
Received 4 December 2023, accepted 6 January 2024, date of publication 11 January 2024, date of current version 22 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3352891

Resumability—A New Primitive for Developing
Web Applications
JUHO VEPSÄLÄINEN 1, MIŠKO HEVERY2, AND PETRI VUORIMAA 1
1Department of Computer Science, School of Science, Aalto University, 02150 Espoo, Finland
2Builder.io, San Francisco, CA 94103, USA

Corresponding author: Juho Vepsäläinen (juho.vepsalainen@aalto.fi)

ABSTRACT World Wide Web was originally meant as a global information exchange but it has since
then morphed into the largest available application platform. Especially during the past decade, mobile
usage has been rising while the size of websites and applications has been steadily rising therefore making
size an important target for optimization. In this article, we look into a new primitive called resumability.
Resumability allows developers to avoid caveats of earlier approaches, such as hydration, by embedding
some of the required data straight into HTML markup delivered to the client. Then the client resumes
execution as an application becomes interactive. The technique allows frameworks to apply well-known
techniques, such as code-splitting, automatically therefore reducing developer effort. By considering past
developments and a couple of concrete examples, we propose resumability as a new primitive for web
application development. Furthermore, we also discuss potential research directions for those wanting to
understand the topic in greater detail.

INDEX TERMS Hydration, JavaScript, multi-page applications, page size, resumability, single page
applications, software architecture, web application development, web performance, world wide web.

I. INTRODUCTION
Introduced in 1992, the World Wide Web was meant as
a global information exchange [1]. Since then, the web
has morphed into the largest application platform available,
reaching roughly two-thirds of the global population [2].
At the same time, the size of websites and the share of mobile
usage are constantly rising, as reported by [3] and [4]. It is
telling that in [3] data, the median page weight on desktop
grew from 669 kilobytes in March 2012 to 2060 kilobytes
in March 2022. The change has been more drastic on mobile,
and a nearly 600% increase in page size has been reported [3].
JavaScript contributes roughly one-third of the size, making
it the second biggest contributor after images and a clear
optimization target [3].

A. COST OF JAVASCRIPT
The cost of JavaScript is two-fold. In addition to having
a cost in terms of kilobytes to transfer, there is also a

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

significant cost related to parsing and evaluating the code.1

Especially in a mobile environment, the cost is felt in terms
of reduced battery life due to increased processing. Due
to lower computational capacities, application performance
experienced by the user may be reduced. Due to the cost, any
reduction to the size of JavaScript has a considerable impact
on the end user, and even deferring the cost can be beneficial.

B. SINGLE PAGE APPLICATIONS
New solutions were needed as the web changed from a
content platform into an application platform over time. The
current mainstream option, Single Page Applications (SPAs),
was motivated by the need to develop highly interactive
solutions on top of the web [6] and SPAs came with many
clear benefits for both developers and users compared to
earlier models, such as Multi-Page Applications (MPAs).
SPAs also camewith new challenges related to Search Engine
Optimization (SEO), reliance on JavaScript, and high cost

1This is particularly true within a mobile environment when JavaScript
payloads are big enough [5].

9038

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-0025-5540
https://orcid.org/0009-0007-6198-6650
https://orcid.org/0000-0002-0945-2674

J. Vepsäläinen et al.: Resumability—A New Primitive for Developing Web Applications

of loading [7]. Especially the cost of loading has become an
urgent issue.

C. NEED FOR RESEARCH AND SOLUTIONS IN THE SPACE
In [8], it was shown that most external resources are typically
loaded as render-blocking code. In contrast, only a small
portion of the code is used on the initial page load, implying
significant potential for performance improvements [8]. The
finding highlights the need for research and development in
the space.

D. EARLY POTENTIAL OF DISAPPEARING FRAMEWORKS
As discussed by [7], so-called disappearing frameworks
address challenges related to SPAs by addressing the problem
of shipping as little JavaScript to the client as possible.
It is not only frameworks that matter, but application code
specifically, as there is a concrete cost related to loading the
code. One of the possible techniques allowing developers to
load less and later is resumability.

E. RESUMABILITY ALLOWS DEVELOPERS TO LOAD LESS
JAVASCRIPT UPFRONT
Resumability addresses the cost of turning HTML markup
sent to the client into an interactive application by performing
some of the necessarywork beforehand on the server, handing
it over to the client, and then picking it up on demand.
In contrast, the current mainstream JavaScript frameworks
implement a hydration technique where JavaScript code is
required to turn a page interactive; it has to be shipped and
evaluated by the client, leading to a double cost [9]. Hydration
can be optimized through approaches, such as islands
architecture [10], but that does not solve the fundamental
issue of hydration fully that resumability avoids by changing
the axioms.

F. HOW CAN RESUMABILITY HELP TO ADDRESS THE
PROBLEM OF GROWING WEBSITE WEIGHT
Since website weight is a significant issue in web develop-
ment and resumability may be one of the key ways to address
it, we have formed the following research question:How does
resumability address the problem of growing website weight?

