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ABSTRACT In this paper, a method for orthogonal tensor recovery based on non-convex regularization
and rank estimation (OTRN-RE) is proposed, which aims to accurately recover the low-rank and sparse
components of the tensor. Specifically, a new low-rank tensor decomposition algorithm is designed, which
can efficiently establish the equivalence between the rank of a large tensor before decomposition and the rank
of the coefficient tensor after decomposition. The large tensor is decomposed into a small standard orthogonal
tensor and another coefficient tensor, and a generalized non-convex regularization is used to inscribe the low
rank of the coefficient tensor. Meanwhile, a new rank estimation strategy is developed to dynamically adjust
the size of small orthogonal tensors and coefficient tensors. Experimental results on image denoising and
salient object detection tasks confirm the state-of-the-art performance of the proposed method in terms of
denoising capability and computational speed.

INDEX TERMS Orthogonal tensor recovery, non-convex regularization, tensor decomposition, low-rank
recovery.

I. INTRODUCTION
With the rapid development of modern information tech-
nology, a large amount of multi-dimensional data have
been generated, including hyperspectral data, color images,
and video data. These real-world datasets are stored in
multi-dimensional arrays known as tensors, enabling effi-
cient computation and manipulation of the data. However,
in practice, the tensor is often affected by many degradation
factors such as noise pollution [1], [2], missing observations
[3], [4], partial occlusion [5], [6], and misalignment [7].
Fortunately, recent studies [8], [9], [10], [11] have shown
that high-dimensional tensor data such as image and video
collections usually have low-rank or approximately low-
rank properties and are widely used in computer vision
[8], [9], [10], collaborative filtering [12], and data mining
[13]. Consequently, the challenge of more accurately recov-
ering low-rank tensor data from high-dimensional tensor
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data affected by various degradation factors is garnering
increasing attention.

Recently, Kilmer et al. [14] introduced the concept of tubal
rank that is based on the t-product and t-SVD [9], [15], [16],
[17]. The tubal rank is defined as the number of nonzero
singular tubes of the singular value tensor. To develop a
convex surrogate for the tubal rank, Semerci et al. [18]
formulated a new tensor nuclear norm (TNN). Zhang et al.
[19] applied TNN to calculate the tubal rank derived from
t-SVD and exploited it to obtain an approximation of the
tensor rank. Later, Lu et al. [9] defined a new tensor rank
(tensor average rank) based on TNN and established a tensor
robust principal component analysis (TRPCA) model, which
guarantees the corresponding TRPCA recovery and performs
well in many tasks. To distinguish it from other tensor nuclear
norms, the t-product-induced TNN proposed by Lu et al.
is referred to as t-TNN in this paper.

In recent years, t-TNN has become a popular solution to the
tensor recovery problem, but it has some limitations. Firstly,
when handling large-scale tensor data, the computational
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FIGURE 1. Some surrogate functions.

TABLE 1. Some surrogate functions of ℓ0.

complexity of t-TNN increases dramatically. For example,
solving the TRPCA problem with t-TNN leads to a
computational complexity of O

(
n1n2n3 log n3 + n(1)n2(2)n3

)
per iteration. To solve this complex problem, Zhou et al.
[20] introduced a tensor decomposition method (TCTF)
based on the definition of tensor multi-rank and tubal rank.
This method decomposes a large tensor into the product
of two smaller tensors, thus reducing the computational
cost of each iteration to O (r (n1 + n2) n3 log n3 + rn1n2n3).
Nevertheless, it is essential to emphasize that TCTF pri-
marily concentrates on tensor decomposition and abstains
from employing the nuclear norm for rank approximation,
potentially resulting in suboptimal tensor recovery perfor-
mance. On the other hand, the low-rank matrix recovery
algorithm proposed in [21] takes full advantage of the unitary
invariance of the decomposed matrix, achieving a noteworthy
improvement in computational speed with a complexity of
O
(
r2(n1 + n2)

)
. Nevertheless, with the increasing scale of

data, the processing of data represented in tensor form
becomes more crucial. Therefore, in practical applications,
it is necessary to transform algorithms designed for matrix
processing into algorithms capable of handling tensors.

Meanwhile, due to the loose approximation of the t-TNN
tensor tubal rank, there is still a considerable gap with
the minimization of the tensor tubal rank [28]. The latest
comprehensive survey of sparse regularization [29] provides
a systematic introduction to the fundamentals of general,

convex, and non-convex optimization. Several popular
non-convex penalty functions are defined and summarized
in TABLE 1, and their visualizations are presented in Fig. 1.
It can be observed that as the value of x becomes smaller,
it tends to approach the ℓ0 norm, and for a larger value of
x, it tends to approach the ℓ1 norm. Moreover, in certain
cases, these penalty functions can contribute to a better rank
approximation than ℓ1 or ℓ0 norms. Additionally, in [30], it is
shown that non-convex regularization has a positive effect on
smoothing convex images.

