
Received 13 December 2023, accepted 8 January 2024, date of publication 11 January 2024, date of current version 22 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3352647

Event-Triggered Robust Optimal Control for
PMSM With Unknown Internal Dynamics,
Disturbances, and Constrained Inputs
LUY NGUYEN TAN 1, (Senior Member, IEEE),
THANH PHAM CONG 2, AND DUY PHAM CONG3
1Faculty of Electric-Electronics Engineering (FEEE), Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh City
(VNU-HCM), Ho Chi Minh City 700000, Vietnam
2Vietnam Aviation Academy, Ho Chi Minh City 712100, Vietnam
3Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam

Corresponding author: Luy Nguyen Tan (ntanluy@hcmut.edu.vn)

ABSTRACT In industry, for driving a permanent magnet synchronous motor (PMSM), it is more favorable
to optimize control performances and reduce computational complexity and communication waste from a
controller to actuators. For that reason, this paper employs an event-triggering mechanism to design a robust
optimal control strategy for PMSM. Firstly, the PMSM model is presented as a strict-feedback nonlinear
system with unknown internal dynamics, disturbances, and constrained inputs. Then, an event-triggered
(ET) feedforward control strategy is introduced to convert the separated speed and current dynamics into
an augmented system. Secondly, an ET-robust optimal feedback control strategy and an ET disturbance
compensation strategy are designed using adaptive dynamic programming (ADP) and zero-sum game theory.
All controller parameters are tuned online without identifying unknown dynamics or using a persistent
excitation condition. It is shown that system stability and the exclusion of Zeno’s behavior are fulfilled.
Finally, compared with the existing time-triggering control strategies in simulation and experiments with
TMS320F28335 of Texas Instruments, the proposed strategy is more effective in reducing the burden of
computation bandwidth and communication load.

INDEX TERMS PMSM drives, event-triggering, optimal control, input constraints, disturbances, drift
parameters.

I. INTRODUCTION
PMSM is the most popular alternating current (AC) actuator
developed for industrial applications such as electric vehicles,
conveyor belts, wind turbines, etc. Improvements in its
control performance have constantly attracted the attention
of the control community [1], [2], [3], [4], [5]. In most
control strategies, conventional time-driven control has been
used, known as time-triggered control strategies with a fixed
sampling period. In operation, controllers update parameters
periodically based on an initially fixed sampling rate,
regardless of whether the parameters require updating or not.
In other words, the burden of computational bandwidth and
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communication load from the controllers to PMSMdrives has
not been evaluated.

In a field-oriented control scheme, the control perfor-
mance, especially during the transient condition, is dependent
on the sampling rates of the speed and current loops
in a dq reference frame [1]. The sampling time depends
on the switching frequency, which is often high, leading
to a high periodic update frequency for the controller.
In most situations, although the reference speed and torque
disturbance do not change, the speed and current controllers
continuously compute and send to inverters the same control
voltages as the previous signal sequence.

Recently, the event-triggering mechanism [6] has been
applied to design control strategies that update parameters,
generate, and send new control signals to actuators only
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when new events occur; otherwise, they stop updating and
transfer the previous control signals using zero-order holders
(ZOH). The ET control policies have been proven to be
effective for linear and nonlinear systems [7], [8] with
industrial applications [9], [10]. Sahoo et al. [7] employed
the event-triggering principle and game theory to design
a control scheme with disturbance rejection for linear
systems. Zhang et al. [8] proposed an event-triggered optimal
strategy with disturbance rejection for nonlinear systems.
The event-triggering mechanism was embedded into the
actor-critic control schemes to create optimal control laws
for the heating, ventilation, and air conditioning systems [9]
and formacro–micro composite stage systems [10]. However,
in the works mentioned above, input constraints are not
considered. Recently, Yang et al. [11] have proposed an ADP
algorithm for uncertain underactuated mechatronic systems
with actuator constraints. By employing the Lyapunov
function candidate appropriately, tracking performance with
asymptotic stability rather than uniformly ultimate bounded
(UUB) stability is obtained. However, the event-triggering
mechanism is not integrated into the algorithm to mitigate the
communication load between the actuators and controllers.

For PMSM drives, few studies have dealt with ET control
strategies. Wang et al. [12] designed an event-triggered and
back-stepping-based control scheme with known dynamics
subject to limited communication bandwidth andmismatched
disturbances. Zhou et al. [13] proposed a finite-time adaptive
ET output feedback control scheme using neural networks.
The scheme can be applied to PMSM systems with unknown
nonlinear dynamics and immeasurable states. In [14], the
ET control scheme can be applied to the position tracking
control, where a dynamic gain is employed to deal with
sampling errors and uncertainties due to unknown time-
varying torques. Although the existing schemes related to
the event-triggering mechanism have many advantages when
applied to PMSM systems, they have not yet been developed
for optimal control strategies to minimize the cost functions.

It is worth emphasizing that the object of PMSM control
design is not only stability but also optimization. The design
needs to create stable controllers for closed loops of speed
and current along with optimization of a cost function.
In [4], [5], optimal controllers, which minimize horizontal
quadratic cost functions, are obtained by solving Riccati
equations. In [15], by considering PMSM as a linear model,
the algorithms are designed to minimize the quadratic cost
functions of the currents with constrained dq-axis control
inputs. However, the designs relied on linear models and
Riccati equations cannot deal with the external disturbances
or uncertain parameters.

In industrial applications, the constraints of dq-axis control
inputs are required to keep amplitude modulation indices
limited in linear ranges [2], [16]. In [17], an optimal
control method dealing with saturated control voltages
and torque disturbances is proposed, where conventional
cascade proportional-integral (PI) control loops are integrated
into a single loop. Then, a horizontal H∞ performance

index function is minimized by an H∞ optimal controller.
In addition, in this method, internal dynamics knowledge
does not need to be acquired.