To understand how we arrived at the concept of resum-
ability and what motivated its development, we consider
the technical background in Section II. In the following
Section at III, we delve into the concept through the examples
of Sidewind and Qwik. Then, in Section IV, we consider
the implications of resumability and its potential for web
development. Finally, we conclude the article in Section V
and consider potential research directions.

II. BACKGROUND
To highlight why resumability is an important topic, we go
through the main ideas leading to the current mainstream
approaches in this section from the perspective of interactive
websites and applications.

A. EARLY STEPS TOWARDS INTERACTIVITY
The early web did not have a clear way to add interactivity
to websites. In 1995, Netscape Communications, one of
the early successful browser vendors, decided that the web
needed a scripting language [11]. The task was given to
Brendan Eich, who created an early version of JavaScript,
which, despite the name, did not have much to do with the
popular Java language [11]. The idea was that JavaScript
code would be combined with Java applets and other
components [12].

B. MULTI-PAGE APPLICATIONS
Early web applications were implemented using the MPA
model in which the application state lives on the server, and
each request from the client to the server reloads the page [6].
The model has several benefits as the initial cost of loading an
individual page can be low [13], SEO is easy [6], [13], there is
no dependency on JavaScript [6], [13], and security practices
are well understood [13]. For a highly interactive application,
MPA as a model is impractical due to its primary constraint
of maintaining the state on the server and refreshing a page
on state change.

C. SINGLE PAGE APPLICATIONS
In contrast to MPAs, SPAs do not rely on refreshing a page
on state change [13]. Instead, they maintain the application
state in the browser and update the user interface dynamically
based on user interaction [13]. As only transaction-related
data moves between the client and the server, the SPA model
can save bandwidth compared to MPAs [6] while coming
with an initial loading cost [13]. These characteristics make
SPAs ideal for long-running and complex web applications
where the initial loading time does not matter. SPAs have
challenges related to SEO [6], [13], [14], security [6], and
potentially routing [13] although the routing problem has
been largely solved by 2023.

Generally, SPA frameworks implement the following con-
cepts [7]: component abstraction, templating, and hydration.
Components provide a way to encapsulate markup and
potentially local state while templating solutions, such as
JSX [15], capture markup. The challenge is how to turn static
markup rendered by the server into an interactive application
suitable for a user, and that is where hydration comes in.
Hydration re-uses the existing DOM nodes, attaches event
handlers, and executes component logic [16].

D. CHALLENGES OF HYDRATION
By definition, hydration requires application component-
related code to run, as hydration is about re-running
application code to learn about the system’s state. In other
words, there is code to download, parse, and execute. Each of
these steps comes with an associated cost and is visible in the
initial loading cost related to using SPA. Using code-splitting
can defer the cost by allowing code to be loaded later [17].
It is important to note that this applies only to components

VOLUME 12, 2024 9039

J. Vepsäläinen et al.: Resumability—A New Primitive for Developing Web Applications

FIGURE 1. The figure shows a page comparable in three configurations: SSR, progressive hydration, and islands architecture. All the components are
rendered together and then hydrated for the SSR option. In the case of progressive hydration, all the components are rendered, key components are
hydrated first, and the rest are then progressively hydrated. For islands architecture, static components are server-rendered HTML; a script executed on
the client side is required only for the interactive components [10].

not existing in the initial render tree, reducing the approach’s
usefulness. In other words, code-splitting may be used for
cases requiring user interaction or some other trigger, such
as an intersection observer.

Another option is to push work to build time, as in Static
Site Generation (SSG), where component markup is gener-
ated ahead of time and then served to the user [18]. Markup
generation can also occur during Server-Side Rendering
(SSR) or incremental server regeneration (ISR) passes [18].
Regardless of the approach used to generate the markup,
the hydration process remains the same, meaning earlier
drawbacks remain. Next.js framework is a notable example
as it implements these strategies and allows the developer to
choose between them depending on the use case [19].

Progressive hydration allows hydrating the most critical
components first while hydrating the rest later, although there
is a caveat in the sense that hydration must begin from
application root [10]. Islands architecture limits the problem
to specific dynamic islands loaded using a specific strategy
while treating the rest of the page as static [10]. It can be
argued that islands are not without their challenges, as you
have the problems of inter-island communication and page
navigation to consider.2 Figure 1 illustrates how the three
basic approaches to hydration differ.

III. RESUMABILITY
Resumability approaches the problem solved by hydration
from a different angle. Most importantly, resumability skips
the re-execution portion of hydration, given the component
boundaries, state, and event listeners are serialized into
HTML, and the client will then pick up from there [21].

2React Server Components address these problems in their way while
depending on a server [20].

