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ABSTRACT Action recognition plays an important role in promoting various applications in healthcare
and smart education. However, unclear target actions, similar actions, and occluded characters may be
encountered in some special scenarios. To solve the issues, a 3D Graph Convolutional Feature Selection
and Dense Pre-estimation for Skeleton Action Recognition (3D-GSD) method is proposed to analyze and
recognize the motion trajectory of the human skeleton. First, 3DSKNet is designed to adaptively learn and
select important features in the skeleton sequence to identify skeleton parts of different importance more
accurately according to the size of the input image resolution. It will help to better focus on key skeletal
parts, improving the accuracy and robustness of bone recognition. Then, the DensePose algorithm is used to
detect the complex key points of the human body posture and optimize the accuracy and interpretability of
action recognition for different key points, key channels, and key-frames of the action. The proposed method
achieves the best performance on the NTU RGB+D 60, NTU RGB+D 120 datasets, and Kinetics SKeletion
400 datasets, with an improvement of 0.02% 0.06%, and 0.1% in accuracy compared to the state-of-the-art
methods.

INDEX TERMS Skeleton action recognition, feature selection, dense pre-estimation, attention mechanism,
smart healthcare.

I. INTRODUCTION
Skeleton features are widely used in human action recogni-
tion and human-computer interaction. It refers to detecting
and tracking key points of a human skeleton from a given
image or video. This technology requires depth cameras,
sensors, and other equipment to capture the movement trajec-
tory of human bones and analyze and identify them through
computer vision and machine learning techniques. Skeleton
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behavior recognition technology can be applied to games,
virtual reality, healthcare, and security. Different types of
skeleton data in research and application scenarios increase
the difficulty of skeleton recognition tasks. The main dif-
ficulties are: 1. The videos in the data set contain multiple
characters, and the postures of each character may interfere
with each other, making the extraction of skeletons difficult.
2. The videos in the data set come from different perspectives
and different cameras, so the expression of the same action
may be different, and actions under different perspectives
need to be expressed uniformly. 3. The actions in the data set
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involve interactions between characters, including occlusion,
changes in spatial position, etc. These factors may affect
skeleton extraction and action recognition.

Early skeleton-based action recognition methods were
based on hand-designed feature extraction and spatiotem-
poral modeling. The former uses specially designed feature
extraction algorithms to extract features representing actions
from skeletal joint data [1], [2]. Common features include
joint angles, joint distances, joint speeds, etc. The latter
treats skeletal joint data as sequences that vary in time and
space [3]. Action recognition is achieved by establishing
action models, such as dynamic time warping (DTW), hidden
Markov models (HMM), or conditional random fields (CRF),
to perform spatiotemporal modeling and matching of skele-
tal sequences. However, these methods ignore the intrinsic
relationships between human joints. The iDT algorithm [4] is
known as the best performance method without the support
of the deep learning technique. There are several methods
developed based on iDT [5], [6]. In recent years, the skeleton
feature action recognition technology based on deep learn-
ing has been roughly classified into two categories: one is
based on skeleton key points [7], and the other is based
on spatio-temporal feature analysis [8], [9], [10], [11]. The
former mainly refers to using key points to describe the
movement of the whole human body, and the output is an
action category label, which has the advantages of not being
disturbed by the environment, and a small amount of data.
However, due to the limitations of the information contained
in the skeleton points, it is difficult for the algorithms based
on the skeleton points to effectively recognize some actions
that are closely related to objects or scenes. Methods based on
spatio-temporal feature analysis mainly include Two-Stream
[12], C3D [7], and convolutional neural network-long short-
term memory network (CNN-LSTM) methods [13]. The
Two-Stream algorithm is to input the RGB image and the
optical flow image into two CNN networks respectively,
and then fuse the results of the two networks to obtain the
final classification result. The Two-Stream algorithm can use
the optical flow information to better capture the motion
information of the action and improve the accuracy of action
recognition. However, it requires additional GPU computing
time and storage space, which has become the bottleneck of
the Two-Stream algorithm. C3D extends the mature network
structure in 2D CNN to the time domain and then adopts a
decomposition strategy of the 3D convolution kernel, which
is decomposed into 2D convolution and 1D convolution and
adopts different serial and parallel methods combined to
obtain the final classification result. C3D can accept the
frame of the whole video, and it does not need to process
the video into segments, with fast speed and good effect.
However, the algorithm is not sensitive to camera viewpoint,
noise, and local occlusion, which will affect the acquisition
of interest points. For example, Qiu et al. [14] propose a
deep neural network architecture called P3D, which aims
to better learn the spatiotemporal features in videos, using