Most of the optimal control methodsmentioned above have
not exploited the strengths of the event-triggering mechanism
in reducing the computational bandwidth and communication
waste for industrial PMSM drives. Adopting the existing
event-triggering strategies for optimal control has to face
some challenges: i) PMSMdynamics are separated by current
and speed in the presence of drift parameters, constrained
inputs, and external disturbances [17], to which the existing
ET optimal control methods for affine systems [7], [9], [10],
[12], [14], [18] cannot be applied. ii) Designing an ET control
strategy for the separated current and speed dynamics, which
are inherently unstable in the inter-event intervals, is difficult.
iii) The persistent excitation (PE) condition, required for
parameter convergence [19], is impossible to verify online in
event-triggering practice.

To address the challenges mentioned, robust optimal con-
trol is proposed in this paper. To the best of our knowledge,
this is the first time an event-triggering mechanism has been
integrated into a ADP control scheme for PMSM drives. The
main contributions are described as follows:

1) PMSM models are presented by a strict-feedback
nonlinear system with unknown internal dynamics,
disturbances, and constrained inputs in two loops
of speed dynamics and current dynamics. Since the
dynamics possess separate loops, they are transformed
into an augmented system by an ET-feedforward
control strategy.

2) Unlike existing ADP algorithms for PMSMs [17],
the new ADP control algorithm in the paper, which
integrates the event-triggering mechanism, can reduce
computational bandwidth and communication waste
between controllers and PMSM drivers. The control
scheme can approximate the ET-robust optimal control
(ETROC) strategy together with the ET disturbance
compensation strategy. The gradient of the Hamilton-
Jacobi-Isaacs (HJI) solution is estimated for the
strategies by a simple online approximator. An event-
triggering condition is introduced to reduce the number
of samples and maintain the stability of the closed-
loop system. To deal with unknown internal dynamics,
the integral reinforcement learning (IRL) technique is
employed. To ensure the relaxation of PE conditions
and fast convergence of the parameters, the approxi-
mator tuning law is derived by mining past feedback
data.

3) A UUB stability analysis of the tracking and approx-
imation errors is implemented. In addition, the
Zeno phenomenon is proven to be excluded. Com-
pared with the existing time-triggering control strate-
gies in simulation and experiments onboard the TI
TMS320F28335, the number of controller parameter
updates for the proposed strategy is much smaller.
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In the following, Section II designs an ET-feedforward
control strategy, Section III proposes an ET-robust optimal
control strategy, and Section IV conducts a simulation and
experiment. Finally, Section V comes to a conclusion.

II. SYSTEM AND ET-FEEDFORWARD CONTROL
A. PMSM MODELS IN STRICT-FEEDBACK FORM
Consider PMSM models represented by strict-feedback non-
linear systems with unknown internal dynamics, constrained
inputs, and external disturbances as{

ẋω = fω(xω) + kω(xω)dω,
ẋi = fi(xω, xi) + gi(xω, xi)v+ di,

(1)

where np is a number of pole pairs, xi = [xid , xiq ]
⊤, xid = id ,

xiq = iq are stator currents in the dq-axis, xω = ω, ω
is mechanical rotor speed, v = [vd , vq]⊤, vd and vq are
control inputs bounded by λ because of power converter
voltage limits, where |vd | ≤ λ, |vq| ≤ λ, Ld , Lq are
the stator inductance in dq-axis, Rs is stator resistance, dω,
di = [dd , dq]⊤, TL , B are load torque disturbance, current
disturbances, load torque, and viscous friction coefficient,
respectively. For permanent magnet flux linkage ψf , moment
of inertia J , denote kω(xω) =

1
J ,

gω(xω) =

[
0

1.5npψf
J

]
, gi(xω, xi) = Diag

(
1
Ld
,
1
Lq
,

)
,

and 
fω(xω) = −

B
J
xω −

TL
J
,

fi(xω, xi) =

−
Rs
Ld
xid + npxωxiq

−npxωxid −
Rs
Lq
xiq −

npψf
Lq

xω

 ,
where f (xω, xω, xi) = [fω(xω), f ⊤

i (xω, xi)]⊤ is internal
dynamics. Parameters Ld , Lq,Rs,ψf , and J in internal dynam-
ics f (xω, xω, xi) are assumed to be completely unknown in the
design of the control scheme.
Remark 1: We represent PMSM dynamics (1) in strict-

feedback nonlinear systems for facilitating the design of an
optimal control scheme. The strict-feedback form will be
converted to an affine form under the augmented control
scheme proposed in the next section.
Remark 2: Load torque disturbances dω in (1) affecting

motor speed need to be eliminated. These disturbances
can be compensated by the estimated disturbances of a
disturbance observer [3]. In addition, it is also necessary to
remove the current disturbances dd and dq caused by the
sensor measurement. In this paper, we approachH∞ control
methods to reject these disturbances.

Next, the boundedness and assumption are introduced to
facilitate ET strategy design later:
Boundedness 1 ([20]): There exist positive constants

Jmax, g1max, g2max, bτ , bd , bq such that ∥kω(xω)∥ = ∥1/J∥ ≤

Jmax, ∥gω(xω)∥ ≤ g1max, ∥gi(xω, xi)∥ ≤ g2max, ∥dq∥ ≤ bq,
∥dω∥ ≤ bτ , ∥dd∥ ≤ bd .