To overcome the above limitations, this paper proposes
OTRN-RE, and the contributions of this work are threefold.

1) A new orthogonal tensor decomposition model is
proposed for low-rank subspace learning. Different
from the traditional tensor low-rank representation
model, the tensor decomposition method we introduce
enables the learning of low-rank subspaces more
efficiently. The use of non-convex regularization to
constrain the coefficient tensor in the model helps to
recover the low-rank subspace more accurately.

2) A new rank estimation strategy has been designed,
capable of seeking the most compact standard orthogo-
nal small tensor that best represents the low-rank target
tensor, thereby enhancing tensor recovery capabilities.

3) Extensive comparative experiments demonstrate that,
when compared with other tensor recovery methods,
our approach achieves relatively better performance
in image denoising and salient object detection tasks,
particularly in terms of computational speed.

The rest of this paper is organized as follows. Section II
provides some notations. Section III gives the details of
our proposed orthogonal tensor decomposition algorithm
based on non-convex regularization and rank estimation.
Section IV presents numerical experiments performed on
real data and performs convergence analysis and parametric
analysis. Finally, our work is summarized in Section V.

II. NOTATIONS AND RELATED WORK
A. NOTATIONS
This section introduces some of the notations used in this
paper. For brevity, the notations are listed in TABLE 2. The
Discrete Fourier transform (DFT) and the Inverse Discrete
Fourier Transform (inverse DFT) play a crucial role in the
tensor-tensor product (t-product). In addition, unfold (·), fold
(·), bcirc (·), and bdiag (·) are defined as

unfold(A) =


A(1)
A(2)
...

A(n3)

 ∈ Rn1n3×n2 ,

fold(unfold(A)) = A,

bcirc(A) =


A(1) A(n3) · · · A(2)
A(2) A(1) · · · A(3)
...

...
. . .

...

A(n3) A(n3−1) · · · A(1)

 ,
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bdiag(A) =


A(1) 0 · · · 0
0 A(2) · · · 0
...

...
. . .

...

0 0 · · · A(n3)

 .

TABLE 2. Some notations.

Definition 1 (t-product). Let A ∈ Rn1×n2×n3 and B ∈
Rn2×l×n3 . The t-product A ∗ B = C ∈ Rn1×l×n3 .

A ∗ B = fold(bcirc(A) · unfold(B)).

B. RELATED WORK
A key issue in low-rank tensor recovery is how to properly
define the rank of the tensor. There are three widely
recognized types of tensor ranks: CANDECOMP/PARAFAC
(CP) rank [11], [31], Tucker rank [8], [10], [32], [33], [34],
and Tensor tubal rank [9], [15], [16], [17].

1) CP RANK
The CP rank (CANDECOMP/PARAFAC rank) of a tensor
is the minimum number of rank-1 tensors that need to
approximate the original tensor, i.e.

rankcp(X )=min

{
r | X =

r∑
i=1

a(i)1 ⊗ a(i)2 ⊗ · · · ⊗ a(i)k

}
, (1)

where the symbol ⊗ denotes the outer product, and a(i)j ∈
Rnj (∀(i, j)) is a vector. However, the rank minimization
problem for CP decomposition is usually considered an
NP-hard problem [35].

2) TUCKER RANK
The Tucker rank of a tensor is defined based on the tensor’s
unfolding matrices. For a k-way tensor X , the Tucker rank is
a vector defined as

ranktc(X ) =
(
rank

(
X (1)

)
, · · · , rank

(
X (i)

)
, · · · ,

rank
(
X (k)

))
, (2)

where X(i) is its mode-i matricization. Since the sum of
the ranks of different unfolding matrices can lead to an
NP-hard optimization problem, [36] proposed to use the sum
of nuclear norms (SNN) to improve solution efficiency. SNN
is denoted as

∑k
i=1

∥∥X(i)
∥∥
∗
. However, the SNN is not a

convex envelope of
∑k

i=1 rank
(
X(i)

)
[37] but its overlapping

regularization. To address these issues, a new tensor nuclear
norm based on the t-product is proposed, which is discussed
in detail below.