pseudo-3D convolution operations and residual connections
to capture the spatiotemporal information of videos, in multi-
ple videos Extensive experiments on classification datasets
demonstrate its superior performance over state-of-the-art
techniques. Yan et al. [15] propose a three-dimensional ges-
ture and action recognition framework called PA3D, which
is mainly aimed at video recognition tasks. This method is
represented by converting human postures and actions in the
video into key point sequences in a three-dimensional coordi-
nate system, and then inputting them into the neural network
for recognition. The CNN-LSTM algorithm inputs the video
sequence into a convolutional neural network, then inputs the
result of the network into an LSTM, and finally classifies
the result of the LSTM to obtain the final classification
result [16], [17]. Liu et al. [49] propose an end-to-end multi-
level long short-term memory (LSTM) network with spatial
and temporal attention mechanisms. Its network can automat-
ically select key information from each frame to determine
actions, and the network uses spatial and temporal attention
modules to assign different importance levels to each frame.
Ke et al. [18] propose Global Contextual Attention LSTM
(GCA-LSTM), which can selectively focus on discriminating
joints. Ke et al. [18] divide the action sequence into several
short video clips, then use a 2D convolutional neural network
to extract features from each clip, and then input these feature
sequences into an LSTM network for sequence modeling to
ultimately achieve the classification of action prediction cate-
gories. The CNN-LSTM algorithm works well for long-term
series and can capture long-term dependencies in time series.
However, it is slower and requires more computing resources.
In addition, it is not sensitive to factors such as camera
viewpoint, noise, and partial occlusion.

Traditional skeletal action recognition methods generally
require manual design and feature extraction, and often
require the participation ofmultiple steps and domain experts,
making it difficult to adapt to different scenarios and tasks.
In addition, most deep learning-based methods perform
poorly for pose changes and highmotion complexity in skele-
tal sequences. The MS-G3D network [19] does not need to
manually design and extract features, but automatically learns
the features of the bone sequence through convolution and
pooling operations, which improves the generalization ability
and adaptability of the model. At the same time, the network
adopts 3D convolution and attention mechanism to process
the spatio-temporal information in the skeleton sequence,
effectively capturing the key features of the action, while
reducing the model parameters and calculation amount, and
improving the efficiency and accuracy of the model. How-
ever, one of its main drawbacks is the influence of motion
being occluded, which may cause the model to fail to capture
the key information of the motion correctly and lead to a
decline in the performance of the model. Skeleton joints
are the key information in the skeleton sequence, but in the
MS-G3D network, each skeleton joint is only represented as a
coordinate point. This representation cannot fully express the
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morphological and dynamic information of the skeletal joints.
Therefore, it is necessary to find better ways to strengthen
the expressive ability of skeleton joints to further improve
performance.

Action recognition methods based on deep learning play a
significant role in promoting various applications in health-
care and smart education. However, some special scenarios
may encounter unclear target actions, similar actions, and
occluded characters. To solve the problems of pose change,
scaling, and sequence loss in skeleton sequences, we pro-
pose a 3D graph convolutional feature selection and dense
pre-estimation (3D-GSD) method for action recognition of
skeletons. Introducing spatial and temporal attention mech-
anisms and human prediction models can make the model
adaptively focus on key poses and skeletal joints and consider
their changes in time. Therefore, our method does not only
better capture the local and global information of actions but
also analyzes human poses more comprehensively. The main
contributions are as follows:

• We design a 3DSKNet to adaptively adjust the model.
It can more accurately identify key points of different
importance according to the size of the input image
resolution. Moreover, it greatly improves the estimation
accuracy of skeleton missing key points, reduces the
difficulty of skeletal action recognition, and increases
the accuracy of skeletal action recognition occluded by
objects.

