified in [68] for real time target detection
by adding the feature clear and pooling layers to achieve
enhanced and effective extraction of features. Moreover, the
images are processed by the augmentation, enhancement and
equalization processes for improved accuracy of recognition.
The idea in [69] uses YOLOv3 for the recognition and
detection of objects in side-scan sonar images. The image
features are extracted using the various maximum bounding
boxes of high credibility and Darknet53 is used as the
backbone network for extraction. The algorithm in [70]
reduces the detection scale of YOLOv3 by a single decrement
and re-clusters the anchor boxes so as to make them
appropriate for the considered datasets during the training
process. This reduces computational complexity and still
maintains a certain degree of accuracy in detection of garbage
in water by robots. The authors in [71] up-sample the
down-sampling rate and add splicing and features fusion
techniques to YOLOv3 to enhance its performance for small
target detection.

E. OBJECT DETECTION USING YOLO
The authors in [72] apply the YOLOX algorithm to recognize
and detect underwater objects for forward looking SONAR.
The algorithm first extracts the features from the images
followed by obtaining enhanced features using the FPN
and the detected images are then recognized. A mechanism
given in [73] dynamically chooses feature layer channels,
termed as DC block and is combined with YOLOX to make
YOLOX-DC. A network establishment concept with defined
local points in underwater environment is given in [74]
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TABLE 3. Target detection using YOLOv4 [61], [62], [63], YOLOv3 [64], [65], [66], [67], [68], [69], [70], [71] and YOLO [72], [73], [74], [75], [76]. The symbol x
represents the unspecified value.

FIGURE 6. Basic architecture of convolutional neural networks. Features are extracted by the
convolutional layer that are further reduced in dimensions by the pooling layer. The fully connected layer
makes a bigger features map by combining the collected features.

that uses the YOLO version for automatic target detection
and eases the manual measurement in future trials. The
YOLO algorithm is modified in [75] and transfer learning
is adopted to ease the complexity of training and target
detection. The concept of histogram equalization is used to
deal degradation of image quality. The similarity in structures
of frames is utilized for enhancing the frame detection rate.
The authors in [76] use three different datasets to train YOLO
for detection of fish. The results showed that the model did
not detect fish in datasets that were not used in the training
process that advocated the use of diverse datasets during
training.

III. TARGET DETECTION USING ConVNNs
This section describes the algorithms that make use of the
ConVNNs or their variants for underwater target detection.

Figure 6 shows the basic architecture of a ConVNN for object
detection. Features are extracted from an object of interest
using the convolutional operation between an image (or any
signal of interest) I of size m × n and a kernel or filter F of
size L × L as:

O(i, j) = F ∗ I =

L∑
k=1

L∑
l=1

I (i+ k − 1, j+ 1 − l)F(k, l),

(4)

where O(i, j) is the output of the convolution matrix at the ith

row and jth column considering a single channel convolution
and the symbol ∗ represents the convolution operation. The
pooling layer removes unnecessary information content from
the information it receives from the features extraction layer
and reduces its dimension that is further processed by the
fully connected layer that combines all the features in a
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FIGURE 7. Flow chart of the the basic ConVNNs. The features are
extracted from an input signal (image, for instance) through convolution
operation that are further processed by the pooling layer for dimensions
reduction and the fully connected layer to obtain a diverse features map
and classify/detect objects.

single array to construct a bigger featuresmap for information
classification and object detection. The architecture of the
ConVNNs for object detection involves features extraction
from an input image (signal) using convolution operation
that are further processed by the pooling layer to reduce
dimensions and fully connected layer to obtain a features
map and classify and detect objects. These operations are
further elaborated in the flow chart of the ConVNNs depicted
in Figure 7. The target detection using ConVNNs is further
classified as given in the lines to follow.

A. UNDERWATER ANIMALS/MOVING OBJECTS
DETECTION
The scheme designed in [77] uses deep learning with
improved regression network to detect the target followed
by prewitt feature enhancement to minimize the features
loss and their uneven distribution. The binocular vision is
used to determine the position of the target (fish swarm)
and their spatial information are displayed on a radar map.
The concept given in [78] studies the underwater camera
imaging with light refraction and the various internal and