3) TENSOR TUBAL RANK
Recently, tensor average rank based on t-product has been
proposed. Lu et al. [9] established a tensor robust principal
component analysis (TRPCA) model that aims to recover the
low tensor average rank componentL0 and sparse component
E0 from noisy observations X = L0 + E0 ∈ Rn1×n2×n3 by
convex optimization

min
L,E
∥L∥∗ + λ∥E∥1, s.t. X = L+ E, (3)

where ∥L∥∗ denotes the t-product-induced TNN (t-TNN),
∥E∥1 denotes the ℓ1-norm (the sum of the absolute values of
all the entries in E ), and λ is a balancing parameter. Based
on the TRPCA model, Zheng et al. [38] found that the slice
permutations of tensors have a significant influence on the
results of tensor recovery. They developed an algorithm that
can more accurately exploit the low-dimensional subspace
structures to improve the accuracy of recovery.

Although t-TNN performs well on tensor recovery,
recently, some studies [28], [34], [39], [40] have shown
that the non-convex tensor tubal rank surrogate method
can achieve better approximation than t-TNN. Notably, the
generalized tensor singular value thresholding (GTSVT)
method, as proposed by Zhang et al. [34], achieves well
rank approximation, improving the accuracy of tensor
recovery. Additionally, researchers propose various tensor
decomposition methods to improve algorithm speed, such as
Zhou et al. [20] factorization method using Fourier domain
tensor nuclear norm for third-order tensor completion.

The rank k of a decomposed tensor dictates its dimension
and impacts algorithmic complexity. To enhance compu-
tational efficiency and improve tensor recovery, a dedi-
cated rank estimation algorithm is essential. For instance,
Xu et al. [41] proposed the TMac algorithm, offering two
rank estimation methods. A choice between rank-increasing
or rank-decreasing algorithms must be made beforehand.
Shi et al. [42] introduced RTPCA-RE, a robust tensor
PCA algorithm that estimates the rank from corrupted
observations, subsequently utilizing it for improved low-
rank recovery. However, its computational speed is relatively
slow, emphasizing the urgent need to seek a faster and more
efficient rank estimation method.

III. PROPOSED ALGORITHM SCHEME
In this section, the proposed method OTRN-RE is introduced
in detail, and a new rank estimation strategy is given to
improve the tensor recovery.

A. ORTHOGONAL TENSOR DECOMPOSITION ALGORITHM
BASED ON NON-CONVEX OPTIMIZATION
To handle large-scale tensor data, this paper refers to the
decomposition method of TCTF [20]: a large-size tensor
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is decomposed into the product of two small-size tensors.
Based on TCTF, this paper performs forced orthogonality on
one of the decomposed small tensors. Then, the large-size
tensor L ∈ Rn1×n2×n3 is decomposed into a k-dimensional
orthogonal small tensor U ∈ Rn1×k×n3 (i.e., UT ∗ U = I)
and a coefficient small tensor V ∈ Rk×n2×n3 . The details of
the decomposition are illustrated in Fig. 2, and the formula is
as follows:

L = U ∗ V , s.t. UT ∗ U = I. (4)

Due to the unitary invariance of the nuclear norm [43],
we have

∥L∥∗ = ∥U ∗ V∥∗ = ∥V∥∗. (5)

FIGURE 2. A description of the observation model in OTRN-RE. The size of
the orthogonal small tensor is n1 × k̂ × n3, and the size of the coefficient
small tensor is k̂ × n2 × n3, where k̂ represents the optimal
decomposition dimension k .

Based on the conclusion derived from (5), this paper
explores the resolution of the tubal rank minimization
problem for the coefficient small tensor V . Considering
the limitation of the ℓ0 norm in practical applications, this
paper introduces a variety of non-convex surrogates, and the
minimization problem of (3) becomes

min
U ,V,E

∥V∥g∗ + λ∥E∥g,

s.t. X = U ∗ V + E,

UT ∗ U = I, (6)

where ∥V∥g∗ =
∑r

i=1 g (σi(V)), r = min(n1, n2), ∥E∥g =∑
i1,i2,i3 g (|E(i1, i2, i3)|), and g : R+ −→ R+ is an

increasing function. Note that all the surrogate functions of
ℓ0 listed in Fig. 1 satisfy this condition. The ℓ1 norm as a
special case also holds here, and it’s worthmentioning that the
low-rank and sparse functions g can be different. Meanwhile,
the computational complexity is greatly reduced as the
large tensor tubal rank minimization problem is equivalent
to the coefficient small tensor tubal rank minimization
problem.