Both hydration and resumability have to provide front-end
knowledge about the application. In hydration, the knowledge
is passed via the execution of application components, while
in resumability, the same is achieved by deserializing HTML.
Through serialization, resumability avoids a significant cost
related to hydration at the cost of having to provide the initial
starting point as HTML [22].

A. IMPLEMENTING RESUMABILITY
Technically, resumability is surprisingly simple to implement
as it boils down to how to resume state and execution
from HTML markup. In any case, a JavaScript runtime
is required. Simultaneously, a resumable approach can be
designed with progressive enhancement [23] in mind so
that the code will work even if JavaScript is disabled for
the client. Implementation-wise, the question is how much
work to do and how far to go. In the most straightforward
implementations, it is enough to figure out how to read
the state from HTML to a state container. More complex
implementations can do optimizations related to event
handling and code-splitting [17] for example, as those are
possible to do in a novel manner on top of resumability.

1) SIDEWIND - A RUNTIME LEVERAGING RESUMABILITY
Sidewind3 (2019) is an example of a library that leverages the
idea of resumability. Sidewind is a light4 state management
solution designed to be used directly within HTML using
specific directives modeled using HTML attributes and

3https://sidewind.js.org/
4The minified version of Sidewind is roughly 16 kilobytes, and the cost

can be reduced further to around 6 kilobytes by using gzip compression
during transmission. The implementation can be optimized further as the
current version includes all the functionality, and everything is loaded
eagerly.

9040 VOLUME 12, 2024

https://sidewind.js.org/

J. Vepsäläinen et al.: Resumability—A New Primitive for Developing Web Applications

standard event handlers. Through resumability, a Sidewind-
based state container can restore its state from the HTML
markup. Sidewind fulfills the criteria for resumability by not
re-executing the application on the client and by serializing
state, listeners, and bindings to HTML.

The example below illustrates the syntax of Sidewind for
a case where execution is resumed in the frontend as it
constructs its state from HTML and then begins to operate on
the state as visible in the x binding that shows the loaded data
structure to the client. Due to the way state is included in the
initial HTML markup, the page can be considered to follow
the principle of progressive enhancement [24]. The benefit of
progressive enhancement is that the page would work to some
extent without JavaScript, making it more accessible, not to
mention potentially having SEO benefits.

<div x-state=‘‘{ todos: [] }’’>
<ul x-each=‘‘state.todos’’ x-ssr>
<li x-template>

Write
<ul x-each=‘‘state.value.tags’’>

<li x-template x=‘‘state.value’’>
chore

<li x-template>

Read
<ul x-each=‘‘state.value.tags’’>

<div x=‘‘JSON.stringify(state.todos)’’></div>

</div>

It is important to note that Sidewind has no opinions
regarding how components should be created, so integrating
Sidewind within existing environments or developing your
abstractions to support it may be beneficial. There are also
no strong opinions on how events should be handled or how
more complex code should be loaded, as the developer can
decide how to handle these concerns.

2) RESUMABILITY CAN BE DECOUPLED FROM EVENT
HANDLING
Unlike in hydration-based approaches, resumability can be
decoupled from event handling. For example, in Qwik,5

one global event handler leverages browser event bubbling
behavior, and events are then activated by user interac-
tion [22]. Due to this feature, in Qwik, the amount of event
handlers specified by a developer does not contribute to the
application’s running cost. In Sidewind, the situation is not
as straightforward as the library leverages standard event
handlers. It is an implementation detail of whether or not a
single global event handler should be used.

Figure 2 illustrates the difference in the loading behavior
of hydration against resumability when the user wants to use
an interactive portion of a user interface, especially when a

5https://qwik.builder.io/

FIGURE 2. The figure illustrates how hydration and resumability differ in
loading behavior. While in the naïve hydration case, framework and
application code are loaded eagerly, in resumability, only runtime is
loaded initially, and application code can be loaded on demand. In the
image, the user intends to operate (1) the carousel component, and then
(2) the runtime shipped to the client downloads (3) the related code.
To provide more flexibility, a framework can let the developer adjust this
behavior to consider different use cases, such as mobile and low
bandwidth scenarios.

solution like Qwik is used. It is good to note that while the
hydrated case is loaded eagerly, the resumable case can be
loaded lazily on demand based on user interaction.

3) CODE-SPLITTING AS A FIRST-CLASS CITIZEN
To optimize application loading in hydration-based
approaches, code-splitting [17] is used to defer loading
based on interaction or some other trigger. In islands
architecture [10], a similar effect is achieved on an
architectural level. Resumability can enable more fine-
grained code-splitting than earlier approaches. For example,
Qwik leverages the dollar ($) character to signify a split point,
as in the example below adapted from [25].6

import * as qwik from ‘‘@builder.io/qwik’’;

export default qwik.component$(() => {
const count = qwik.useSignal(0);
return (

<div>
Count: {count.value}
<button onClick$={() => count.value++}>

Click
</button>

</div>
);

});

Due to its approach, Qwik’s code-splitting boundaries
can be small as they can exist for views, state, and event
handlers [25], unlike in earlier approaches limited to module,
typically component, boundaries. For more complex use
cases, Qwik allows developers to tune the behavior through a
Service Worker [26].