• We introduce a DensePose algorithm to detect the com-
plex key points of human poses and integrate them into
the 3D-GSD network model. The 3DSKNet attention
mechanism focuses on key skeletal parts, while Dense-
Pose can provide more detailed pose and shape informa-
tion. By combining them, more accurate and complete
human motion analysis results can be obtained.

• Extensive quantitative and qualitative experiments are
implemented to verify the accuracy of the 3D-GSD. The
experiments were evaluated on two different datasets of
human recognition.

The rest of the paper is structured as follows: Section II
provides a brief review of related work, including the skeletal
action recognition, attention mechanism, and human pose
estimation algorithm based on CNN. Section III presents
the details of the proposed method. Section IV shows the
experimental results. Section V is the conclusions.

II. RELATED WORKS
A. SKELETAL ACTION RECOGNITION
Traditional algorithms for skeleton-based action recogni-
tion are implemented using hand-designed feature extractors,
which can include joint angles, accelerations, velocities,
energies, etc. These features are then fed into machine
learning models for classification or regression, such as sup-
port vector machines (SVM) and hidden Markov models
(HMM). With advanced deep learning techniques, models
for skeleton-based action recognition are developed and can

be divided into two categories: sequence-based models and
graph-based models.

Sequence-based models typically use recurrent neural
networks (RNNs) or long short-term memory networks
(LSTMs) to model sequence data. These models can handle
variable-length bone sequence data and consider the tem-
poral relationship between joints. Liu et al. [20] propose a
new gating mechanism to deal with noise in skeleton data
by learning the reliability of sequential data and accord-
ingly adjusting the input data’s contribution to the long-term
contextual representation stored in the cell’s memory unit.
Wang et al. [21] propose a novel hierarchical attention net-
work with pseudo-meta-paths for skeletal action recognition,
which learns discriminative features for action recognition
by capturing the long-range dependencies of skeletal joints.
Zhang et al. [9] propose a Two-Stream Transform Encoder
(TSTE) network utilizing motion spatiotemporal feature
embedding and shape transformation. San et al. [22] pro-
vide a comprehensive review of deep learning techniques for
human activity recognition (HAR) and provide a resource
guide for researchers and practitioners. Zhang et al. [23]
introduce deep learning-based methods for human action
recognition, including methods based on color videos, skele-
ton sequences, and depth maps. Li et al. [24] propose a new
CNN-based action classification and detection framework.
Although sequence-based models perform well in skeletal
action recognition tasks, there are still some problems and
challenges that need to be resolved: when collecting skeletal
sequence data, there may be certain noise or missing data,
for example, due to sensor failure or human body occlusion,
etc.

Graph-based models aim to address the limitations of
sequence-based models, mainly utilizing graph convolutional
neural networks (GCNs) to model the relationship of skeletal
sequences. Yan et al. [25] first use ST-GCN to model the
problem of skeleton-based action recognition. The AS-GCN
network proposed by Li et al. [26] can effectively share
information between different actions, and the graph struc-
ture can be adaptively optimized through network learning
to obtain more behavior details to improve the recogni-
tion effect. Shi et al. [27] propose a two-stream network
(2s-AGCN) structure using node information and bone infor-
mation and then construct a two-stream network structure by
simultaneously utilizing key points and bone information to
obtain more skeleton features for action recognition, signif-
icantly improving recognition performance. Shi et al. [28]
further propose directed graph networks (DGNN), which
can dynamically construct graph connections end-to-end,
surpassing other methods in all indicators, and it can
effectively identify complex motions in skeletal motions.
Graph-based models can naturally capture complex rela-
tionships among skeletal sequences and can better handle
multi-person actions and object interactions. However, graph
models have higher time complexity than sequence-based
models since computations need to be performed on all
nodes and edges. This can lead to increased training and
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inference time, limiting the usefulness of these models in real
applications.

B. ATTENTION MECHANISM
In recent years, some new attention mechanisms [29], [30]
have been proposed. For example, interactive attention can
learn to find key features and salient parts from the input
data to achieve better task effects [31], and multi-head atten-
tion [32] runs multiple attention mechanisms on the same
input data and merges the results. The channel attention [33],
[34], [35], [36] that ismainly studied in this paper, can find the
specific data in complex data, and improve the accuracy and
efficiency of the model by learning how to adjust the weight
of each channel in the input data.