The k is introduced to denote the size of the decomposition
tensor, and it can be used as a controllable upper bound on the
L rank because

rank(L) = rank(U ∗ V) ≤ rank(U) = k̂, (7)

where k̂ denotes the best choice of k , which also represents
the optimal rank. In this paper, a new rank estimation
algorithm is proposed, which can quickly search for the
optimal rank k̂ . See section III-C for details.

This paper is dedicated to the analysis of three-dimensional
tensors. Notably, a recent work [44] innovatively used t-SVD
to accomplish the higher-order tensor complementation
problem with missing values. In the future, we plan to further
exploit (6) to solve higher-dimensional tensor recovery
challenges.

B. ALTERNATING DIRECTION METHOD OF MULTIPLIERS
(ADMM) ALGORITHM
In this section, the Alternating Direction Method (ADMM)
is employed to solve (6), and the following augmented
Lagrange function is obtained:

Lµ(U ,V, E,Y) = ∥V∥g∗ + λ∥E∥g + ⟨X − U ∗ V − E,Y⟩

+
µ

2
∥X − U ∗ V − E∥2F , (8)

where Y ∈ Rn1×n2×n3 is the Lagrangian multiplier tensor.
According to the framework of ADMM, (8) can be solved by
the following iterations.

Step 1 Set a set P composed of U , and the tensors in the
set satisfy UT ∗ U = I. Given Vk , Ek and Yk , update Uk+1
by

Uk+1 = argmin
U∈P

Lµ

(
U,Vk , Ek ,Yk

)
= argmin

U∈P

µk

2

∥∥∥∥X − U ∗ Vk − Ek + Ykµk

∥∥∥∥2
F

. (9)

Assume the following singular value decomposition(
X − Ek +

Yk

µk

)
∗ (Vk )T = US ∗DS ∗ VTS . (10)

Here, it is assumed that US ∈ Rn1×k×n3 , DS , and VS ∈
Rk×k×n3 , where k ≤ n1 is the number of principal
components. According to the Reduced Rank Procrustes
Theorem (RRPT) [45], the solution to (9) becomes Uk+1 =
US ∗ VTS .

Step 2 Given Uk+1, Ek and Yk , update Vk+1 by

Vk+1 = argminLµ

(
Uk+1,V, Ek ,Yk

)
= argmin

µk

2

∥∥∥∥X − Uk+1 ∗ V − Ek + Ykµk

∥∥∥∥2
F
+ ∥V∥g∗

= argmin
µk

2

∥∥∥∥V − (Uk+1)T ∗ (X − Ek +
Yk

µk )

∥∥∥∥2
F

+ ∥V∥g∗. (11)

To make the problem (11) concise, this paper uses η to
represent 1

µk
and H to represent (Uk+1)T ∗ (X − Ek + Yk

µk
).

Then, the minimization problem (11) becomes:

Vk+1 = argmin
1
2
∥H− V∥2F + η∥V∥g∗. (12)

Solving this subproblem is one of the difficulties in this
paper, and it is solved here by using the GTSVT proposed by
Zhang et al. [34].
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Step 3 Given Uk+1, Vk+1 and Yk , update Ek+1 by

Ek+1 = argminLµ

(
Uk+1,Vk+1, E,Yk

)
= Tg{X − Uk+1 ∗ Vk+1 +

Yk

µk ,
λ

µk }. (13)

Step 4GivenUk+1,Vk+1 and Ek+1, updateYk+1 andµk+1

by

Yk+1 = Yk + µk (X − Uk+1Vk+1 − Ek+1), (14)

µk+1
= min

(
ρµk , µmax

)
. (15)

where, ρ = 1.3 represents the ADMM algorithm’s growth
step size, and µmax = 1× 1010 is a constant parameter.

C. RANK-ESTIMATION
The optimal decomposition dimension, denoted as k̂ , plays
a crucial role in low-rank tensor decomposition because
it represents the optimal rank and can greatly improve
tensor recovery. Furthermore, given that our algorithm has
a complexity of O

(
k̂ (n1 + n2) n3 log n3 + k̂n1n2n3

)
, it is

imperative to develop a method that is both faster and
more accurate for estimating the tensor rank. In OTRN-RE,
the rank-increasing algorithm is combined with the
rank-decreasing algorithm to dynamically adjust the value
of k . Specifically, our rank estimation algorithm determines
whether to update the rank k or not in the iterative process
by judging specific conditions. If condition1 is satisfied,
the rank-decreasing algorithm is applied; if condition2 is
satisfied, the rank-increasing algorithm is applied; otherwise,
continue updating until convergence and determine the best
rank k̂ . The algorithm is described in detail below.
1) Rank-decreasing scheme execution condition1:

• The rank k(n) of the low-rank tensor L(n) is larger
than the lower bound of the rank estimate.