In the case of Sidewind, it is up to the developer to decide if
they want to leverage code-splitting at an event handler level.
Therefore, resumability can be seen as an enabler of granular

6Examining different code extraction patterns would worth studying on
its own in detail as what we cover here is only one option out of many.

VOLUME 12, 2024 9041

https://qwik.builder.io/

J. Vepsäläinen et al.: Resumability—A New Primitive for Developing Web Applications

code-splitting, and as a concept, it does not guarantee it as it
is an implementation detail.

B. CHALLENGES OF IMPLEMENTING RESUMABILITY
As a new idea, implementing resumability comes with its
challenges. To keep the approach ergonomic, at least some
abstraction is required. In Sidewind runtime, the ergonomics
are somewhat solved by leveraging standard HTML. For
Qwik and Marko,7 the frameworks have opted for leveraging
a compiler that hides much of the complexity and enables
functionality, such as granular code-splitting. It can be argued
that the existence of a runtime or a compiler comes with
its complexity as there is more for developers to debug and
understand, as the code you write is not entirely what you
may evaluate in the browser. However, the same problem
applies to most mainstream frontend solutions as they rely
on techniques, such as transpilation, that transform code to a
form understandable by the browsers.

1) SERIALIZATION REQUIREMENTS CONSTRAIN A
RESUMABILITY-BASED SYSTEM
Given that resumability relies on the ability of the server to
serialize data into a format that the client can resume, that
gives a significant constraint for implementations. In other
words, data structures that cannot be serialized cannot
live in a resumable system. The same constraint does not
exist in hydration-based systems, and they can consume
non-serializable data without problems.

2) PROGRAMMING LANGUAGE CONSTRAINTS FOR
RESUMABILITY BASED SYSTEMS
When a resumability-focused library like Sidewind is used,
the main constraint between the server and the client is that
the server generates markup that the client-side runtime can
parse and restore as a JavaScript structure. Therefore, in this
case, the backend requirements are relatively light.

The situation is more complex for JavaScript frameworks
like Qwik or Marko as they allow developers to implement
backend logic. The situation is more constrained in these
cases as the backend requires a JavaScript runtime to work.
Simultaneously, developers can achievemorewithin the same
framework and may be able to implement the most vital parts
of web applications using these solutions.

C. POTENTIAL FOR ADOPTION BY FRAMEWORKS
For framework authors, resumability poses a challenge as it
means a framework has to be reimagined from the ground
up since underlying assumptions related to data loading
differ from hydration-based approaches. The main difference
concerns state management and how the state is loaded
progressively over time as needed. The biggest shift concerns
how a part of the state is serialized to the initial markup so
the client can resume on it. As a novel idea, there are limited
implementation examples in the wild. The biggest obstacle

7https://markojs.com/

to larger framework adoption is the compiler requirement for
ergonomics. However, a runtime-based alternative may be
viable up to a point, as shown by the example of Sidewind.

D. FRAMEWORKS AND LIBRARIES LEVERAGING
RESUMABILITY
Given that it is early days with resumability, possible ways
to implement it have not been fully explored as only a few
implementations exist. The main ones are Qwik, Wiz, and
Sidewind. Out of these three, not much is known about Wiz
as it is closed-source and not distributed publicly. In the
case of Marko, resumability is planned [27] but has not been
delivered yet. As a complete, compiled-based framework,
Qwik can extract split points automatically to build on
resumability. In contrast, Sidewind uses resumability only to
capture state from HTML, leaving code-splitting to the user.
Technically, it would likely be possible to build an entire
framework around it, however. It is too early to tell about how
Marko will implement resumability, but given they control
both client and server-side code in their solution, they will
likely find a good way to implement the idea.

To capture the currently available resumable frameworks
and libraries, Table 1 lists the options while considering
several attributes, including the streaming approach. The
streaming approach is one of the factors where the current
options differ, as their servers can stream content to the
client either in or out of order. The same can be said for the
templating approach.

E. EARLY EXPERIENCES WITH RESUMABILITY
As a new approach, there is little experience using resuma-
bility in practice. That said, early adoption is already visible,
in addition to early empirical evidence that shows the strength
of the approach.

1) EARLY ADOPTION OF RESUMABILITY IN APPLICATIONS
Early adoption of resumability has been visible in various
instances, including Gmail (Wiz, [28]), Google Photos (Wiz,
[28]), Google Search (Wiz, [28]), and eBay (Marko, [29]).
Further, Marko [30] and Qwik [31] based examples are
known to exist. It is safe to say that resumability is still
far from a mainstream idea. More implementations will
likely appear as resumability, and its benefits will be better
understood.

