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ABSTRACT The best way to represent EMG signals for classification is a topic that has been widely studied
due to the need to improve precision when identifying the type of movement being performed. However,
by increasing the number of features when forming a matrix that represents the signals, the processing time
increases since it not only involves calculating the features that are extracted from the signal but also the
time that the classifier takes to answer. The central purpose of this research is to develop and validate a
methodology that uses the Fisher Score to select a set of features in the classification of sEMG signals. This
selected set is descriptive enough to achieve high levels of accuracy in detecting EMG signal patterns across
multiple subjects. The analysis shows that using a variant of MAV, SSC, WAMP, RMS, and the maximum
value together with the Shannon entropy and zero crossings of theWavelet transform has an accuracy greater
than 99%. Finally, a group of features is proposed to classify EMG signals that yield an accuracy greater
than 98% and do not require more than 15 ms of processing time.

INDEX TERMS SVM, Fisher score, feature selection, sEMG, pattern recognition.

I. INTRODUCTION
Since it has become possible to measure the signals coming
from the muscles, the so-called electromyographic (EMG)
signals, their applications have increased, from monitoring
health status to seeking to use the signals in devices such
as prostheses that are fed back by them. The surface EMG
(sEMG) signals are the most used to classify different types
of movements due to their high correlation coefficient with
them [1].

Generally, using electromyographic signals for movement
classification requires a noise-free signal to achieve a correct
classification. In this sense, several proposals offer filtering
methods to improve the signal quality [2], [3]. However,
since, in many cases, the quality of the signals is not
optimal [4], it is necessary to use more than one feature
to describe them. On the other hand, the choice of features
to describe the signal directly influences the classification

The associate editor coordinating the review of this manuscript and

approving it for publication was Rajeswari Sundararajan .

quality [5]. That is why this work offers a group of features
for sEMG classification and suggests two more features that
can be added to the group in case an improvement in precision
is needed.

When there is a high number of features and/or channels
(sensors) to describe the signal, it is said that it has a high
dimensionality, which is not always recommended when
classifying, so there are algorithms for its reduction [6],
[7], [8]. In this sense, there are two main methods:
feature selection algorithms and feature reduction algorithms.
Feature reduction methods include independent component
analysis, principal component analysis, linear discriminant
analysis, and canonical correlation analysis.

On the other hand, feature selection algorithms aim to
select a subset of features with the lowest internal similarity
and the highest relevance [9] by eliminating redundant or
irrelevant variables. However, eliminating all redundancy is
not always possible [10]. These algorithms are classified into
four different types: filter, wrapper, embedded methods, and
hybrid methods.
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Filter methods have low computational costs. However,
selected features do not achieve good classification perfor-
mance as they can sometimes miss some critical assumptions
about the underlying regression function linking input
variables to the output [7], [8]. The best-known filters
are Information Gain, Gain Ratio, Term Variance, Mutual
Information, Gini Index, Laplacian Score, Relief-F, and
Fisher Score, among others.

In contrast, the wrapping methods have a high computa-
tional cost and lose generality since a classifier is used and
trained to select the optimal set of features, so it is not recom-
mended to use them on a large scale [9]. Furthermore, finally,
embedded methods consider the feature selection problem
as part of a machine learning method; they incorporate the
search and classification model into a single optimization
model, which is usually faster than wrapper methods and
slower than filter methods [11]. Some embedded methods
are of the Structured sparsity-inducing type [12]. In contrast,
others combine classification algorithms such as multiple
filters to remove redundant features [13], [14], or are based
on fuzzy sets designed for hierarchical classification [15],
[16]. In [17], a metaheuristic signal selection algorithm is
proposed using a Golden Ratio Optimization and Equilibrium
Optimization algorithm. On the other hand, [18] applied
genetic algorithms for the selection of 24 features in the
time domain to classify five movements of the right upper
extremity employing sEMG.