Assumption 1: The desired angular velocityωd is bounded
and smooth.
Definition 1 ([21]): For a bound B > 0, an equilibrium

point x0 of dynamics ẋ = f (x), x ∈ Rn is UUB in a compact
set � ∈ Rn if there exists ∥x − x0∥ ≤ B, x0 ∈ �, ∀t >
t0 + T (B, x0).

B. ET-FEEDFORWARD CONTROL STRATEGY
To integrate two closed loops in (1) into an augmented sys-
tem,we propose an ET-feedforward strategy. The design steps
are built by using a standard back-stepping procedure [22]
and an event-triggering mechanism [6].
Step 1: Given a sequence of monotonically increasing

aperiodic instants {t0, t1,. . . , tk , tk+1,. . . }, let some signals be
sampled at tk and kept until tk+1, k = 0, 1, . . ., the speed and
currents from dynamics (1) are changed to new coordinates
as {

zω(t) = xω(t) − ωd (t),

zi(t) = xi(t) − xd(t)i ,
(2)

where xdi (t) = [xdid , x
d
iq ]

⊤, tk ≤ t < tk+1 are ET-virtual
control inputs, to be designed in Step 3, sampled at tk and
kept until tk+1, k = 0, 1, . . ., zi = [zid , ziq ]

⊤.
Step 2: At a triggering instant tk , k = 0, 1, . . ., the speed

and currents are sampled as xω(t) = xω(tk ), x i(t) = xi(tk ).
Then, the triggering errors are defined as

eh(t) = xh(t) − xh(t), h = ω, i, tk ≤ t < tk+1. (3)

Step 3: At a triggering instant tk , k = 0, 1, . . ., introduce
xdi (t) and the ET actual control inputs v(t) as{

xdi (t) = xai (t) + x⋆i (t),
v(t) = va(t) + v⋆(t),

(4)

where v(t) = v(tk ) = [vd vq]
⊤, xai (t) = xai (tk ) = [xaid , x

a
iq ]

⊤

and va(t) = va(tk ) = [va⋆d , v
a⋆
q ]⊤ are ET-virtual and actual

feedforward control vectors, x⋆i (t) = x⋆i (tk ) = [x⋆id , x
⋆
iq ]

⊤ and
v⋆(t) = v⋆(tk ) = [v⋆d , v

⋆
q]

⊤ are ET-virtual and actual optimal
control strategies designed later. All signals are updated at tk
and kept constant by a ZOH until tk+1.
Step 4: Design xai and va that satisfy the following

constrains {
gω(xω)xai (t) = ω̇d (t) − χz

ω
(t),

gi(xω, xi)va(t) = ẋdi (t) − χzi(t),
(5)

where ω̇d (t) = ω̇d (tk ) and ẋdi (t) = ẋdi (tk ).
Step 5: Design the triggering condition as

∥eh(t)∥ ≤ κ∥zh(t)∥, h = ω, i, (6)

where 0 < κ ≤
bg
χ
, bg = max(g1max, g2max), χ ≥ (2bg+

1
4 ).

The stability of the transformed system using Steps 1 to 5
is analyzed through Lemma 1 as follows:
Lemma 1: Let the ET-virtual control inputs be defined

in (4), the ET-feedforward control inputs xai and v
a be given

in (5), and assume there exist the feedback control inputs x∗
i
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FIGURE 1. ET-robust optimal control structure for PMSM drives.

and v∗ that stabilize the closed dynamics of the following
augmented nonlinear system:[

żω
żi

]
=

[
fω(xω)
fi(xω, xi)

]
+

[
gω(xi) 01×2
02×2 gi(xω, xi)

] [
x⋆i
v⋆

]
+

[
kω(xω) 01×2
02×1 I2×2

] [
dω
di

]
. (7)

Then, the control problem of PMSM (1) is equivalent to the
control problem of the augmented system (7).

Proof: See Appendix A.
Lemma 2 ([17], [23]): Let the ET-feedforward control

inputs for (7) be bounded,

|uap| ≤ λ − η tanh(1), p = {id , iq, d, q}. (8)

Let u⋆p be a tanh functionmappingR onto (−η, η), 0 < η ≤ λ.
Then, ET control inputs for (1) are still saturated, i.e., |vd | ≤

λ and |vq| ≤ λ.

III. ET-ROBUST OPTIMAL CONTROL STRATEGY
By Lemmas 1 and 2, the ETROC strategy u⋆ of the
system (7) needs to be designed. We build an ET-robust
optimal control structure (Fig. 1) with Park and Clarke
basic transforms [16] and the ET optimal strategy and ET
disturbance compensation policy, which are going to be
designed in the following.

A. HAMILTON-JACOBI-ISACSS EQUATION
Consider (9) with drift parameters, constrained inputs and
disturbances, we rewrite (7) in the affine dynamics as

ż = F(x) + G(x)u⋆ + K (x)d, (9)

where z = [zω, z⊤i ]
⊤, x = [xω, x⊤

i ]
⊤, d = [dω, d⊤

i ]
⊤,

u⋆ = [x⋆⊤i , v⋆⊤]⊤. Note that both ET-feedforward control
inputs ua = [xa⊤i , va⊤]⊤ and u⋆ are constrained.