C. HUMAN POSE ESTIMATION BASED ON CNN
Human Pose Estimation (HPE) [37] is to obtain human
motion information from visual data, including the position
of key points, attitude angle, and other information. With
the powerful development of CNN, more CNN models are
used for human pose estimation, such as the Hourglass [38]
model, the Integral Human Pose Regression model [39],
the Simple Baseline model [40], etc. Mask R-CNN [41] is
a CNN-based target detection and semantic segmentation
algorithm, but it does not directly output the position of the
key points of the human body but outputs the rectangular
frame where the human body is located and the position of
each key point in the rectangular frame. Subsequently, the
DensePose algorithm [42] appears, the key to which is to
train a large number of datasets with pose annotations, so that
the model can learn the mapping relationship between the
human body surface and pixels and can predict the position of
each pixel on the human body surface. However, in practical
applications, different scenarios and tasks require different
loss functions, which also need to be designed and optimized
according to specific problems.

III. PROPOSED METHOD
MS-G3D [19] is a bone recognition method based on a
3D CNN. It can analyze and predict the input 3D skeleton
sequence, but it cannot fully express the shape and dynamic
information of skeleton joints due to motion occlusion. The
proposed 3D-GSD has been modified on this basis, retaining
the ms-g3d module to extract the space-time feature rep-
resentation of the skeleton sequence, and designing a new
feature selection module 3DSKNet and dense pre-estimation
module DensePose, as shown in Figure 1. 3DSKNet is an
attention mechanism for 3D convolutional neural networks,
which can adaptively learn important features in skeleton
sequences, better focus on key skeleton parts and action
sequences, and ignore unimportant parts such as some noise
or interference and some irrelevant joints, which helps to
improve the accuracy and robustness of skeleton recognition.
After skeleton recognition, it is necessary to estimate the
pose and shape of the human body in three-dimensional

FIGURE 1. Overall architecture diagram of 3D-GSD network.

space. Using DensePose to estimate the human body pose
on the input image can analyze the human body pose more
comprehensively. Specifically, 3DSKNet can provide posi-
tion and motion information of key points of interest, while
DensePose can estimate more detailed pose and shape infor-
mation. The combination of them can obtain more accurate
and complete human motion analysis results, which is of
great significance to many application fields, such as motion
analysis and medical diagnosis.

A. 3DSKNET MODULE
SKNet [52] is a lightweight attention mechanism that can
enhance the representation ability of the network, but the
reason why the SKNet mechanism cannot be directly applied
to the 3D network structure is that it is carried out in space,
and in the 3D structure, in addition to the spatial dimen-
sion (x, y, z), and the time dimension (t) , so it is necessary
to design the attention mechanism in the time dimension.
In addition, the attention mechanism of SKNet needs to oper-
ate on feature maps of different scales, and the 3D network
structure requires a more complex design to deal with feature
maps of different scales due to the larger range of scale
changes. Therefore, a 3DSKNet mechanism that can handle
joint information in both spatial and temporal dimensions is
proposed. The 3DSKNetmechanism adopts a 3D convolution
operation and attention mechanism, which can adaptively
learn the spatiotemporal features of each joint point and
perform a weighted fusion of the features of different time
steps to capture the spatiotemporal relationship. In 3DSKNet,
the feature learning and feature selection of each joint point
are carried out in three-dimensional space, the formula is as
follows:

yi = W2 · relu (W1 · Xi) (1)

si =
1
T

T∑
t=1

yi,t (2)

where yi represents the feature vector of the i-th joint point,
Xi is the feature input of the i-th joint point, W1 and W2 are
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FIGURE 2. 3DSKNet mechanism on 3D skeleton data.

learning parameters, and si is the average feature of the i-th
joint point in the time dimension. In 3DSKNet, the attention
coefficient can be expressed as:

zi,t = sigmoid (W3 · si + b3) (3)

whereW3 is the learning parameter and b3 is the bias param-
eter; zi,t represents the attention coefficient of the i-th joint
point at time t , and the attention-weighted feature of each
joint point at time t can be calculated:

ai,t = zi,t · yi,t (4)

where ai,t is the attention-weighted feature of the i-th joint
point at time t , and yi,t is the feature vector of the i-th joint
point at time t . Finally, the attention weight of each joint point
at different moments can be weighted for data fusion to obtain
the final feature representation:

F =

V∑
i=1

T∑
t=1

ai,t (5)

where V is the number of joint points, T is the number of time
steps, and F is the final feature representation, which can be
used for subsequent tasks, such as skeleton recognition and
human pose estimation.We introduce in detail themechanism
of extending 3DSKNet on 3D skeleton data in Figure 2, which
mainly includes three stages, namely the split stage, fuse
stage, and select stage.

The split stage mainly performs scale-invariant processing
on the input feature map and adds convolution operations
of different kernels according to the number of branches.
First, the input feature map X is divided to obtain multiple
sub-feature maps, and each sub-feature map corresponds to
a convolution kernel. According to the number of branches
M , the input feature map is divided into M parts as input.
Specifically, for the i-th branch, a convolution kernel of
(2i+ 1) × (2i+ 1) × (2i+ 1) × 3 size is used for the convo-
lution operation, the step size is 1, and the padding is 1. After
the convolution operation, the featuremaps of all branches are
stitched together to obtain a feature map of sizeM×T ×V ×

H×H×out_channels, which T represents the number of time
steps, V represents the number of joint points, H represents
the size of the spatial dimension (height and width), and
out_channels represents output channel dimensions.

In the fusion stage, the features of different scales obtained
by all branches are first added element-by-element to gener-
ate a mixed feature U with a dimension of [N ,C ′,T ,V ,M ];
then, three-dimensional adaptive pooling is performed on U
to compress the features to the specified dimension 1 and get
S with dimensions [N ,C ′, 1, 1,M ]. Next, squeeze the results
obtained in the previous step into [N ,C ′], and then use the
fully connected layer to reduce the dimension to L to get a
scalar d . The formula is:

d = Max {L,W4 (Squeeze (U))} (6)

where W4 represents the fully connected layer, and Squeeze
represents compressing the dimension of the feature to 2.
After performing dimension reduction, dimension increase,
and softmax operations on the feature, the correlation
between the features is learned, and the weights of different
positions are obtained for selecting the appropriate subset of
features.

In the selection stage, the feature U output by the fusion
stage is first divided into two features a and b through the
split operation. Next, compress the second dimension (the
number of channels) to obtain two vectors whose length is
half the number of channels, denoted as a′ and b′, respec-
tively. Then, a′ and b′ are respectivelymultiplied elementwise
by the weight vector, and the weighted feature V will repre-
sent the entire feature U more accurately. This weight vector
maps the value to the [0 1] range according to the softmax
function, ensuring that each element is in the [0 1] range and
the sum is 1.

In general, the design idea of the 3DSKNet mechanism is
to fuse the output features of the skeleton recognition module
with the global features with spatial relationships, to improve
the performance of skeleton recognition.

B. DENSEPOSE MODULE
To better capture the characteristics of human motion,
we use the DensePose module at the end of 3D-GSD
to improve the accuracy of skeletal behavior recognition.
By predicting the position of the key points of the human
skeleton, more abundant posture information can be pro-
vided, and more detailed posture estimation can also be
realized, such as the specific position of the hand, the degree
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of flexion and extension of the fingers, the posture of the
body, etc., thereby improving the accuracy. Specifically, the
DensePose human poses prediction module is mainly divided
into three stages: feature extraction, feature, and skeleton
feature fusion, and pose estimation. As shown in Figure 3.
Firstly, the output feature map of the previous stage is

used as input, and a series of convolutional layers (includ-
ing 3 Conv2d and 3 ConvTranspose2d) are used for feature
extraction and dimensionality reduction. In the recognition
of skeletal sequences, 384 feature points are extracted from
the output of the skeleton network and used as the represen-
tation of skeletal sequences. Specifically, perform a Conv2d
operation to reduce the number of the feature channels
from 384 to 256, and then perform two downsampling oper-
ations (Conv2d with stride=2) to reduce the feature size to
1/4 of the original. Subsequently, perform two more Conv2d
operations to reduce the number of channels of the feature
map to 128 and 64 respectively. Finally, perform a Conv2d
operation to reduce the number of channels of the feature
map to 32 again, and then use ConvTranspose2d three times
to increase the dimension to obtain the final feature map.
Which purpose is to reduce the number of feature channels
while keeping the size of the feature map constant, thereby
improving the abstraction ability of features. By fusing the
DensePose feature with the skeleton feature, more compre-
hensive human pose information can be obtained. The fused
formula is as follows:

Ffuse =
1
T

T∑
t=1

[
FDP,t ;Fske,t

]
(7)

where FDP,t is the DensePose feature of the t-th frame, Fske,t
is the skeleton feature of the t-th frame, [·; ·] represents the
splicing operation in the feature channel dimension, T is the
total number of frames in the video, and Ffuse is the fused
feature vector. Then, Ffuse performs global average pooling
to obtain the final feature vector f :

f =
1
T

T∑
t=1

Ffuse,t (8)

where Ffuse,t is the fused feature vector of the t-th frame, and
the fused features are input into two fully connected layers for
classifying actions. The final output is the probability value
for each category, which is obtained by the softmax:

yk =
exp (h, k)∑K
i=1 exp (h, i)

, k = 1, . . . ,K (9)

where yk represents the probability of belonging to the k-th
category, and h is the output of two fully connected layers.

IV. EXPERIMENTS
Experiments are implemented on a Windows system
equipped with an Intel Xeon(R) 4210R CPU and an NVIDIA
RTX 3090 GPU. The network framework is also based on
the PyTorch platform. The full source code is available at the
address https://github.com/wizardbo/3D-GSD.

FIGURE 3. Human body posture prediction DensePose module.

A. DATASETS
TheNTURGB+D60 SKeleton dataset is a skeleton dataset
for human action recognition, including 60 different action
categories. The data set uses the Microsoft Kinect v2 depth
camera and inertial measurement unit (IMU) to collect bone
data. The bone sequence of each action includes the data of
3 people, and each person’s action execution has different
angles and distances.

The NTU RGB+D 120 Skeleton dataset is a commonly
used human action recognition dataset. It includes a total
of 120 human action categories, which are divided into
60 single-person actions and 60 double-person actions. Each
action category consists of multiple different instances, each
instance includes 300 frames of skeleton data and depth
image data. The NTU RGB+D 120 dataset is widely used
in many studies because it contains a large number of action
sequences and many different types of actions, such as jump-
ing, stretching, waving, walking, crossing arms, making fists,
etc. In addition, it also provides a variety of difficulty levels
of data set division to suit different types of research and
application scenarios.

B. COMPARISON TO STATE-OF-THE-ART METHODS
To confirm the effectiveness of the proposed method for
the skeleton action recognition task, we conduct a compar-
ative study with several state-of-the-art techniques, including
IndRNN [43], HCN [44], ST-GR [45], 2s-AGCN [27],
AGC-LSTM [46], DGNN [28], MST (joint) [47], QCYHZ
(Qin-Cai-Yu-He-Zhang) [48], MS-G3D [19], ST-LSTM [49],
GCA-LSTM [18], RotClips+MTCNN [50], Body Pose Eval-
uation Map [51]. Meanwhile, we use two common perfor-
mance metrics: X-Sub(%) and X-Set(%), where the higher
metric value indicates better performance.

We quantitatively compare our method with the other com-
peting deep learning-based methods on NTU RGB+D 60
Skeleton, NTU RGB+D 120 Skeleton datasets, and Kinetics
SKeletion 400 datasets. Table 1 and Table 2 display the
statistical outcomes of X-Sub and X-Set for all the competing
methods. It can be seen that the proposedmethod achieves the
best X-Sub and X-Set results on all datasets. Moreover, The
X-Sub and X-Set values of our method are 0.02%∼0.06%
higher than those of the baseline MS-G3D. Table 3 shows the
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TABLE 1. Quantitative comparison (X-Sub and X-Set) of the NTU RGB+D
60 SKeleton dataset. The top-performing result is highlighted in bold,
while the second-best result is underlined.

TABLE 2. Quantitative comparison (X-Sub and X-Set) of the NTU RGB+D
120 SKeleton dataset. The top-performing result is highlighted in bold,
while the second-best result is underlined.