Hybrid methods combine filter and wrapper models.
In [19], two methods are proposed that follow a two-
stage procedure. In the first stage, a score and filter model
are assigned, and the second stage selects the subset. The
signal analysis involves time and frequency domain features,
time-frequency analysis methods, power spectrum density,
and higher-order spectra [20]. However, in this work, only
34 features in the time domain were considered for the
initial analysis. On the other hand, [21] proposes a three-step
classification scheme to address the between-subject search
on sEMG signals generated by lower extremity movements.
Independent component analysis decomposes the sEMG
signals, time-domain discriminant features are extracted,
and Fisher score is applied before using linear discriminant
analysis.

Later, [22] presented a new method for recognizing
movements of the lower extremities using the tuneable Q
factor wavelet transform (TQWT) and Kraskov entropy
(KrEn). sEMG signals from twenty subjects performing four
different movements were recorded, the noise was removed
using multiscale principal component analysis (MSPCA),
and KrEn features were extracted from the subband signals
obtained by TQWT. Subsequently, representative features
were selected using the method of minimum redundancy
and maximum relevance, and the highest classification was
obtained using the linear discriminant analysis classifier.

In order to analyze which of the 34 features considered
are the most useful to describe the signal, in this research

work, the Fisher algorithm was considered because it assigns
a weight to each one of them and leaves open the criteria in
which they are eliminated features. This algorithm is based on
differential geometry, from which Zhu proposed a Bayesian
information geometry by combining information geometry
with Bayesian decision theory [23], with which Fisher Score
fixes.

Exploring a search space composed of 34 features
represents a significant and meticulous effort in EMG signal
research. Addressing such a broad set of features indicates
exhaustive coverage, allowing the identification of features
with lesser representation within the classifier. This breadth
of exploration increases the likelihood of discovering unique
interactions and patterns between features that might go
undetected in a more restricted search space. Furthermore,
working with such a wide variety strengthens the generality
of the resulting model.

After analyzing the performance of each one of the
features, a group of 5 features is proposed, and two more
are indicated that can improve the precision if needed.
The results are compared with the groups proposed in [24]
and [25], which correspond to MAV + WL and WL + SHA,
respectively.

The performance is tested through the precision of the
selected group, using support vector machines, because
they have a high potential for the classification of myo-
electric signals, being able to recognize highly complex
patterns [26].

In this paper, sEMG signals were recorded over four oppo-
site muscles on the lower limb to compare the classification
precision. The muscles selected to place the sensors were
tibialis anterior (TA), gastrocnemius medials (GM), biceps
femoris (BF), and vastus lateralis (VL), which present the
better signal of the movement [27].
The present study stands out for its contribution to

the field of sEMG signal classification, providing relevant
contributions:

• Implementation of a group of features for the classifica-
tion of lower extremity EMG signals using SVM, with
high classification performance and computing time.

• Feature optimization: Using the Fisher algorithm, this
work has provided a robust method for feature selection,
minimizing redundancies and improving the accuracy of
classifying sEMG signals.

The rest of the document is organized as follows. Section II
reviews the theory necessary to understand the techniques
used and a general description of support vector machines.
Section III explains the order in which the experiments are
performed and their results. The section IV concludes the
work.

II. MATERIALS AND METHODS
This section shows the essential concepts applied in this
work. Figure 1 shows the general flow diagram of the
methodology followed in this work.
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FIGURE 1. General flow diagram of the methodology followed in this
work.

A. DATA BASE
The database described in this article was derived from work
done by [28]. The consolidation of the information was
carried out using MATLAB software.

Eight subjects were selected to construct the database:
four men and four women. All participants are in good
health, without overweight or amputations. Nine electrodes
are placed on each person’s right leg, two for each of the
four muscles examined and an additional electrode for the
reference. These electrodes are positioned at an distance of
2.5 cm from each other.

The specific electrode positions are:

• Vastus lateralis (VL) - 66% of muscle length.
• Tibialis anterior (TA) - 47.5% between the tip of the
fibula and the medial malleolus.

• Gastrocnemius medialis (GM) - 38% of the muscle
length from the medial side.

• Biceps femoris (BF) - Located at midway along the line
between the ischial tuberosity and the lateral epicondyle
of the tibia.