2) EARLY EMPIRICAL EVIDENCE
In [32], it was found that using Qwik can decrease the amount
of JavaScript shipped to the client compared to React. It was
noticed, however, that this comeswith a cost in terms of server
rendering time and build time during deployments [32]. The
early results of [33] imply that using Qwik gives benefits in
terms of the initial loading performance of an application. It is
good to note that both studies have limitations and may not
give the full picture as further work is required within the
domain, especially regarding continued application usage.

9042 VOLUME 12, 2024

https://markojs.com/

J. Vepsäläinen et al.: Resumability—A New Primitive for Developing Web Applications

TABLE 1. Resumable web application frameworks and libraries.

FIGURE 3. The figure shows how many websites using a specific JavaScript framework measured by Google have a portion of good
Core Web Vitals (CWV) value while using a mobile client. Astro and Qwik perform above the rest, while Qwik has consistently been
better than Astro, especially during the past few months. Similar results can be seen using a desktop client.

Google’s Core Web Vitals (CWV) [34] technology report
based on actual usage supports the initial findings and shows
that Qwik-based websites outperform the rest as seen in
Figure 3. It is good to note that there may be some bias in
the numbers as Google evaluated around a hundred sites for
Qwik while at least thousands for others [34]. The low figure
tells about Qwik’s early adoption; more accurate data may be
gained as it becomes more popular.

Similar results can be seen for Google’s median origin
Lighthouse score and page weight, as Qwik is either leading
or near leading in either case [34]. Astro8 framework with its
islands architecture can deliver pages with low page weight,
or it is used for sites with a low page weight, and the same
could be argued for Qwik. Based on the results alone, it is
difficult to tell which case might be true, and as mentioned,

8https://astro.build/

there may be bias in the numbers due to the low sample size
for Astro and Qwik relative to other options.

F. MAIN DIFFERENCES BETWEEN HYDRATION AND
RESUMABILITY
Table 2 captures the main differences between hydration and
resumability to allow contrasting approaches and to recap the
main points presented in this article.

IV. DISCUSSION
Although current mainstream solutions, such as SPAs, allow
us to develop complex, interactive applications, they do
not address the cost of website size and loading as their
primary axioms. Rather, developers must try to address it
independently through techniques like code-splitting [17];
even then, the results can be suboptimal. By changing the
viewpoint, resumability provides another direction that may
yield better results without additional effort for developers.

VOLUME 12, 2024 9043

https://astro.build/

J. Vepsäläinen et al.: Resumability—A New Primitive for Developing Web Applications

TABLE 2. Main differences between hydration and resumability.

A. RESUMABILITY CAN HELP TO ADDRESS THE COST OF
WEBSITE SIZE
Resumability can address the cost issue of websites at the
tooling or library level while making websites faster to load.
In resumability, the server serializes data to the markup,
allowing the client to resume execution as needed. The
main difference is that in a hydration-based approach, the
client has to construct the state of the client independently,
therefore adding cost to the approach. The shift enables code-
splitting [17] as an architectural concern that the developers
do not have to think about unless they prefer to, as prefetching
can become a configurable aspect of an application [26].

B. RESUMABLE RUNTIMES CAN PROVIDE AN
INTERMEDIATE STEP TOWARDS COMPILERS
As an intermediate solution, resumability can be adopted
through a runtime-based approach at the cost of losing
automatic code-splitting. A runtimemay be easier to integrate
into an existing project than a compiler-based solution,
providing an alternative to a full refactor or an interim step
towards one.

C. CAN MAINSTREAM FRAMEWORKS ADOPT
RESUMABILITY?
One of the open questions is whether current mainstream
frameworks can or should leverage resumability or will the
concept be adopted solely by new frameworks and libraries.
Technically, it is diametrically opposite to the concept of
hydration implemented by many of the frameworks, meaning
implementing resumability would represent a major change
and shift in thinking while coming with the constraints
related to serialization requirements. Therefore implementing
resumability in an existing framework may represent a
breaking change.

D. OTHER WAYS TO ACCESS THE COST OF WEBSITE SIZE
The cost of web application size can be potentially mitigated
by leveraging external tools, as shown by [35]. The tools,
Waiter and AUTRATAC9 can apply code-splitting on existing
codebases and therefore defer loading. In [35], it was

9Both tools are available through GitHub via https://github.com/
waiter-and-autratac/WaiterAndAUTRATAC

shown that the tools improve First Contentful Paint (FCP),
particularly at slower network speeds. The important point
to make is that in [35] the total execution time matched
the original JavaScript, but it was loaded with less render-
blocking, which is a major improvement by itself.

The development of external tooling seems like another
promising way to address the cost of websites. It can be
argued that techniques like resumability may provide better
results out of the box. However, adopting better techniques
may not be feasible in many cases, meaning there is value in
finding solutions that fit existing projects with minimal effort.