Based on the game theory in robust optimal control
problem [24], we define an event-triggering value function

J (z, d, u) =

∫
∞

t

(
z⊤Qz+ U (u) − γ 2d⊤d

)
dτ, (10)

where Q ≥ 0, u is an instant of u⋆, d = d(tk ),
γ > 0 is the desired disturbance compensation factor.
U (u) is the nonnegative function, which can be chosen

U (u) = u⊤Ru [24] in the unconstrained case, otherwise,
according to Lemma 2, it is

U (u) = 2η
∫ u

0
tanh⊤(s/η)Rds, (11)

where R is a positive definite diagonal matrix.
The Hamiltonian is formulated by

H
(
∇J (z), z, d, u

)
= r(z, d, u)

+ ∇J ⊤(z)
(
F + Gu⋆ + Kd

)
, (12)

where r(z, d, u) = z⊤Qz + U (u) − γ 2d⊤d , ∇J (z) =

∂J (z)/∂z. Then, we can apply the zero-sum game theory [24]
to obtain the ET optimal value:

J ⋆(z) = max
d

min
u

∫
∞

0
r(z, u, d)dτ. (13)

Applying the stationary condition to (12), the ET disturbance
compensation and the ET optimal control strategies, d⋆ and
u⋆, are given by

∂H
(
z, u, d,∇J ⋆(z)

)
∂d

= 0 ⇒ d⋆ =
1

2γ 2K
⊤(x)∇J ⋆(z),

(14)

∂H
(
z, u, d,∇J ⋆(z)

)
∂u

= 0 ⇒ u⋆ = −η tanh(M⋆), (15)

where x = x(tk ), k = 0, 1, . . ., M⋆
=

1
2ηR

−1G⊤(x)∇J ⋆(z).
Using the Hamiltonian (12), (14) and (15), the equation HJI
is written as

H⋆
(
∇J ⋆(z), z, d⋆, u⋆

)
= ∇J ⋆⊤(z)

(
F + Gu⋆ + Kd⋆

)
+ z⊤Qz+ U (u⋆) − γ 2d⋆⊤d⋆ = 0. (16)

According to [25], the minimal positive definite smooth
values of a solutionJ ⋆(z) to HJI (16) always exists but cannot
solve analytically. The solution is therefore approximated by
an approximation function combinedwith an event-triggering
mechanism regarding the high-order nonlinear differential of
HJI with drift parameters.

B. FUNCTION APPROXIMATION FOR ETROC STRATEGY
Inspired by the Weierstrass theorem of function approxima-
tion [26], [27], for activation functions ϕ(z) : R3

→ Rn,
ideal weightsW ∈ Rn, and approximation errors ε(z), we can
represent J ⋆(z) as

J ⋆(z) = W⊤ϕ(z) + ε(z), (17)

where ϕ(z) satisfies the following assumption.
Assumption 2 ([26], [27]): For a complete independent

basis set ϕ(α),∀α ∈ R3 and some positive constants bϕ , b∇ϕ ,
bε, b∇ε, the following bounds are satisfied: ∥ϕ(α)∥ ≤ bϕ ,
∥∇ϕ(α)∥ = ∥

∂ϕ(α)
∂α

∥ ≤ b∇ϕ , ∥∇ε(α)∥ = ∥
∂ε(α)
∂α

∥ ≤ b∇ε,
∥ε(α)∥ ≤ bε. In addition, for a positive constant L∇ϕ , ∇ϕ(α)
is Lipschitz:∥∥∇ϕ(z) − ∇ϕ(z)

∥∥ ≤ L∇ϕ

∥∥z− z
∥∥ = L∇ϕ

∥∥e∥∥ . (18)
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Due to unknown weights, J ⋆(z) is approximated by

Ĵ (z) = Ŵ⊤ϕ(z). (19)

Then, the strategies of the optimal control and disturbance
compensation are approximated by

û = −η tanh(M̂ ), M̂ =
1
2η
R−1G⊤

∇Ĵ (z), (20)

d̂ =
1

2γ 2K
⊤
∇Ĵ (z). (21)

From (20) and (21), the dynamics (7) can be rewritten as

ż = F + Gû+ Kd̂ . (22)

Then, the HJI (16) becomes

Ĥ = Ŵ⊤
∇ϕ(z)

(
F + Gû+ Kd̂

)
+ z⊤Qz+ U (û) − γ 2d̂

⊤
d̂ . (23)

From (16)-(23), it can be seen that if lim
t→∞

∥Ĥ(t)−H⋆(t)∥ =

0, then Ŵ → W . Followed by the IRL technique [28], the

squared residual error is defined EĤ =
1
2
e⊤ĤeĤ, where

eĤ = Ŵ⊤1ϕ(t) +

∫ t

t−T
r̂dτ, (24)

where r̂ = z⊤Qz+ U (û) − γ 2d̂
⊤
d̂ , and

1ϕ(t) =

∫ t

t−T
∇ϕ(z)

(
F + Gû+ Kd̂

)
dττ

=

∫ t

t−T
∇ϕ(z)żd = ϕ(t) − ϕ(t − T ). (25)

To ensure the relaxation of PE condition and the parameter
convergence to global values, we employ the concurrent
learning technique [29], where we require the minimization
of the objective function of past errors, Ep =

∑P
l=1 EĤ (tl),

EĤ (tl) =
1
2
e⊤
Ĥ
(tl)eĤ (tl), where

eĤ (tl) = Ŵ⊤1ϕ(tl) +

∫ tl

tl−T
r̂dτ, (26)

where 1ϕ(tl), r̂(tl) at tl = {t0, t1, . . . , tP} < t are stored in
sets {1ϕ(tl)}Pl=1, {r̂(tl)}Pl=0. The size of the set satisfies the
condition of the concurrent learning:
Condition 1 ([29]): rank[1ϕ(t0),1ϕ(t1), . . . ,1ϕ(tP)] =

P.
From the gradient descent rule, for an update rate β > 0,
we design a NN weight-tuning law, such that ˙̂W = −β

∂EĤ
∂Ŵ

−

β
∑P

l=1
∂EĤ (tl )

