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ABSTRACT This study investigates the problem of finite-time output feedback stabilization in probability
for a class of stochastic high-order nonlinear systems with unknown output function. By combining
the homogeneous domination techniques, backstepping method and sign function, we obtain the output
feedback controller that includes state controller and recursive reduced-order observer. Subsequently,
we present an analytical method to deal with the unknown output function within the stochastic high-order
nonlinear system such that the designed output feedback controller can make the closed-loop system
globally finite-time stabilization in probability when the unknown output function belongs to the maximum
open sector �. The numerical simulation results show that the proposed scheme is feasible.

INDEX TERMS Stochastic high-order nonlinear systems, finite-time output feedback stabilization,
unknown output function.

I. INTRODUCTION
Stochastic nonlinear systems have been extensively used to
model uncertain natural and social systems in various fields,
such as finance [1], [2], engineering [3], [4] and agricul-
ture [5]. However, the inherent properties of stochastic sys-
tems, such as uncertainty and complexity, bring about many
challenges. Initially, researchers focused on the global state
feedback control problems such as [6], [7] and [8]. As the
stochastic system theory undergone rapid advancement and
widespread popularity of the integral backstepping method.
Through the novel integration of these two methods, [9]
pioneered the development of a global output feedback stabi-
lization method specifically for nonlinear stochastic systems.
Building upon their work, further research has extended the
output feedback problems to other special stochastic systems.
References [10] and [11] solved the tracking problem of
nonlinear stochastic systems with undetectable velocities
and nonlinear stochastic systems with unstable linearization,
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respectively. Focusing on stochastic high-order nonlinear
systems, [12] explored the adaptive fuzzy problem for
p-normal order systems. Reference [13] proposed the
stochastic homogeneous domination method, which solved
the output feedback problem for more common systems
and relaxed nonlinear growth conditions. It was the first
time that [14] refined the stability analysis of nonlinear
stochastic systems by introducing sign function as a tool.
By adding novel power integrators and mappings, [15]
considered stochastic planar nonlinear systems in which the
output is constrained. The prescribed-time output-feedback
stabilization method for high-order nonlinear systems intro-
duced by [16] enhanced the controllability of the stabilization
time.

In many practical applications, typically, there are require-
ments regarding the time for required system stabilization.
Compared to asymptotic stability, finite-time stability often
exhibits distinct characteristics, such as, higher precision.
[17] discussed the issues of finite-time tracking control for
nonlinear systems with unmodeled dynamics. Finite-time
stability is also applied to general dynamical systems under
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an event-triggered control mechanism and time-varying
systems [18], [19]. Reference [20] investigated the finite-time
stabilization of impulsive systems, which have inevitable
disturbance impulses. During recent decades, there have
been many significant results in the field of stochastic
nonlinear systems. Reference [21] first introduced the
notion of finite-time stabilization into stochastic nonlinear
systems, then proposed Lyapunov criteria for it, upon which
the theory of finite-time stability for stochastic nonlinear
systems rapidly developed [22], [23], [24]. Reference [25]
proposed the most general finite-time Lyapunov criteria
for stochastic nonlinear systems by relaxing differential
operator constraints. In the works of [26], [27], and [28],
the researches focused on the finite-time stability issue
of stochastic high-order nonlinear systems with inverse
dynamics, high-order and low-order nonlinearities, and
output constraints, respectively. Reference [29] considered
stochastic low-order nonlinear systems. In recent research,
[30] investigated the adaptive finite-time tracking problem
for stochastic nonlinear systems, while [31] focused on
finite-time stability optimization issues. Reference [32]
introduced the notion of finite-time stochastic integral input-
to-state stability(FT-SiISS) to further complete the finite-time
stability theorem.

It is noteworthy to emphasize that all of the above works
assume that the specific information of the output. However,
practical systems in specific applications often exhibit
nonlinear, uncertain, and variable relationships between the
transducers output (e.g., DC Output) and the system physical
value (e.g., displacement, angle, and temperature). The
infrared distance sensor studied in [33], the single-link robot
system investigated in [34], and the DC-DC buck power
converter discussed in [35] exhibited deviations from the
simplest output function y = z1. Therefore, investigating
systems with unknown output function holds significant
importance. During the recent period, a series of relevant
results have been obtained. Reference [36] studied the output
feedback problem in cascade systems. Several researchers
have concentrated on achieving global adaptive output
feedback stabilization in nonlinear systems with unknown
output function [37], [38]. The adaptive output feedback
control of nonlinear systems was achieved by [38], it does not
require prior known information of known output function
(e.g., upper and lower bounds, second-order derivative). Ref-
erences [39], [40], and [41] considered stochastic nonlinear
systems with time-delay. Yet, these relevant findings only
focused on first-order nonlinear systems. There are currently
no related results available for the commonly encoun-
tered stochastic high-order nonlinear systems in practical
applications.

Building upon the aforementioned observations, an impor-
tant and intriguing question arises: how can we address the
output feedback finite-time stabilization problem for high-
order stochastic high-order nonlinear systems with unknown
output function? Motivated by these insights, this paper

addresses the above questions. The principal findings of this
work can be outlined as:

(1) This study focuses on the output feedback finite-time
stabilization of stochastic high-order nonlinear systems with
more general output than simple y = z1. The proposed control
and analysis approach achieves system stabilization when the
unknown output falls within the maximum open sector.