Although the directions of resumability and external
tooling feel orthogonal, there may be some cases where
both resumability and external tooling may be used together,
as resumability does not imply automatic code-splitting.
External tooling could bring the technique to use cases where
only resumability is leveraged initially, especially when only
a resumable runtime is used.

V. CONCLUSION
In this article, we sought to answer the question How does
resumability address the problem of growingwebsite weight?.
Based on [3], we know that site weight, and consequently
the weight of JavaScript execution, is a considerable
problem. Although SPAs have enabled developers to build
unprecedented, interactive experiences on top of the web
platform, they do not address the size problem as a first-
class citizen. Instead, the developers have to optimize their
applications using techniques such as code-splitting [17] and
memoization [36], and it can be argued that the results may
not be ideal even then as they push the problem to developers
and may not provide granular enough control. The problem is
that optimization techniques do not address the eager nature
of hydration. Resumability helps to address the site weight
issue by avoiding eager execution and provides one potential
direction for solving the problem of growing web application
size.

A. POTENTIAL RESEARCH DIRECTIONS
As a new approach, many open research questions exist
related to resumability. These can be categorized within
approach, developer, and user-facing directions.

9044 VOLUME 12, 2024

J. Vepsäläinen et al.: Resumability—A New Primitive for Developing Web Applications

1) APPROACH RELATED DIRECTIONS
When it comes to resumability as an approach, there are
several levels of validation to be done:

1) Performance against hydration - especially perfor-
mance against hydration using a real-life use case is
interesting to study to see how the approach scales since
hydration is the incumbent approach and the one to
beat.10

2) Cost per request - given there is more work to be
done by the server by definition, it may make sense
to measure the cost per request against established
approaches. Reference [32] provided initial insight into
the topic, but more research is needed. It is possible
that common techniques, such as caching, maymitigate
some of the server costs.

3) Continued usage of an application and impact on the
overall performance - [37] did an initial study on
the topic, although the results were inconclusive and
not easy to reproduce. While initial loading matters,
so does long-term use since we are talking about web
applications that may have a long lifecycle in the client
browser.

2) DEVELOPER FACING DIRECTIONS
Even if the approach is technically sound, there are open
questions related to developer ergonomics and adoption:

1) Developer eXperience (DX) - the underlying assump-
tion is that it helps when familiar concepts, such as
components, are leveraged. Still, it is unavoidable that
adoption resumability implies learning and perhaps
changing development practices. As seen by the
examples in this article, some additional syntax may
have to be learned, and possibly, the development
mindset has to be adjusted.

2) Adoption in established projects - it is unclear how
easy it is to adopt resumability in ongoing projects.
The assumption is that runtimes can help, but not all
benefits may be gained. That is where external tooling,
such as [35], can come into play to defer loading as
much as possible with fully resumable frameworks.

3) Migration strategies - migration is a related aspect as,
in some cases, it may be preferable to move from
the current framework to a resumable one, and a
certain cost is involved. There are also open questions
related to which migration strategies make sense and
can or should resumable approaches be used next to
contemporary ones.

4) Adoption for new projects - as shown by Qwik, the
framework took care to build on existing technology,
such as JSX. The question is, how easy is it to start
a project with a resumable project, and is there a cost
relative to established frameworks?

10For example, https://www.builder.io/ could be compared against
https://www.builder.io/?render=next as the site has been implemented using
both Qwik and Next.js.

5) Adoption by new frameworks - assuming resumability
is a worthwhile idea, more frameworkswill likely adopt
it. The question is, what are the obstacles related to
implementing the idea? Furthermore, is it possible that
established frameworks could implement resumabil-
ity? Which are the directions where frameworks can
develop unique advantages over others?

6) Scalability - given projects tend to grow over time,
one of the main factors to consider is the scal-
ability of the approach in terms of development
and payloads delivered to the client. By definition,
resumability should scale well as work can be
deferred on an architectural level, but this should
be validated to show what happens when a project
grows.

7) Code complexity - as resumability brings new con-
straints to how code should be developed, it may affect
code complexity. The complexity of resumable code
may be worth considering.

3) USER-FACING DIRECTIONS
The user perspective is perhaps the most vital one, as it
directly impacts web application usage and has a direct
business impact. The main direction to study is User
eXperience (UX) - the question is how adopting resumability
affects UX. Early results by [34] imply that resumability
improves UX, but further validation is needed.

REFERENCES
[1] T. Berners-Lee, R. Cailliau, J. Groff, and B. Pollermann, ‘‘World-Wide

Web: The information universe,’’ Internet Res., vol. 20, no. 4, pp. 461–471,
Aug. 2010.