• Ground terminal - Inner side of the knee.

The subjects performed six different foot movements,
repeated 20 times with 25-second intervals. With the
state of relaxation included, there are seven movements
to classify. These signals are sampled at a frequency
of 1 kHz. The methodology of the experiment involved
using the INA114 integrated circuit, followed by an ampli-
fication stage, filtering to eliminate 60 Hz frequencies,
and, finally, an ADC conversion for digitization and

TABLE 1. General features of the implemented database.

storage on a PC. Table 1 shows the main features of the
database.

The 20 replicates are separated into two groups, making
560 samples for algorithm training and 560 for validation.

B. TIME DOMAIN FEATURE EXTRACTION
For the characterization of sEMG signals, a wide variety
of features are available [29], [30], [31]. However, only
34 are used for the study, taking into account the ease and
practicality of the calculation. Table 2 shows the features
implemented for this study.

C. FISHER SCORE
The main idea of the Fisher Score algorithm for feature
selection is similar to the principle of the support vector
machine [32] since it consists of finding a subset of features in
which the distances between data points of different classes
are as large as possible. In contrast, those in the same class
are as small as possible [10].

Given an input matrix X ∈ Rd×n, it is reduced to an
output matrix Z ∈ Rm×n, where m is the number of features
to be considered. The Fisher Score of each vector in the
input matrix, corresponding to each feature, is calculated as
follows:

F(Xi) =

c∑
j=1

(
µi
j − µi

)2
c∑
j=1

nj(σ ij )
2

, (1)

where µi and σj correspond to the mean, and standard
deviation of each vector and nj is the size of the j-th class
respectively in Z .
After calculating the Fisher Score for each feature, select

the top m-ranked features with the highest scores.

D. NORMALIZATION
One of the normalization methods is the Z score, calculated
through the formula

wij =
zij − µi

j

σi
, (2)

which gives the normalized value of each feature; in the same
way as in Eq. (1), µi and σj correspond to the mean and
standard deviation of each feature vector, respectively.
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TABLE 2. Most common time-domain indicators in the classification of sEMG signals.

E. SUPPORT VECTOR MACHINES
Vapnik & Corina 1995 introduced a theory based on
constructing an optimal separation hyperplane in a feature
space, which is usually of high dimension when the inputs
are mapped using non-linear functions. This algorithm, called
SVM, is often used to separate two types of objects; however,
it can also be used as a multiclass classifier [33].

The training matrix is formed by the input values
(x1, y1), . . . , (xm, ym) ∈ RN

× {+1,−1}, where xi is the value
of each feature and yi is the assigned label, according to the
type of object to which the set of features that describes it
corresponds, also called class.

When the data are not linearly separable, they can be
linearly transformed by ϕ : RN

→ F according to Eq. (3).

w · ϕ(x)+ b = 0, w ∈ RN , b ∈ RN (3)

Then, the problem is reformulated as a problem to be
solved through Quadratic Programming (QP) by building an
optimal hyperplanewith themaximumvalue of the separation
margin and a maximum error ξ in the training algorithm,
as seen in Eq. (4):

min
w,b

1
2
∥w∥

2 + C
m∑
i=1

ξi (4)

subject to

yi(w · ϕ(xi)+ b) ≥ 1− ξi, i = 1, . . . ,m (5)

From Eq. (4), called the cost function, the first term is
considered as the maximum separation between the classes,
and the second term indicates the upper limit for the errors in
the training data. Finally, the constant C ∈ [0,∞) indicates
a compensation between the misclassified samples of the
training set and the separation of the rest of the samples with
a maximum margin.

F. PERFORMANCE METRICS
The false positives and negatives obtained in the classification
of the movements made by the system are used to calculate:
the precision (PREC) Eq. (6), the sensitivity (SENS) Eq. (7),

the specificity (SPEC) Eq. (8) and Positive Predictive Rate
(PPR) Eq. (9). TN is the true negative case, FN is the false
negative case, TP is the true positive case, and FP is the false
positive case.