∂Ŵ
, i.e.,

˙̂W = −β1ϕ1ϕ⊤Ŵ − β1ϕ

∫ t

t−T
r̂(τ )dτ

− β

P∑
l=1

1ϕ(tl)
(
1ϕ⊤(tl)Ŵ +

∫ tl

tl−T
r̂(τ )dτ

)
. (27)

Define W̃ = W−Ŵ , approximation error dynamics is written
as

˙̃W = −β

P∑
l=1

1ϕ(tl)
(
1ϕ⊤(tl)W̃ − εH (tl)

)
− β1ϕ

(
1ϕ⊤W̃ − εH

)
, (28)

where εH (tl) :=

∫ tl

tl−T
∇ε⊤żdτ , which is upper bounded by

suptl>0∥εH (tl)∥ ≤ bεH .
Condition 2 (Event-triggering condition): The control

strategy needs a triggering law that satisfies ∥e∥ <
√∥∥eT∥∥.

We design a triggering threshold eT as

eT = (1 − α)
(1 − η)λmin(Q)

∥∥z∥∥2 + U (û) − γ 2
∥∥d̂∥∥2(1

η
− 1

)
λmin(Q) + L2

∥∥R−1∥∥∥∥Ŵ∥∥2 ,

(29)

where 0 < η, α < 1 are constant parameters, λmin(Q) is the
minimal eigenvalue of Q, L2 = η2b2gL

2
∇ϕ .

Remark 3: 1) Since F is absent from (19)-(21) and (27),
the prior knowledge of B and J is not needed; 2) Zeros
can be assigned to the initial values of weights Ŵ without
seeking an initially stable controller, which is a convenience
in the industry. 3) As shown in Appendix B, when PMSM is
stable, the numerator of (29) will be a positive number. 4) We
can choose the smaller value of η to enhance the transient
performance; however The smaller the value selected, the
more the sampling number increases.

C. STABILITY ANALYSIS AND ELIMINATION OF ZENO
PHENOMENON
The closed dynamics are stable through the analysis in the
following theorem. Besides, the exclusion of the Zeno phe-
nomenon is also analyzed to avoid the minimum interevent
time reducing to zero, leading to the excessive increment of
the cumulative events.
Theorem 3: For the current and speed tracking dynam-

ics (9) with the drift parameters, the input constraints,
and external disturbances. Let (27), (20), and (21) be the
online weight update law, the ET optimal control, and
ET disturbance compensation strategies, respectively. Let
Assumptions 1, 2, Boundedness 1, Lemmas 1, 2, and
Conditions 1, 2 be held. Then, the closed dynamics is
asymptotically stable, and

∥∥W̃∥∥ ≥ bW̃ , where bW̃ is a
boundary of a compact set. In addition, the Zeno phenomenon
is excluded as the minimum interval between two successive
events is greater than zero, i.e.,

tmin = min
k
(tk+1 − tk ) ≥

1
0
ln

(
1 + min

k∈N

∥∥eT (t−k+1)
∥∥

∥z∥ + a

)
,

(30)

where 0, a are positive bounds of system parameters.
Proof: See Appendix B.
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TABLE 1. Nominal parameters of PMSM.

FIGURE 2. Structure of feedforward PI speed controller.

IV. SIMULATION AND EXPERIMENT
The ETROC strategy is verified in the section. Table 1 shows
the nominal parameters of PMSM. The time-triggering robust
optimal control (TTROC) strategy [17] and conventional PI
control method are also used to compare with ETROC. The PI
controller is reinforced with feedforward terms [30], namely
feedforward-PI control (FFPIC).

In FFPIC, the feedforward term is employed for a simple
learning scheme [30]. Fig. 2 shows the speed control struc-
ture, where uFF is a feedforward term used to compensate
the performance of uFB. The control signal from the speed
controller is presented by i∗q = uFB + uFF , where

uFB = KωP (ωd − ω) + KωI

∫ t

0
(ωd − ω)dτ

= β

(
eω + γ

∫ t

0
eωdτ

)
= βiq, (31)

where β = KωP , γ = KωI /β. If the ratio KωI /K
ω
P ≤

1/τr , where τr is the desired closed-loop time constant, the
best tuning for the PI speed controller is obtained [31]. For
the motor ESTUN EMJ-04APB22, the well-tuned gains are
KωP = 0.1, KωI = 0.16 with τr = 50ms [31]. The parameter
γ holds the following [Corollary 3.2] [30]:

γ ≥ k2 =
B
J

=
52.79 × 10−6

31.69 × 10−6 . (32)

By employing the pass data, the simple update rule for uFF is
proposed as [30]

uFF = δiq − uFF (t − T ), (33)

where T = nTs, Ts is sampling time, uFF (t) = 0,∀t ∈

[−T , 0]. One can select δ = 0.2 such that δ ≤ 2β. Ts =

0.1ms, n = 1 [Corollary 3.2] [30].

FIGURE 3. Speed tracking performance of ETROC, TTROC, FFPIC strategies.

FIGURE 4. Currents idq of ETROC, TTROC, FFPIC strategies.

The feedforward control signals for the inner loop are
defined as [31] and [32]
ud = −K d

P id − K d
I

∫ t

0
iddτ − npωLqiq,

uq = K q
P(i

∗
q − iq) + K q

I

∫ t

0
(i∗q − iq)dτ + npω(Ld id + ψf ).