[2] Internet and Social Media Users in the World 2023. Accessed:
Aug. 28, 2023. [Online]. Available: https://www.statista.com/statistics/
617136/digital-population-worldwide/

[3] Page Weight | 2022. Accessed: Aug. 28, 2023. [Online]. Available: https://
almanac.httparchive.org/en/2022/page-weight

[4] J. Howarth. 2023. Internet Traffic from Mobile Devices (Sept 2023).
Accessed: Aug. 28, 2023. [Online]. Available: https://explodingtopics.
com/blog/mobile-internet-traffic

[5] T. Kadlec. (2014). JS Parse and Execution Time. Accessed: Sep. 13, 2023.
[Online]. Available: https://timkadlec.com/2014/09/js-parse-and-exe
cution-time/

[6] M. Kaluža, K. Troskot, and B. Vukelić, ‘‘Comparison of front-end
frameworks for web applications development,’’ Zbornik Veleučilišta
Rijeci, vol. 6, no. 1, pp. 261–282, 2018.

[7] J. Vepsäläinen, A. Hellas, and P. Vuorimaa, ‘‘The rise of disappearing
frameworks in web development,’’ in Proc. Int. Conf. Web Eng. Cham,
Switzerland: Springer, 2023, pp. 319–326.

[8] L. Vogel and T. Springer, ‘‘An in-depth analysis of web page structure
and efficiency with focus on optimization potential for initial page
load,’’ in Proc. Int. Conf. Web Eng. Cham, Switzerland: Springer, 2022,
pp. 101–116.

[9] X.-A. Cao, ‘‘Headless cms and qwik framework and their practicalities in
the future of application development,’’M.S. thesis, VaasaUniv. Appl. Sci.,
Vaasa, Finland, 2023.

[10] L. Hallie and A. Osmani. 2022. Islands Architecture. Accessed:
Sep. 29, 2022. [Online]. Available: https://www.patterns.dev/posts/islands-
architecture/

[11] J. Vepsäläinen, ‘‘ECMAScript—The journey of a programming language
from an idea to a standard,’’ in Proc. Joint EURAS SIIT Standardisation
Smart Syst., Jul. 2023, pp. 203–220.

[12] A. Wirfs-Brock and B. Eich, ‘‘JavaScript: The first 20 years,’’ Proc. ACM
Program. Lang., vol. 4, pp. 1–189, Jun. 2020.

VOLUME 12, 2024 9045

J. Vepsäläinen et al.: Resumability—A New Primitive for Developing Web Applications

[13] V. Solovei, O. Olshevska, and Y. Bortsova, ‘‘The difference between
developing single page application and traditional web application based
on mechatronics robot laboratory onaft application,’’ Automat. Technol.
Bus. Process., vol. 10, no. 1, pp. 4–8, 2018.

[14] T. F. Iskandar, M. Lubis, T. F. Kusumasari, and A. R. Lubis, ‘‘Comparison
between client-side and server-side rendering in the web develop-
ment,’’ IOP Conf. Ser., Mater. Sci. Eng., vol. 801, no. 1, May 2020,
Art. no. 012136.

[15] S. Chen, U. R. Thaduri, and V. K. R. Ballamudi, ‘‘Front-end development
in react: An overview,’’ Eng. Int., vol. 7, no. 2, pp. 117–126, Dec. 2019.

[16] A. Huotala, ‘‘Benefits and challenges of isomorphism in single-page
applications: A case study and review of gray literature,’’M.S. thesis, Dept.
Comput. Sci., Univ. Helsinki, Helsinki, Finland, 2021.

[17] B. Livshits and E. Kiciman, ‘‘Doloto: Code splitting for network-bound
Web 2.0 applications,’’ in Proc. 16th ACM SIGSOFT Int. Symp. Found.
Softw. Eng., Nov. 2008, pp. 350–360.

[18] J. Vepsäläinen, A. Hellas, and P. Vuorimaa, ‘‘Implications of edge
computing for static site generation,’’ in Proc. 19th Int. Conf. Web Inf. Syst.
Technol. Cham, Switzerland: Springer, 2023, pp. 223–231.

[19] T. N. Nguyen, ‘‘Family in music platform,’’ M.S. thesis, Vaasa Univ. Appl.
Sci., Vaasa, Finland, 2022.

[20] Vercel. (2023). Rendering: Server Components. Accessed Oct. 4, 2023.
[Online]. Available: https://nextjs.org/docs/app/building-your-application/
rendering/server-components

[21] (2023). Resumable vs. Hydration. Accessed: Aug. 29, 2023. [Online].
Available: https://qwik.builder.io/docs/concepts/resumable/

[22] M. Hevery. (2022). Resumability vs Hydration. Accessed: Aug. 29, 2023.
[Online]. Available: https://www.builder.io/blog/resumability-vs-hydra
tion

[23] S. Champeon. (2003). Progressive Enhancement and the Future of
Web Design. Accessed: May 15, 2023. [Online]. Available: http://www.
webmonkey.com/03/21/index3a.html

[24] A. Gustafson, L. Overkamp, P. Brosset, S. V. Prater, M. Wills,
and E. PenzeyMoog. (Oct. 2008). Understanding Progressive
Enhancement. Accessed: Sep. 29, 2022. [Online]. Available:
https://alistapart.com/article/understandingprogressiveenhancement/

[25] J. Vepsäläinen, A. Hellas, and P. Vuorimaa, ‘‘The state of disappearing
frameworks in 2023,’’ inProc. 19th Int. Conf.Web Inf. Syst. Technol.Cham,
Switzerland: Springer, 2023, pp. 232–241.