PREC =
TP+ TN

TP+ TN + FP+ FN
(6)

SENS =
TP

TP+ FN
(7)

SPEC =
TN

TN + FP
(8)

PPR =
TP

TP+ FP
(9)

G. DATA PROCESSING
An ASUS brand laptop computer is used, with an Intel i7
processor, 8 GB of RAM, a 512 GB solid state hard drive,
and a 64-bit Windows 10 operating system.

The MATLAB software is used with the LIBSVM version
3.2 library to process sEMG signals. This extension provides
a module to apply SVM with various Kernels. For this work,
a linear Kernel was produced. A C-SVC is implemented
whose cost value C is ‘1’. On the other hand, a 60 Hz notch
filter is used. The feature vectors are formed considering only
a window of 250 ms from the start of the motion. The feature
matrix is formed by calculating the 34 features of the seven
movements of each of the four sensors. On the other hand,
the Fisher Score feature selection algorithm is taken from the
ASU Feature Selection Repository [32].

III. RESULTS AND DISCUSSION
Before using the Fisher Score, an individual evaluation of the
precision obtained by each feature is carried out, and then
different groups are formed with the features with the best
results according fisher score.

A. COMPREHENSIVE FEATURE EVALUATION: ANALYZING
EACH FEATURE INDIVIDUALLY
Figure 2shows the number of times each feature is among
the best three evaluated. Features that received seven votes
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TABLE 3. Precision and processing time.

or less are omitted. Precision and processing time for each of
the features of is shown in Table 3. It is observed that those
of group 1 could have better results in precision.

B. FEATURE SELECTION USING FISHER SCORE
The feature matrix is used as input to the Fisher selection
algorithm. Subsequently, ten repetitions of each subject are
randomly chosen for each experiment to form the training
matrix, and the remaining ten are used for validation. This
procedure is performed ten times to obtain the evaluation
parameters.

In the methodological development of the study, the Fisher
Score was used to select features. This technique produced
slightly different results in each experimental run. A scoring
mechanism was adopted to address this variability and ensure
consistent feature selection: each time a feature was ranked in
the top three by the Fisher Score, it was assigned a point. This
systematic accumulation of points over multiple iterations
provided a measure of consistency and relevance for each
feature. Figure 2 illustrates the features that consistently
emerged as the most salient, having been selected at least
seven times within the top three positions.

Subsequently, the selected features were categorized into
three groups for analysis. The first group consisted of
the three features with the highest number of points, thus
reflecting their prominence in selection frequency. The
second group included those features with intermediate
scores, specifically those that accumulated 12 to 14 points.
The third group considered the remaining features that
reached a minimum of seven points. This classification
allowed a detailed analysis of the predictive power of the
features and their relative importance in the effectiveness of
the model.

The precision and processing time for each of the feature
are shown in Table 3. According to these, the groups are
as follows: for group 1, the feature best evaluated are SSC
and WAMP and MAV2, remaining in a second group, with a
similar range of votes toWL, RMS, RSSQ, ZCWT andMAX.

TABLE 4. Performance by initial classification by groups.

TABLE 5. The processing time required for the calculation of each of the
features.

TABLE 6. The performance of the features best evaluated by Fisher score.

Finally, in the third group are AAV,MAV, AAC, IEMG, LOG,
MaxAV, SHA and MIN.

However, as seen in Table4, the feature of group 1 do not
have the best results in precision. On the contrary groups 2
and 3 exhibiting better performance.

On the other hand, processing time is an essential factor
when evaluating the performance of an algorithm. Table 5
shows the processing time required for the calculation of each
of the features.

In a search for better performance, extended groups were
formed, according to Table 6, which shows the performance
of the four best-evaluated characteristics when used together,
and twomore proposals annexing the fifth and sixth, and with
the fifth and seventh. It is observed that even using the six
features with the highest precision cannot achieve a precision
more significant than 85%.

C. TOWARD THE BEST FEATURE COMBINATION
In order to obtain the best group for a higher PPR, it is decided
to combine the features of group 1. Later, two from group 2
and one from group 3 are combined to avoid information
redundancy.