TABLE 3. Quantitative comparison (Top 1 and Top 5) of the kinetics
SKeletion 400 dataset.

statistical results of the Top 1% and Top 5% on the Kinetics
SKeletion 400 dataset, and our methods own the best results.

These results indicate that our proposed method achieves
better performance for various datasets and improves the
action recognition performance of the model by focusing on
key parts and action details.

For the complexity, the proposed 3D-GSD contains
5,012,643 parameters and MS-G3D – 3,194,595 parameters.
For the training time cost, both MS-G3D and 3D-GSD took
around 1 week, and the difference is only a few hours. This
is understandable because the number of parameters of the
proposed model is larger. However, the difference in time for

TABLE 4. Ablation study of 3D-GSD for different modules on NTU RGB+D
60 SKeleton dataset.

FIGURE 4. X-Sub (%) and X-Set (%) rise curve of NTU 60 dataset.

the training procedure is acceptable. Moreover, for the testing
time, the difference is just very minor: the proposed 3D-GSD
took 13.668 seconds and MS-G3D took 12.918 seconds for
the data of NTU RGB+D 120 Skeleton dataset.

C. ABLATION STUDY
To further validate the proposed 3D-GSD, we analyze
the contribution of each module to the 3D-GSD method
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by removing different network modules, including remov-
ing 3DSKNet and removing Densepose, respectively. Here,
we also perform tests on joint only and bone only on NTU
RGB+D 60 Skeleton dataset, as shown in Table 4.

The joint SD-G3D network that only adds 3DSKNet has
a lower recognition rate of 0.07% than the joint SD-G3D
network that adds both the 3DSKNet attention mecha-
nism and the DensePose pre-estimation module. For the
skeletal SD-G3D network with the 3DSKNet attention mech-
anism and DensePose pre-estimation module, the recognition
rate is 0.03% higher than that with only the 3DSKNet
skeletal SD-G3D network. The human body pre-estimation
DensePose module can estimate the key points and pose
information of the human body in the input image, thereby
improving the recognition accuracy of the occluded parts.
It can also map the two-dimensional points on the image to
the surface of the three-dimensional human body and mark
them so that the model can understand the posture and shape
of the human body more accurately, and effectively solve the
problem of being occluded. The rising curves of X-Sub(%)
and X-Set(%) for each part of the NTU RGB+D 60 dataset
are shown in Figure 4.

In the experiments of NTU RGB+D 60 (Joint Only) and
NTU RGB+D 60 (Bone Only), since the network only con-
siders joint points and bone information, adding the 3DSKNet
mechanism can improve the connection between joint points
and bones so that themodel can better understand the skeleton
information and better distinguish different actions. At the
same time, the 3DSKNet mechanism can effectively reduce
noise interference and improve the robustness of the model,
thereby improving the accuracy of the model.

V. CONCLUSION
This paper proposes a 3D graph convolutional feature selec-
tion with a dense pre-estimation (3D-GSD) method for action
recognition of skeletons. This method is mainly to design
the 3DSKNet attention mechanism in the MS-G3D network
of bone recognition and introduce the human body pose
estimation DensePose. Specifically, the designed 3DSKNet
attention mechanism can make the network pay more atten-
tion to important features, improving the accuracy while
keeping the computational cost small. Secondly, the introduc-
tion of the DensePose module can provide pose information
on the skeletal sequence, further enhancing the performance
of skeletal behavior recognition. The 3D-GSD network has
advantages in processing spatiotemporal sequence data, so it
can better handle bone sequence data. Finally, the paper con-
ducts extensive experimental validation on several commonly
used action recognition datasets. The results show that the
proposed method achieves the best performance on the NTU
RGB+D 60, NTURGB+D120 datasets, and Kinetics SKele-
tion 400 datasets, achieving accuracy gains of 0.02%, 0.06%,
and 0.1% compared to the best-performing methods. The
SD-G3D network model may be more effective for specific
datasets and tasks, while the generalization performance on
other datasets or tasks may be degraded. This is because

features and fusion strategies for multimodal data are usually
designed for specific problems and may not be applicable to
other scenarios.
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