• For the coefficient tensor V . Calculate the singular
values of VT(n)V(n) first to obtain the rank of the
low-rank tensor L under different slices and sort
by λ1(n) ≥ λ2(n) ≥ . . . ≥ λ

k(n)
(n) . Then, calculate the

quotients λ̄i(n) = λi(n)/λ
i+1
(n) , i = 1, . . . , k(n) − 1.

Suppose

k̂(n) = argmax
1≤i≤k(n)−1

λ̄i(n),

and the following conditions are satisfied:

gap(n) =

(
k(n) − 1

)
λ̄k̂(n)∑

i̸=k̂(n)
λ̄i(n)

≥ 10.

If condition1 is true, then execute:
• Reduce k(n) to k̂(n). Then, assume that the SVD of
U(n)V(n) is U6VT . Update U(n) to U (k̂(n))

and V(n)
to 6(k̂(n))

(V (k̂(n))
)T , where U (k̂(n))

is a submatrix of

U containing k̂(n) columns corresponding to the
largest k̂(n) singular values, and 6(k̂(n))

and V (k̂(n))
are obtained accordingly.

2) Rank-increasing scheme execution condition2:
• The rank k(n) of the low-rank tensor L(n) is smaller
than the upper bound of rank estimate.

• The relative error is satisfied as follows [41]:

tol =
∥Lrec − L∥F
∥L∥F

≤ 10−2,

where Lrec represents the recovered tensor.
If condition2 is true, then execute:

• Increase k(n) to min
(
k(n) +1k(n), kmax

(n)

)
. Here,

1k(n) is a given positive integer, and kmax
(n) is

an upper bound of the rank estimate. Augment
U (n)← [U (n), Q̂] where Q̂ is a randomly generated
orthogonal column of 1k(n) and is orthogonal to
U (n). Then, update V k+1

(n) ←

[
V k+1

(n) ,0
]
, where 0

is an I (n) ×1k(n) zero matrix.1

The rank-decreasing scheme is efficient in identifying
the low-rank tensor as the gap is usually large and easy
to identify, and only one rank adjustment is required to
determine the true rank. However, for an approximate
low-rank tensor, the existence of a large gap is not
guaranteed, and if the gap is small, the rank can be
easily overestimated. Therefore, involving a rank descent
scheme and a rank ascent scheme in our rank estimation
scheme will contribute to fast convergence in successive
update iterations (see Section IV-D for convergence analysis).
The full ALM algorithm for OTRN-RE is presented in
Algorithm 1.

Algorithm 1 OTRN-RE

Input: Data tensor X , ρ, λ, p, tol, initialize k0;
for k=0,1, . . . do

Uk+1 = RRPT
{
(X − Ek + Yk/µk )(Vk )T

}
Vk+1 = GTSTVg

{
(Uk+1)T (X − Ek + Yk

µk
)
}

Ek+1 = Tg{X − Uk+1 ∗ Vk+1 + Yk

µk
, λ

µk
}

Yk+1 = Yk + µk (X − Uk+1 ∗ Vk+1 − Ek+1)
µk+1

= min
(
ρµk , µmax

)
if stopping criterion tol ≤ 1.00E-05 then

Break;
end
for n=1,. . . n3 do

if condition1 satisfied then
Rank-decreasing;

end
if condition2 satisfied then

Rank-increasing;
end

end
end

1Since the variables are updated in the order ofU and V , appending any
matrix of an appropriate size after U and V does not affect the result.
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TABLE 3. The parameter settings for algorithms RTPCA-RE, TRPCA, SNN, ETRPCA, WSTNN, and OTRN-RE.

IV. EXPERIMENTS
This section comprehensively evaluates the performance
of our proposed algorithm through numerous experiments.
Our algorithm was compared with other state-of-the-art
techniques, including RTPCA-RE [42], TRPCA [9], SNN
[36], ETRPCA [40], andWSTNN [46] in terms of both image
denoising and salient object detection. For RTPCA-RE, the
source code was provided by the authors. For SNN and
TRPCA, the source code was obtained from the LibADMM
toolbox2. For WSTNN3 and ETRPCA4, the source code
was obtained from the author’s GitHub. The parameter
settings suggested by Lu et al. [9] were adopted for SNN,
and TABLE 3 shows the detailed parameter settings for
each method. In selecting a non-convex surrogate function,
I draw inspiration from [28], [34], and [39] and employ the
prevalent ℓp norm for the surrogate, thereby enhancing the
generalizability of the non-convex function.