external calibration parameters. Moreover, it uses the feature
pyramid ConVNNs for detection of the target in the image.
The various videos of the motion of the target are optimized
for the trajectory calculation as well. The method in [79]
identifies the jellyfish and its density. A camera takes the
real-time picture of jellyfish and processed by the ConVNNs.
The obtained image is enhanced and its edges and their
closure are detected and holes are filled in the gray-scale
and the binary image is obtained. To detect a lobster in the
image in [80], the initial data enhancement is performed
in the pre-processing stage by the generative adversarial
network and increment method followed by the use of the
separable ConVNNs that compress the fully connected layer
and make the model light for computation. The voice calls of
the underwater mammal species are processed for features
extraction by the fractional Fourier transform in [81] as
they behave like modulated pulses with a linear frequency.
The obtained features are then input to the ConVNNs for
voice recognition and, therefore, detect the corresponding
mammals. The authors in [82] use limited training data
for fish detection. It involves various convolutional layers
and residual blocks to detect and segment the target. The
weights of the features of interest are increased. The features
are effectively presented by the residual blocks after the
concatenation of the shallow and deep layers of the model.
The authors in [83] design a model that send signals towards
the moving fish and their reflections are collected and
analyzed using the ConVNNs to detect the moving target.
A trade-off existed between the detection bound and accuracy
for training the network with real and synthesized data.
A recurrent neural network model is also given for online
processing with low accuracy. The combination of improved
faster region-based ConVNNs and FPN is performed for
target detection in [84]. The accuracy and speed of detection
are improved by replacing the intersection over union by
the distance intersection over union. The authors in [85]
improve the detection accuracy and training speed of the
faster R-ConVNNs in detection of jellyfish in underwater
images. The obtained images are preprocessed to improve
their brightness and contrast followed by the integration of the
restnet50 into the network for effective features extraction.
The training speed is improved by using the semi-precision
floating point method.

B. TARGET DETECTION FOR SAFETY PROVISION
The authors in [86] make use of the time and time-frequency
spectra of underwater images and process them by ConVNNs
to recognize these objects. In addition, the neural network
parameters such as the pooling rate, learning rate and batch
size are studied for optimal performance. To detect divers
and underwater intruders, the authors in [87] first obtain a
background image of the surrounding using ConVNNs and
then the underwater moving objects are detected using the
difference of the current image and predicted image using
plan position indication. The ConVNNs are used in [88] to
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process the images of the drowning objects and detect them
for rescue robots. They also focus on reducing the cost and
difficulties in the deployment of the existing rescue robots.
A deep ConVNNs algorithm is proposed in [89] for the
automatic detection and classification of underwater mines
in sonar images captured by the synthetic aperture radar.
The realistic images are synthetically generated to train the
model.

C. TARGET DETECTION FOR SONAR IMAGERY
An approach based on ConVNNs is adopted in [90] that
enhances the features of the target in a sonar image and
weakens the background so that the false detection is
overcome and missed detection is minimized. A ConVNN
that has prior training knowledge of the features uses pixel
intensity as the features extraction metric to recognize
objects/anomalies in the seabed images with small to no
false detection is proposed in [91]. The authors in [92]
first identify the target region in a forward-looking sonar
echoscope image during the pre-processing stage using
graph-basedmanifold ranking and then processed by the deep
ConVNNs for the extraction of features and recognition of
the target. The method of transfer learning is used to cope
with the requirement of the availability of sufficient data.
The optimization of the network is performed by the gradient
descend method.

D. TARGET DETECTION FOR MISCELLANEOUS
APPLICATIONS
The authors in [93] first apply the method of convolutional
downsampling to the features of underwater acoustic target
to be recognized, which reduces the cost of computational
processing. It is followed by learning about the local and
global features using a varied set of conformer blocks.
Finally, the splicing of the output of the various conformer
blocks is carried out and the features of the speech are
extracted by the mechanism combining pooling layer and
the attention statistics. An algorithm is developed in [94] for
the detection and modeling of underwater propeller noise
in acoustic signals. The ConVNNs architecture is used to
detect and classify the noise for various signal-to-noise
ratio (SNR) levels. The authors in [95] argue that sonar
images have limited availability of data and are not suitable
for deep learning. To overcome this problem, the striation
images are used that minimize the need for training data of
the ConVNNs, the optimization of fuzzy or discontinuous
fringes is performed and the shared latent sparse scheme is
used to represent the interference fringes. These features are
then correspondingly used to train the network. A method
proposed in [96] combines the spatial and spectral features
of the target obtained through 3D ConVNNs that are further
fine-tuned using the depth information, as these features
vary with the water depth. The depth information is also
used to predict the accurate depth of the target. The network
synthetically generates a copy of the actual hyperspectral data

that automatically removes the noise in the real data and is
then used to train the model.

The authors in [97] propose an algorithm that blind detects
the acoustic signals in underwater communications. First
it pre-processes the noise using the generative adversarial
network that mitigates the noise in the signal and then
the ConVNNs are used to extract the features from the
signals and differentiate them from the noise. In addition,
a data transfer model is used to overcome the issue of
insufficient underwater data for training the respectivemodel.
The authors in [98] improve the detection accuracy of the
single-shot multibox detector algorithm, which is based on
ConVNNs. It obtains the position and detail information of
the object using channel-spatial attention mechanism for high
value features to improve detection.