[26] (2023). Prefetching. Accessed: Aug. 29, 2023. [Online]. Available:
https://qwik.builder.io/docs/advanced/prefetching/

[27] Marko Team. 2023. Talking Points for Marko—HackMD. Accessed:
Oct. 4, 2023. [Online]. Available: https://hackmd.io/@markojs
/BkW3fIze2

[28] Malte Ubl. (2022). 11 Years at Google. Accessed: Oct. 4, 2023. [Online].
Available: https://www.industrialempathy.com/posts/11-years-at-google/

[29] (2023). Marko. Accessed: Oct. 4, 2023. [Online]. Available: https://
markojs.com/

[30] Wappalyzer. (2023). Websites Using Marko. Accessed: Oct. 4, 2023.
[Online]. Available: https://www.wappalyzer.com/technologies/web-
frameworks/marko/

[31] Wappalyzer. (2023). Websites Using Qwik. Accessed: Oct. 4, 2023.
[Online]. Available: https://www.wappalyzer.com/technologies/web-
frameworks/qwik/

[32] T. Lonka, ‘‘Improving the initial rendering performance of react applica-
tions through contemporary rendering approaches,’’ M.S. thesis, School
Sci., Aalto Univ., Helsinki, Finland, 2023.

[33] BuilderIO. (2022). GitHub—BuilderIO/Framework-Benchmarks.
Accessed: Oct. 3, 2023. [Online]. Available: https://github.com/BuilderIO/
framework-benchmarks

[34] (2023). Core Web Vitals Technology Report. Accessed:
Nov. 20, 2023. [Online]. Available: https://lookerstudio.google.com/u/0/
reporting/55bc8fad-44c2-4280-aa0b-5f3f0cd3d2be/page/M6ZPC?s=iL-
EeFbtDHg¶ms=%7B%22df44%22:%22include%25EE%2580%
25800%25EE%2580%2580IN%25EE%2580%2580Next.js%25EE%
2580%2580Angular%25EE%2580%2580Nuxt.js%25EE%2580%2580
SvelteKit%25EE%2580%2580Astro%25EE%2580%2580Remix%
25EE%2580%2580Qwik%22%7D

[35] L. Vogel and T. Springer, ‘‘Waiter and AUTRATAC: Don’t throw it away,
just delay!’’ in Web Engineering, I. Garrigós, J. M. M. Rodríguez, and
M. Wimmer, Eds. Cham, Switzerland: Springer, 2023, pp. 278–292.

[36] I. Kainu, ‘‘Optimization in React.js: Methods, tools, and techniques to
improve performance of modern web applications,’’ B.S. thesis, Dept.
Comput. Sci., Tampere Univ., Tampere, Finland, 2022.

[37] A. Lipiński and B. Pańczyk, ‘‘Performance optimization of web appli-
cations using Qwik,’’ J. Comput. Sci. Inst., vol. 28, pp. 197–203,
Sep. 2023.

JUHO VEPSÄLÄINEN received the M.S. degree
in information technology from the University
of Jyväskylä, Finland, in 2011. He joined the
Department of Computer Science, Aalto Univer-
sity, Finland, in 2022, to pursue a doctorate as
a Doctoral Researcher. As a core team member,
he has contributed to open-source projects, such
as Blender and webpack, and publishes tech-
nical literature under the brand SurviveJS. His
research interests include web development, web

performance, and hybrid models for web application development.

MIŠKO HEVERY received the M.S. degree in
computer engineering from the Rochester Institute
of Technology, USA, in 2000, and the M.B.A.
degree from Santa Clara University, in 2004.
As a CTO, he oversees the technology division
powering Builder.io applications. He is known for
creating Angular and AngularJS frameworks and
is the co-creator of the Karma testing framework.
His latest project is Qwik, a resumable web
application framework.

PETRI VUORIMAA received the M.S. degree in
computer science from the Tampere University of
Technology, Finland, in 1990, and the Doctor of
Science degree from Tampere, in 1995. Currently,
he holds the position of the Vice Head of education
with the Department of Computer Science, Aalto
University, Finland. His research and teaching
areas include web applications, web technologies,
and science. In addition to his academic roles,
he actively contributes to the industry as a

Supervisory Board Member of EIT Digital and a Board Member of Sofia
Digital.

9046 VOLUME 12, 2024