The control gains are adjusted by K d
P = Ldwci, K

q
P = Lqwci,

K d
I = K q

I = Rswci [31], [32], where wci is the cut-off
frequencies in the current loop. Considering closed-loop
transfer functions from i∗q and i

∗
d to iq and id as follows

Gid (s) =
ωci

s+ ωci
,Giq (s) =

ωci

s+ ωci
, (34)

where s is the Laplace variable, the PI gains are tuned such
that when wci is sufficiently high, Gid (s) ≈ 1 : id → i∗d and
Gid (s) ≈ 1 : iq → i∗q. To this end, after tuned, the gains with
the parameters of the motor ESTUN EMJ-04APB22 become
K d
P = K q

P = 60, K d
I = K q

I = 6000 [31].

A. SIMULATION
In the simulation, disturbances are set dd = dq = 0,
dω =1N·m, dω = 0 at t = 11s and t = 15s, respectively.
For ETROC and TTROC, the weight matrices (10) are Q ∈

I3×3, R ∈ I4×4. Approximator parameters are ϕ(z) =

[z2ω, zωzid , zωziq , z
2
id , zid ziq , z

2
iq ]

⊤, Ŵ (0) = 0, β = 25. The
stack size P = 6, T = Ts. χ = 1, γ = 10, η = 0.8, α = 0.2.

The speed tracking performance is shown in Fig. 3.
Although ETROC, TTROC, and FFPIC can learn and give
near-zero steady-state tracking errors, ETROC and TTROC
can reject sudden torque disturbances compared to FFPIC.
The current iqs in Fig. 4 for three strategies are the same, but
id s are different when dealing with the torque changes. The
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FIGURE 5. Control inputs udq of ETROC, TTROC, FFPIC strategies.

FIGURE 6. Number of events of ETROC, TTROC, FFPIC strategies: a) In the
first stage; b) In the time of torque change.

FIGURE 7. ETROC at the time of a torque change: a) Sampling period;
b) Triggering error and threshold.

control voltages ud and uq in Fig. 5 show that ETROC and
TTROC address the saturation as desired. Figs. 6 and 7 show
that the ETROC strategy only updates its control parameters
at some sampling times (events), but not at the entire sampling
times as in TTROC and FFPIC. For example, within 20s, the
number of events in TTROC or FFPIC is 20×104 = 200.000,
while that in ETROC is 65.480. Fig. 7 also shows that the
triggering error of ETROC is always below the square root of
the triggering threshold. This means that the proposed event-
triggering condition (29) is appropriate.

B. EXPERIMENT
Figure 8 shows an experimental prototype, where the
commercial PMSM ESTUN EMJ-04APB22 is chosen and
the kit of Texas Instrument TMDSHVMTRPFCKIT (High
voltagemotor control and power factor correction developer’s

FIGURE 8. Experimental prototype.

FIGURE 9. Speed tracking performances of ETROC, TTROC, FFPIC.

FIGURE 10. Speed tracking performances with coupled load and
disturbance.

kit) with DSP TMS320F28335 is used to build control
schemes. The embedded algorithm inside the DSP converts
currents from the αβ-axes to the dq-axes for feedback through
the Park-Clarke transform (Fig. 1) with the sampling period
Ts = 100µs. It also converts the inverter phase voltages in
αβ-axes from the voltages in the dq-axes using the inverse
Park transform. Then, the actual voltages for controlling
PMSM are obtained utilising the space vector modulation
(SVM) method with switching frequency of 10kHz. The
online data from the DSP is sent to Simulink of Matlab
by the serial communications interface (SCI) after 35s. All
converging parameters of the algorithm in the simulation are
continued use for the embedded controller. The test load is
two inductive motors in series and the load torque disturbance
is applied to the PMSM through an electromagnetic brake
attached to load motor 1.

In the case of separation between load motors 1 and 2,
the speed tracking control performances of TTROC, ETROC,
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FIGURE 11. Currents in q-axis in experiment.

FIGURE 12. Currents in d -axis in experiment.

FIGURE 13. Comparison of triggering numbers among control methods.

and FFPIC are presented in Fig. 9. It can be seen that
the tracking control performance of TTROC and ETROC
is not much different and is better than that of FFPIC.
However, the event number of 78.150 for ETROC using
condition (29) is significantly smaller than that for TTROC
with 200.000 events.

Figure 10 shows the speed tracking control performance
of TTROC, ETROC, and FFPIC in the case of connection
between motor loads 1 and 2. The tracking performance of
TTROC and ETROC is still robust compared to the case of no
connection. Meanwhile, the tracking performance of FFPIC
fluctuates a lot because it cannot attenuate torque disturbance,
especially at the time when the brake closes and opens to
generate and release the torque of 1.5 N·m, respectively.

Correspondingly, Figs. 11 and 12 present the currents in
the dq-axes reference frame. The forms of change in the
experiment are consistent with the rules of speed change and
load disturbance.

The statistics of the number of updating parameters and
sending signals to the PMSM from the controllers are shown
in Fig. 13. It can be seen that the triggering number of the

proposed controller is much smaller than that of the other
two. Of course, the Zeno behavior is not violated since the
minimum triggering intervals are positive.

V. CONCLUSION
This paper has employed the event-triggering mechanism
for an ET-robust optimal control strategy applied to PMSM
drives with drift parameters, constrained inputs, and dis-
turbances in current and speed dynamics. The objective
is to optimize the cost function and mitigate the burden
of communication resources and computational bandwidth
between the controller and PMSM. The PMSM model is
presented as a strict-feedback nonlinear system, and the
ET-feedforward control strategy is introduced to transform
the cascaded loops into an augmented system. The approx-
imation of the ET control strategies is implemented via ADP
and zero-sum game theory, which remove the knowledge
of partially unknown dynamics and the PE condition. The
exclusion of the Zeno phenomenon is also guaranteed by the
proposed event-triggering condition. Developing distributed
control strategies for multi-PMSM drives will be researched
in future works.