The authors in [99] use the reflection signals of an active
acoustic emitter to localize, detect and track moving under-
water targets with convolutional denoising auto-encoder. The
concept of faster R-ConVNNs is used in [100] for object
detection that involves the use of the swin transformer as
the backbone of the architecture, a path aggregation network
for fusing the deep and shallow features maps, online hard
mining and using an improved pooling layer to remove
quantization error and improve detection.

IV. TARGET DETECTION USING HYBRID ALGORITHMS
The authors in [101] combine YOLO, ConVNNs and SSD
for object detection with a comparative analysis to detect
even small objects. It is argued in [102] that the existing
underwater object detection algorithms involve frequent
human-computer interaction, which is not feasible for the
automatic operation of the detecting devices. Therefore,
a long short-term memory (LSTM) deep learning model
based algorithm is utilized to extract and classify the features
of the target noise by an underwater glider. It first obtains the
data input samples including various noise frequencies and
signals, normalizes them and then inputs them to the LSTM
for the extraction and classification of features. The authors
in [103] explore the resonant behavior of the low frequency
sound waves when they are incident on unexploded ordnance.
So two deep learning approaches are modeled to detect
the unexplored ordnance in the sonar imagery of synthetic
aperture radar. These algorithms use sequence models to
correlate the spatial features in the resonant sound waves.

A method of automatic detection of underwater objects
is given in [104] that uses Fuzzy C-means and K-means
global clustering of the images to get many regions of
interest followed by local segmentation using the pulse
coupled neural network to differentiate the boundary of
the target. Extraction of multiple features from the target
area is performed and are input to the nonlinear converter
to increase the distance of the features and the Fisher
discrimination is used to compute a classification threshold
and detect the target. A shallow neural network algorithm is
proposed in [105] that considers the temporal variations in the
amplitude and frequency of the target and clutter signals from
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TABLE 4. ConVNNs for detection of Animals/moving objects [77], [78], [79], [80], [81], [82], [83], [84], [85], safety [86], [87], [88], [89], sonar imagery [90],
[91], [92] and miscellaneous applications [93], [94], [95], [96], [97], [98], [99], [100].

pre-processed spectrographs. The authors in [106] estimate
the monocular depth to restore the image affected by the
underwater channel properties. This helps later in the target
detection based on the depth learning. First images are

enhanced in [107] using the max-RGB and shades of grey
techniques and then a correlation filter tracking method is
combined with the R-ConVNNs to extract the regions of
interest and detect objects.
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TABLE 5. Target Detection using hybrid deep learning techniques [102], [103], [104], [105], [106].

TABLE 6. Comparative analysis of the classified categories of algorithms.

V. COMPARATIVE ANALYSIS OF THE TARGET DETECTION
ALGORITHMS
Based on the description of the classified algorithms, Table 6
shows a comparative analysis of the classified algorithms
for underwater target detection. It shows that the YOLO

architecture provides a fast and real-time object detection but
struggles with the detection of small objects. The ConVNNs
and 3D ConVNNs are effective in extraction of features but
they have enhanced computational complexity and require
intensive training data. The LSTM is capable of retaining
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FIGURE 8. The maximum computed detection percentage of the compared
techniques.

FIGURE 9. The (normalized) publication count for object (target) detection as searched in the IEEE Explore database for a diverse set of applications for
the latest decade (2023-2013).

short and long-term information of the target detection but
it suffers from the vanishing gradient problem, where the
weight of the information gradually decreases with the length
of information sequences. Figure 8 shows a comparison

of the percentage target detection by the compared classes
of algorithms. The plotted values indicate the recorded
percentage detection as mentioned by the researchers. The
algorithms of the researchers that have not measured and
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mentioned the detection percentage are not included. The plot
shows that the maximum computed percentage detection of
98.65 is achieved by the ConVNNs due to the use of multiple
features processing layers with enhanced complexity. The
second and third highest percentage detection values are
also achieved by the ConVNNs, which are 98.29 and 97.80,
respectively.

Figure 9 shows the normalized number of articles (for bet-
ter presentation) published in the latest decade (2023-2013)
involving various applications in object detection using the
IEEEE Explore database. These applications include, for
instance, defects in bicycles, outdoor smoking, wood pith,
X-rays, traffic data, security warning, music instruments,
railways, microalgae and remote sensing, to mention a few.
The ConVNNs and YOLO techniques exhibit a major boom
in application to object detection tasks.