The platform used for this experiment is MATLAB(2021a)
running on aWindows 10 PC equipped with a 3.00 GHz Intel
i7-9700 CPU and 8GB memory. Our code is open access.5

A. ZERO-MEAN GAUSSIAN-IMPULSE MIXED NOISE:
IMAGE RECOVERY
In this section, the proposed model is applied to image
recovery since clean color images can be approximated by a
low-rank tensor. The first 50 color images from the Berkeley
segmentation dataset (BSD)6 of size 321 × 481 × 3 or
481× 321× 3 and the first 10 color images of the large-scale
DOTA dataset7 of size 1024 × 1024 × 3 are used in the
experiment. If the color image L0 is contaminated with a
mixture of zero-mean Gaussian noise Z0 and impulse noise
S0, the noise can be elminated from the noised color images
X = L0+Z0+S0 by all six methods (including RTPCA-RE

2https://github.com/canyilu/LibADMM-toolbox
3https://github.com/YuBangZheng/code_WSTNN
4https://github.com/xdweixia/TPAMI2020_ETRPCA
5https://github.com/15058795765/Tensor-recovery
6https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
7https://captain-whu.github.io/DOTA/dataset.html

[42], TRPCA [9], SNN [36], ETRPCA [40], WSTNN [46],
and OTRN-RE). In this experiment, (δ, c) is set to (δ, c) =
{(10, 10%), (10, 20%), (10, 30%), (15, 10%), (15, 20%),
(15, 30%), (25, 10%), (25, 20%), (25, 30%)}, where δ repre-
sents the standard deviation of the zero-mean Gaussian noise,
and c represents the density of the impulse noise. Peak
Signal-to-Noise Ratio (PSNR), which is defined as

PSNR = 10 log10

(
∥X∥2∞

1
n1n2n3

∥X̂ − X∥2F

)
,

is adopted to evaluate recovery performance. Meanwhile, the
algorithm’s running time is exploited to evaluate the recovery
speed. The highest PSNR values and the lowest time are
marked in bold. For all methods, the stopping criteria are

tol =
∥Lrec − L∥F
∥L∥F

.

1) BSD IMAGE DENOISING
TABLE 4 presents the PSNR values and running time of
different methods when the Berkeley segmentation dataset is
contaminated by zero-mean Gaussian-impulse mixed noise.
The visual quality of all methods is reported in Fig. 3, 4 and 5.
From these results, the observations can be obtained. First,
compared with the other five methods, OTRN-RE achieves
the best denoising performance and the lowest running time in
most cases. Specifically, for (δ = 15, c = 20%) in TABLE 4,
OTRN-RE outperforms the five other comparison methods
by at least 0.4 dB in the average PSNR, and its running speed
is 1.55 times that of TRPCA.

2) LARGE-SCALE DOTA IMAGE DENOISING
TABLE 5 and 6 present the PSNR values and running time of
various methods on the Berkeley segmentation dataset con-
taminated with zero-mean Gaussian-impulse mixed noise.
Fig. 6 shows the visual quality of all methods. Based on these
results, several observations can be made. First, the PSNR
values of the proposed method (OTRN-RE) and the other five
methods show that OTRN-RE achieves the best denoising
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TABLE 4. The PSNR values and running time of various methods for denoising BSD images contaminated by mixed noise with different (δ, c).

FIGURE 3. The PSNR values and running time of various methods on BSD image data when δ = 15, c = 20%.

TABLE 5. The PSNR values of various methods for denoising large-size DOTA images contaminated by mixed noise with different (δ, c).

performance and the lowest running time for large-size color
images in most cases. Especially, for (δ = 25, c = 10%) in
TABLE 5, OTRN-RE outperforms the other five methods by
at least 0.5 dB in terms of the average PSNR, and its running
speed is 1.65 times that of TRPCA. Besides, compared to
the TRPCA method, our OTRN-RE method runs not only

faster but also performs better in processing large-size images
(combined with TABLE 4 and 6).

Experiments on the BSD and DOTA datasets indicate
that WSTNN performs poorly relative to OTRN-RE in
performing the low noise tensor recovery task. For example,
in TABLE 5 (δ = 10, c = 10), the average PSNR of
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TABLE 6. The running time of various methods for denoising large-size DOTA images contaminated by mixed noise with different (δ, c).