APPENDIX A
PROOF OF LEMMA 1

Proof: Consider the Lyapunov function:

L1 =
1
2

(
z⊤ω zω + z⊤i zi

)
. (35)

Take the time derivative of (35) along with (1) using (2)-(5):

L̇1 = −

∑
h=ω,i

χz⊤h zh +

∑
h=ω,i

z⊤h ghzh+1

+

[
zω
zi

]⊤( [
fω
fi

]
+

[
gω 01×2
02×2 gi

] [
x⋆i
v⋆

]
+

[
kω 01×2
02×1 I2×2

] [
dω
di

] )
, (36)

where zω+1 = zi and zi+1 = 0. From (3) and (2) we have
z = z(tk ), eh = zh(t) − zh, tk ≤ t < tk+1, h = ω, i. Then, the
first term of (36) can be written as

−

∑
h=ω,i

χz⊤h zh = −

∑
h=ω,i

χz⊤h zh +

∑
h=ω,i

χz⊤h eh. (37)

The second term in (36) is transformed as∑
h=ω,i

2z⊤h ghzh+1 ≤

∑
h=ω,i

z⊤h ∥gh∥ zh +

∑
h=ω,i

z⊤h+1 ∥gh∥ zh+1

≤

∑
h=ω,i

2z⊤h ∥gh∥ zh. (38)

Substituting (37), (38) into (36) with noting (6) and (9) yields

L̇1 = z⊤
(
F + Gu⋆ + Kd

)
−

∑
h=ω,i

(
χ (1 − κ) − bgg

)
∥zh∥2

≤ z⊤
(
F + Gu⋆ + Kd

)
, (39)
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where bgg = bg −
1
4 . For (7) we choose a Lyapunov function

candidate:

L2 =
1
2

(
z⊤ω zω + z⊤i zi

)
. (40)

Taking derivative J2 along with (7) with noting (9), one has

L̇2 = z⊤
(
F + Gu⋆ + Kd

)
. (41)

It can be concluded that if we design control strategies to
stabilize the closed dynamics of the augmented systems (7)
and (9) are negative, so does (39). According to [21], the UUB
of tracking error is guaranteed.

This completes the proof.

APPENDIX B
PROOF OF THEOREM 1

Proof: The proof is divided into two cases: the system
within inter-events and at event-triggering instants. First, the
following Lyapunov candidate is considered

L =

∫ T

t−T
J ⋆(z)dτ︸ ︷︷ ︸
L1

+
1
2

∫ T

t−T
W̃⊤W̃dτ︸ ︷︷ ︸
L2

+J ⋆(z)︸ ︷︷ ︸
L3

. (42)

Case 1: as J ⋆(z) is constant, L̇3 = 0. Taking the derivative
of L1 along ż from (22) when using ∇J ⋆(z)F from (16), one
obtains

L̇1 =

∫ T

t−T

(
− ∇J ⋆⊤

(
Gu⋆ + Kd⋆

)
− z⊤Qz− U (u⋆)

+ γ 2d⋆⊤d⋆ + ∇J ⋆⊤
(
Gû+ Kd̂

))
dτ. (43)

Replacing u⋆ from (15) to (11) yields

U (u⋆) = η(∇J ⋆)⊤G tanh
( 1
2η
R−1G⊤

∇J ⋆
)

+ η2R̄ ln
(
1̄11 − tanh2

( 1
2η
R−1G⊤

∇J ⋆
))
, (44)

where 1̄11 = [1, 1, 1, 1]⊤, and R̄ is a diagonal element vector
of R. Replacing (15) into (44) obtains

L̇1 =

∫ T

t−T

(
− z⊤Qz+ γ 2d⋆⊤d⋆ − η2R̄ ln

(
1̄11

− tanh2(N ⋆)
)
+ ∇J ⋆⊤

(
Gû+ Kd̂ − Kd⋆

) )
dτ.

(45)

The terms in (45) can be transformed to

ηR̄ ln
(
1̄11 − tanh2(M⋆)

)
= U (û) − η∇J ⋆⊤G tanh(M⋆)

+

∫ u⋆

û
2η tanh−T (s/η)Rds, (46)

∇J ⋆⊤Gû

= −η∇J ⋆⊤G tanh(N ⋆) +

∫ û

u⋆
2ηM⋆⊤Rds, (47)

K⊤
∇J ⋆⊤

= 2γ 2d⋆⊤, 2γ 2d⋆⊤d̂ ≤ γ 2
∥d⋆∥2 + γ 2

∥d̂∥
2, (48)

z⊤Qz

= z⊤Qz− 2z⊤Qe+ e⊤Qe

≥ (1 − η)z⊤λmin(Q)z−

(1
η

− 1
)
e⊤λmin(Q)e. (49)

Substituting (46)-(49) into (45) yields

L̇1

≤

∫ T

t−T

(
− (1 − η)λmin(Q)∥z∥2

+

(1
η

− 1
)
λmin(Q)∥e∥2 − U (û) −ϖ + γ 2

∥d̂∥
2
)
dτ,

(50)

where

ϖ =

∫ û

u⋆
2η

(
tanh−1(p/η) +M⋆

)⊤

Rdp. (51)

Transforming p = −η tanh(ν) yields

ϖ ≤

∫ M̂

M⋆

2η2
(
ν −M⋆

)⊤ Rdν

= η2
(
M̂ −M⋆

)⊤

R
(
M̂ −M⋆

)
≤ η2∥R∥∥M̂ −M⋆

∥
2.