The contribution of each feature to the classification preci-
sion can also vary according to the available information. Due
to this, what works for a person may not be the correct for
another, so proposing a group of features that works for one
subject does not guarantee that it works for another, as seen
in Figure 3, where W4 (woman four) has the lowest results
with any group, up to almost 20% difference, and M1 (man
one) has an almost perfect result with any of them.
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FIGURE 2. Participation of each trait selected by the Fisher Score breeder.

TABLE 7. Comparison of performance metrics for feature combinations
in classification.

Table 7 illustrates the results obtained with the classifica-
tion with different combinations of features of group 1 and
some of group 2.

It is observed that a precision of 98% is obtained when
using different features of group 2, which indicates that
several offer excellent precision results without the need
to include them all, even when one from group 3 is
added.

On the other hand, the processing time varies according
to the way each one of them is calculated. The average
classification times for each group are shown in Table 8. The
time does not increase considerably from 3 to 6 features, so it
is only essential to consider the time it takes to calculate each
feature.

When the processing time for the calculation of the features
and the training time is added, there is a variation of more
than 2.6 ms when using six features, compared to the use
of five, and the time is doubled if compared to the use of
three, so it is important to consider the set of features to be
used.

TABLE 8. Processing time for group classification.

TABLE 9. Classification metrics for the selected set of features with
respect to previous work.

D. COMPARISON WITH OTHER PROPOSED GROUPS
Finally, a comparison is made with other proposed groups
in [24] and [25], which correspond to MAV + WL and
WL + SHA, respectively. The comparison compares the two
features with the highest number of occurrences in Figure 2.
The results are shown in Table 9.

The two minimum features suggested for the classification
of sEMG signals in this work (SSC + WAMP) are slightly
higher than those suggested in [24], so it can be estimated
that the performance is the same. On the other hand, as shown
in Table 10, the computation time of the features is very
different, SSC+WAMP only takes 0.01220ms, whileWL+
SHA 0.01521 ms, which delays the response time of the
classifier. This time could be significant if real-time EMG
signal classification applications are considered.
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FIGURE 3. Precision obtained by group, where W represents the women in the database and M represents the men.

TABLE 10. Calculation times for the evaluation of the most efficient EMG
signal features.

The calculation time to obtain a classification greater than
94% using the features MAV2 + SSC + WAMP + RMS +
MAX takes approximately 0.20 ms. On the contrary, to reach
a classification of 98%, the time increases by 10 ms since it
is necessary to calculate an additional feature, SHA.

IV. CONCLUSION
Data analysis in tables 6 and 7 reveals that combining
the functions with the best individual performance does
not always lead to the highest precision. This finding
suggests that, in some instances, there may be non-linear or
complementary interactions between the features that must
be considered to obtain the best performance in the study
system.

A strategy based on grouping features with outstanding
scores when evaluated together and in multiple iterations
is suggested to improve the accuracy of the predictions.
This methodology permitted identifying a set of charac-
teristics that exhibit a precision of 98%. These results
indicate that synergistically combining specific attributes
yields substantially better performance than using them
separately. However, questions remain to be explored, such
as interpreting the observed interactions between features and
the reasons behind their joint contribution to accuracy.

Future research must deepen the analysis of these
interactions to obtain a more complete understanding of
the underlying mechanisms. Furthermore, the potential of
applying deep learning techniques could be explored. The
results of this study highlight the importance of considering
the synergistic combination of traits rather than simply
selecting the ones with the best individual performance. The
proposed methodology has proven to be highly effective.
It requires a set of features with exceptionally high precision
and identifying two key features whose sum leads to near-
perfect precision.

Finally, the observation of variations in performance
among the subjects, as presented in Figure 3, indicates the
need to deepen the study of the behavior of the SEMG
signals. These differences highlight how the unique factors of
each individual can influence the classification results. It is
recognized that the analysis of these variations must be a
critical approach in future investigations. This understanding
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is crucial to improve the precision of classification models
and increase the applicability of findings and practical
solutions in the scientific community.
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