FIGURE 4. Denoised results on ‘‘Mountain’’, δ = 15, c = 20%. (a) Original image (b) Noised image (c) TRPCA [9]. (d) ETRPCA [40]. (e) SNN [36]. (f) WSTNN
[46]. (g) RTPCA-RE [42]. (h) OTRN-RE.

FIGURE 5. Denoised results on ‘‘Wolf’’, δ = 15, c = 20%. (a) Original image (b) Noised image (c) TRPCA [9]. (d) ETRPCA [40]. (e) SNN [36]. (f) WSTNN [46].
(g) RTPCA-RE [42]. (h) OTRN-RE.

WSTNN is lower than that of OTRN-RE by 3 dB. However,
WSTNN obtains a good result when dealing with high noise.
For example, in TABLE 6 (δ = 25, c = 30), the average
PSNR of WSTNN is 0.4 dB higher than that of OTRN-RE.

This is because WSTNN proposes a new tensor rank, which
has the advantage of high flexibility for correlations in
different modes and is conducive to dealing with high noise.
In addition, the performance of RTPCA-RE using the rank
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FIGURE 6. Denoised results on ‘‘DOTA’’, δ = 25, c = 10%. (a) Original image (b) Noised image (c) TRPCA [9]. (d) ETRPCA [40]. (e) SNN [36]. (f) WSTNN
[46]. (g) RTPCA-RE [42]. (h) OTRN-RE.

estimation algorithm was observed. In TABLE 6 (δ =
25, c = 30), the average PSNR of RTPCA-RE is 1.5 dB lower
than that of OTRN-RE, while the average running time of
RTPCA-RE is 24.5 times that of OTRN-RE. This is because
the RTPCA-RE algorithm consumes much time in using
the rank estimation algorithm to identify the most suitable
rank size before performing tensor recovery. Particularly,
RTPCA-RE becomes slower when dealing with large tensors.

Compared with the other five algorithms, our OTRN-RE
method performs better in tensor recovery, especially in
processing contaminated large-size images, with an obvious
speed advantage. This is attributed to the proposed novel
tensor decomposition algorithm, which can significantly
reduce the computational complexity and speed up the tensor
recovery. Meanwhile, this paper combines a generalized
non-convex framework to achieve better rank approximation
results and recover the tensor more efficiently. Moreover,
this paper proposes a new rank estimation algorithm, which
can find the optimal rank without affecting the speed of the
algorithm and enhances the recovery of the tensor.

B. PARAMETER ANALYSIS
This section presents experimental results that demonstrate
the relationship between the PSNR values of the proposed
OTRN-RE algorithm and the penalty parameter p. When
δ = 10, c = 30%, the denoising results of our OTRN-RE
algorithm for images of the Berkeley segmentation dataset
with different settings of the penalty parameter p are shown in
Fig. 8. By setting the penalty parameter p between 0.9 and 1,
the denoising algorithm achieves a high PSNR value with a

good denoising effect. In particular, the algorithm achieves
the best denoising effect when p is set to 0.98, and this setting
is adopted for all subsequent experiments.

C. SALIENT OBJECT DETECTION FOR VIDEOS
In this section, the salient object detection problem is
resolved, which involves separating foreground objects from
the background in a video. The background frames in
the video are highly correlated and can be modeled as a
low-rank tensor, whereas the moving foreground objects
occupy only a small portion of the image pixels and can
be modeled as sparse errors. In this experiment, various
methods were employed to implement foreground extraction,
including RTPCA-RE [42], TRPCA [9], SNN [36], WSTNN
[46], ETRPCA [40], and OTRN-RE. The experimental
data were three color videos from the ChangeDetection.net
(CDNet) dataset 20148 [47], including highway, skating, and
busStation. Between 900 and 1000 frames were taken from
each video as experimental data, where each video can be
represented as an n1 × n2 × 101× 3 tensor, where 101 is the
number of frames, and 3 is the number of color channels. The
resolution of each frame is n1× n2. The frames in each color
channel were stacked as a column vector of sizeN1×1, where
N1 = n1 × n2, and the video was reshaped into a tensor of
size N1 × N2 × 3, where N2 is the number of frames. Then,
the similarity between the estimated foreground regions and
the ground truth, or the Intersection over Union (IoU),
i.e., S(A,B)=A∩BA∪B , was adopted to measure the performance

8http://changedetection.net/
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TABLE 7. Salient object detection.

FIGURE 7. Some salient object detection results on the CDNet dataset. Row 1 shows a sample of a highway; row 2 shows a sample of
skating; row 3 shows a sample of busStation. (a) Original; (b) Ground Truth; (c) RTPCA-RE [42]. (d) TRPCA [9]. (e) SNN [36]. (f) WSTNN [46]
(g) ETRPCA [40]. (h) OTRN-RE.