VI. CHALLENGES IN UNDERWATER TARGET DETECTION
Keeping in view the challenging underwater conditions, there
are a number of challenges associated with underwater target
detection, as described in the lines to follow [108], [109].

• The underwater environment has poor light conditions
and there is complete darkness beyond a certain depth.
This challenges the target detection and identification,
especially when the target is in motion. Due to these
conditions, the underwater target resembles with its
background that challenges the detection probability.

• The size of the underwater target is generally smaller
than its surrounding that makes the detection process a
challenging task.

• Underwater target are subjected to noise from various
sources; such as thermal, shipping, wave and ambient
environment, due to which the images of the targets are
blurry and distorted. The spectrum of these noise types
varies with frequency. Therefore, specific frequencies
filters design is required to cope with it. As a result, data
pre-processing and enhancement become necessary for
underwater target detection.

• When underwater targets are in motion, sophisticated
and fast response circuitry design is required to capture
the attributes of the target well before they change with
motion.

• The presence of various occlusions; such as full or
partial covering of the objects by marine life, debris
and accumulated waste products, to mention a few,
challenges the target detection.

• The differentiation and separation of overlapped objects
is specifically challenging as the bounding box approach
usually counts all the objects in a box as a single object.
This becomes further challenging when the overlapped
objects are small or tiny.

VII. CONCLUSION AND FUTURE WORK
A survey of the latest and state-of-the-art underwater target
detection algorithms is addressed. These algorithms were
classified into various categories depending upon their

architecture and their operational mechanisms, merits and
demerits were identified for further future enhancements.
A comparative analysis is also performed for further pro-
viding an insight to the understanding of the classified
algorithms. The applications of the described algorithms for
the recent decade (2023-2013) in object detection is graphi-
cally depicted that provided their scope and importance. The
classified algorithms and techniques are effective and useful
in underwater object detection in a diverse set of applications
such as underwater military and civil radars, precious
materials, debris, mines and submarine detection, tracking
the path of autonomous underwater vehicles and position
calculation of mission robots. They are also beneficial to
analyze underwater objects for military and civilian purposes,
detect noise over underwater channel for communications,
water quality monitoring and ensuring underwater explo-
ration. The conducted study is useful to provide a thorough
analysis of underwater target detection algorithms and their
mutual comparison in terms of methodologies, structure and
operation to highlight their effectiveness and robustness. The
challenges in these algorithms are useful to provide future
enhancement paths. The discussion of themerits and demerits
of the algorithms provides an insight to differentiate them
for utilization in specific underwater applications. It also
provides clues to outline strategies in the development of
more robust, sophisticated, efficient and effective algorithms
than the existing algorithms.

The following strategies are effective in future investi-
gation to cope with the challenges in underwater target
detection [30].

• Requirement of a Diverse and Balanced Dataset.
Deep learning models need to be trained to acquire
the information patterns hidden in the input datasets so
as to predict the objects in the testing phase. Future
research investigation needs to have thorough, diverse,
robust, balanced and comprehensive datasets owing to
the diversified zones and regions of the sea environment
so that object detection is performed at a diverse level.

• Deep Transformer for Efficient Processing. The use
of deep learning techniques such as transformer [110]
would reduce the computational delay due to its parallel
processing capability unlike the use of the already
prevailing algorithms that struggle with computational
efficiency.

• Transfer Learning for Ease of Training and
Detection/Prediction. The transfer learning techniques
have the capability of training the deep networks on
datasets and then using the information obtaining during
training to detect/predict similar and related objects
without training the deep network again. This avoids the
need for computational rigor and, consequently, results
in time-efficient processing.

• Development of Hybrid Detection Techniques. Com-
bining the advantages and merits of various data
processing and object detection techniques could results
in a bulk performance enhancement. For instance,
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the techniques for features extraction of convolutional
neural networks could be used for multiple bounding
box regressions within a single box to detect the tiny and
overlapped objects that are challenging to detect with the
traditional methods.

• Multiple Signal Processing Techniques. Statistical
signal processing techniques such as entropy, Fourier
transform and Wavelet transform; to mention a few,
could be utilized to extract only the informative parts
of the signals that could significantly reduce the
computational cost.

• Development of Sophisticated Cameras and Data
Processing Circuitries. With the involvement of big
data and heavy training data requirement by deep learn-
ing techniques, future investigation needs to consider
fast, efficient, modular, reliable and adaptive circuitries
to detect the changes in the objects orientation, position
and status and include them in the actual status of the
objects before the changes happened. This will lead to
more reliable, accurate and trustworthy detection.
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