(52)

Adopting ∇J ⋆ from (17) for M⋆ in (15) and replacing M⋆

and M̂ from (20) into (52), one obtains

ξ ≤
1
2
η2∥R∥

∥∥R−1∥∥2(∥∥∥G⊤
∇ϕ⊤(z) − G⊤

∇ϕ⊤
i (z)

∥∥∥2∥∥∥Ŵ∥∥∥2
+

∥∥∥G⊤
∇ϕ⊤

i (z)
(
W̃ + ∇ε(z)

)∥∥∥2). (53)

Using an inequality form (ab−cd)2 ≤ 2a2(b−d)2+2d2(a−

c)2 and Assumptions 1, 2, Boundedness 1, one obtains∥∥∥G⊤(x)∇ϕ⊤(z) − G⊤(x)∇ϕ⊤(x)
∥∥∥2

≤ 2
∥∥∥G(x)∥∥∥2∥∥∥∇ϕ(z)

− ∇ϕ(z)
∥∥∥2 + 2 ∥∇ϕ(z)∥2

∥∥G(x) − G(x)
∥∥2

≤ 2b2gL
2
∇ϕ∥e∥

2
+ 4b2

∇ϕb
2
g. (54)

Substituting (53), (54) to (50), one has

L̇1 ≤

∫ T

t−T

(
− (1 − η)λmin(Q)∥z∥2 − U (û) + γ 2

∥d̂∥
2

+

((1
η

− 1
)
λmin(Q) + L2

∥∥R−1∥∥∥∥Ŵ∥∥2)∥∥e∥∥2
+ µ1

∥∥W̃∥∥2 + µ2∥W̃∥ + λ1

)
dτ, (55)
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where µ1 = η2b2gb
2
∇ϕ

∥∥R−1
∥∥, µ2 = µ2

1b
2
∇ε

∥∥R−1
∥∥, λ1 =

2b2
∇ϕb

2
g, L

2
= η2b2gL

2
∇ϕ . Take differential L2 along (28):

L̇2 =

∫ t

t−T

(
− βW̃⊤�W̃ + βW̃⊤

(
1ϕεH

+

P∑
l=1

1ϕ(tl)εH (tl)
))

dτ, (56)

where � = 1ϕ1ϕ⊤
+

∑P
l=11ϕ(tl)1ϕ(tl)

⊤, � > 0.
Using the upper bound of εH (.), the Young’s inequality and
Condition 1 for (56) yields

L̇2 ≤ −(β − 1)λmin(�)
∫ t

t−T

∥∥∥W̃∥∥∥2 dτ
+
β2

4
(P+ 1)

∫ t

t−T
b2εHdτ. (57)

Substituting (57) and (55) to (42) yields

L̇ ≤

∫ t

t−T

(
− (1 − η)λmin(Q)∥z∥2 − U (û) + γ 2

∥d̂∥
2

+

((1
η

− 1
)
λmin(Q) + L2

∥∥R−1∥∥∥∥Ŵ∥∥2)∥∥e∥∥2
− µ3

(
∥W̃∥ −

µ2

2µ3

)2
+ λ2

)
dτ (58)

where µ3 = β − µ1 − 1. If β > µ1 + 1 then µ3 > 0,

λ2 = λ1 +
β2

4 (P + 1)b2εH +
µ2
2

4µ3
. Define bW̃ =

√
λ2/µ3 +

µ2
2µ3

and apply the triggering condition 2, we have L̇ <

−
1
T α((1 − η)λmin(Q)∥z∥2 + U (û) − γ 2

∥d̂∥
2) ≤ 0, ∀t . The

closed dynamics is stabilized asymptotically, and the UUB of
approximation dynamics is guaranteed.

Case 2: Consider the system is at ∀t = tk ,∀k ∈ N, taking
the difference of (42) we have

1L = J ⋆(z(tk )) − J ⋆(z(tk−1)) +

∫ tk

tk−T
J ⋆(z)dτ

−

∫ t−k

t−k −T
J ⋆(z(t−))dτ +

1
2
W̃⊤(tk )W̃ (tk )

−
1
2
W̃⊤(t−)W̃ (t−). (59)

From (58), since L̇ < 0, the state of (9) and (17) are
continuous, one has∫ tk

tk−T
J ⋆(z(tk ))dτ ≤

∫ t−k

t−k −T
J ⋆(z(t−))dτ (60)

W̃⊤(tk )W̃ (tk ) ≤ W̃⊤(t−)W̃ (t−). (61)

Then, we rewrite 1L as

1L ≤ J ⋆(z(tk )) − J ⋆(z(tk−1)) ≤ J ⋆(z(t−))

− J ⋆(z(tk−1))

≤ −ψ∥z(t−) − z(tk−1)∥ = −ψ∥e(tk−1)∥, (62)

where ψ is within a class-κ function [21]. Recalling (59),
it can be seen that the (42) is still decreasing at t = tk , k ∈ N.

Synthesizing (58) and (62), the asymptomatic stability is
guaranteed.

Next, let us note the boundedness of (20) and (21) and and
the Lipschitz property of F to prove the minimum interval
between two successive events is greater than zero. The
dynamics (9), ∀t ∈ [tk , tk+1), satisfies∥∥ż∥∥ ≤ bf

∥∥z∥∥ + 00
∥∥Ŵ∥∥∥∥z∥∥, (63)

where 00 = ∥R−1
∥/2b2gL∇z + J2max/(2γ

2)L∇z, F ≤ bf ∥z∥,
bf > 0. Note that e = z−z, with a small positive real number
a, 0 = 00 + bf we have∥∥ė∥∥ ≤ 0

∥∥e∥∥ + 0
(∥∥z∥∥ + a

)
. (64)

Formally, the rest of the proof can follow from [8].
This completes the proof.
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