FIGURE 8. The results of OTRN-RE in denoising analysis of BSD image
data under different settings of p.

of different methods in background modeling. TABLE 7
shows the IoU and time of different methods for foreground
extraction on the CDNet dataset. Fig. 7 presents the visual
quality of foreground extraction for all methods, where the
highest IoU and the lowest time values are marked in bold.
Through experiments, it was found that our proposed method
(OTRN-RE) performs the best in foreground extraction while
having the fastest running speed. Meanwhile, the following
observations can be obtained from the experimental results.

The performance of the SNN is unsatisfactory on the
skating and busStation datasets due to its inability to extract
enough foreground information. This is because the SNN
considers the low rank of each mode and does not perform
well in tight convex relaxation rank optimization, thus failing
to obtain sufficient foreground information. On the video
datasets of highway and busStation, ETRPCA captures too
much foreground information, such as highway edge lines

and bus stop walls. This is attributed to the fact that
ETRPCA uses a weighted Schatten p-norm to minimize the
tubal rank, but the rank approximation is excessive, lead-
ing to much unnecessary foreground information. Besides,
WSTNN retains a large amount of foreground information
in all video datasets and demonstrates very poor foreground
extraction capability. This is becauseWSTNN exploits mode-
k tensor matriculation and uses a weighted sum of the tensor
nuclear norm for tight convex relaxation rank optimization.
Although this helps to handle tensor information in different
modes, it retains too many tensor singularities and results in
excessive foreground information extraction.

Compared to other methods, our proposed method
(OTRN-RE) combines a tensor decomposition algorithm
with a generalized non-convex tubal rank minimization
framework to better approximate the rank and quickly retain
more complete and accurate foreground information, so it
performs better in foreground extraction tasks.

D. CONVERGENCE ANALYSIS
According to the currently available information, our model
involves non-convex surrogate and orthogonal constraints,
making it difficult to prove the convergence of Eq. (6) in
theory. Therefore, to prove the convergence of the model,
experiments were conducted to compare the convergence
of all methods by recovering images of the contaminated
Berkeley segmentation dataset. Fig. 9 presents the conver-
gence analysis results of RTPCA-RE [42], TRPCA [9],
SNN [36], WSTNN [46], ETRPCA [40], and our proposed
OTRN-RE algorithm with different values of p. Through
the experimental results ERROR = |L

rec
−L|F
|L|F , the following

observations can be made:
1) OTRN-RE achieves faster convergence than most

comparative methods.
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FIGURE 9. The convergence analysis results of OTRN-RE under different p
options with RTPCA-RE, TRPCA, SNN, WSTNN, and ETRPCA for denoising
on BSD image data.

2) The convergence of OTRN-RE shows robustness to the
parameter p.

3) RTPCA-RE and WSTNN exhibit lower error values.
The is because RTPCA-RE spends a considerable
amount of time determining the optimal rank size,
resulting in a lower initial error. Meanwhile, WSTNN
uses the weighted sum of tensor nuclear norms to
minimize the defined rank, which can quickly reduce
the error. However, the convergence ability of WSTNN
is limited, and after a significant number of iterations,
there is an abrupt convergence and a sharp drop in
PSNR values.

These observations show that our algorithm has better
convergence properties than other methods.

V. CONCLUSION AND FUTURE WORK
In this work, a new orthogonal tensor decomposition model
is proposed for low-rank subspace learning. This model is
designed to handle large-scale tensor data and solve the
problem of high computational complexity. It is found that
if the large tensor is decomposed into the product of a
standard orthogonal small tensor and a small coefficient
tensor since the decomposed small orthogonal tensor has
orthogonal unitary invariance, the rank of the large tensor
before decomposition is equivalent to that of the coefficient
tensor after decomposition. To enhance the accuracy of
recovering low-rank subspaces, we incorporate non-convex
regularization to constrain the coefficient tensor within the
model. Additionally, a new rank estimation algorithm is
proposed, which uses the estimated optimal rank as an upper
bound on the dimension of the decomposed small tensor to
dynamically adjust the size of the orthogonal small tensor and
the coefficient tensor. It has been experimentally verified that
our method OTRN-RE not only achieves better performance
but also is faster than most advanced tensor recovery
methods. Currently, a large amount of data contain tensors
of more than three orders, such as color videos. Therefore,

in future work, we will continue to handle higher-order
tensors, which is a significant direction for intensive research.
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