(2) Unlike [14], [23], and [42], this study not only considers
the issue of output feedback finite-time stabilization for
stochastic high-order nonlinear systems but also considers the
unknown output function in more general. Compared with
the first-order systems considered in [39], [40], and [41],
we focus on stochastic high-order nonlinear systems for the
first time, relaxing the constraints on the system order.

(3) The requirement of the output function to be differen-
tiable is highly restrictive. The previous studies [43], [44],
and [45] tend to specify that h̄(·) to be continuously differ-
entiable and bounded, while [46] relaxed the requirement for
the h̄(·) to be Lipschitz continuous. In contrast, in this paper,
we relax the restriction on h̄(·) to require that h̄(·) is only
continuous.

This paper is organized as follows. Section II gives some
preliminaries and assumptions. In Section III, the design
and analysis of finite-time output controller is presented,
following a simulation example in Section IV. Section V
provides the conclusion for this paper.

II. PRELIMINARIES KNOWLEDGE AND PROBLEM
DESCRIPTION
A. PRELIMINARIES
Notations: R+ stands for the set of all the non-negative real
numbers. X denotes a given vector, its transpose denoted by
X⊤, If X is a square matrix, then Tr{X} represents the trace
of X . The Euclidean and Frobenius norms of vector X are
represented by ∥X∥ and ∥X∥F , respectively. Additionally,
∥X∥F ≜ (Tr(X⊤X ))

1
2 . The set denoting all functions with

continuous i-th partial derivatives is represented as Ci. For
convenience, we use X to denote X (t) at a given time t .
Sign function sgn(x) is defined as: sgn(x) = 1 if x > 0,
sgn(x) = 0 if x = 0, sgn(x) = −1 if x < 0.
For general stochastic nonlinear system:

dz(t) = f (t, z(t))dt + g⊤(t, z(t))dω(t), (1)

for any 0 ≤ t , which f and g are continuous functions and
f (t, 0) = 0, g(t, 0) = 0.
Definition 1 [47]: For any C2 Lyapunov function V (x(t))

for system (1), LV denoted by LV =
∂V
∂x f +

1
2Tr{g

∂2V
∂x2

g⊤
},

LV is called differential operator, 12Tr{g
∂2V
∂x2

g⊤
} is referred to

as the Hessian term.
Definition 2 [48]: For a function h̄: R → R, if there exist

two positive values ρ1 and ρ2, where ρ1 < ρ2, such that 0 ≥

(h̄(s)− ρ1s)(h̄(s)− ρ2s), it is called included in [ρ1, ρ2]. The
sector is denoted as (ρ1, ρ2), when the inequality is strict.
Definition 3 [22]: For any initial date x0 ∈ Rn,

when system (1) has a solution, the trivial solution of (1)
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is called to be finite-time attractive in probability, indi-
cated by x(t; x0). Then, we denote stochastic settling time
π0 = inf t : x(t; t0) = 0. Obviously, π0 is finite and
P(π0 < ∞) = 1.
When the trivial solution of (1) satisfies the condition that

there is a ς = (ε, α) > 0, such that P(∥x(t; x0)∥ < α for
all t ≥ 0) ≥ 1 − ε, for every combination of ε ∈ (0, 1)
and r > 0, whenever ∥x0∥ ≤ ς , it is referred to as stable in
probability.

The trivial solution of (1) is referred to as finite-time stable,
which implies that it satisfies the above two conditions.
Definition 4 [49]: For fixed coordinates (x1, . . . , xn)⊤ ∈

Rn and real numbers ri > 0 : i = 1, . . . , n, the dilation
1ε(x) = (εr1x1, . . . , εrnxn,∀ε > 0,with ri being called
the weights of the coordinates, we define dilation weight
1 = (r1, . . . , rn); a function V ∈ D(Rn,R) is said to
be homogeneous of degree τ if there is a real number
τ ∈ R such that ∀x ∈ R{0}, ε > 0,V (1ε(x)) =

ετ+ri fi(x1, . . . , xn); a homogeneous p-norm is defined as
∥|x∥|1,p = (

∑m
i=1 |xi|

p
ri )

1
p ,∀x ∈ Rn, for a constant p ≥ 1.

The lemmas required for this paper are as follows.
Lemma 1 [22]: For the stochastic nonlinear system (1), a

C2 Lyapunov function V (x(t)) exists if we can find two class
K∞ functions α1, α2, 1 > θ > 0 and β > 0, for all x ∈ Rn,
such that

α2(|x(t)|) ≥ V (x(t)) ≥ α1(|x(t)|)

− βV θ (x(t)) ≥ LV (x(t)),

Lemma 2 [47]: Assuming that the stochastic nonlinear
system (1) is an autonomous system, the Lyapunov function
V is a radially unbounded non-negative function, which
means lim∥x∥→∞ V (x) = ∞. For any initial data, a solution
exists when L(x) ≤ 0, ∀x ∈ Rn.
Lemma 3 [49]: There exists two real numbers a, b > 0,

and a positive real valued function τ (x, y), such that |xayb| ≤
a

a+bτ (x, y)|x|
a+b

+
b

a+bτ
−
a
b (x, y)|y|a+b.

Lemma 4 [50]: Consider a function f (a, b) that are
continuous, smooth functions α1(a), β1(b) ≥ 0, α2(a),
β2(b) ≥ 1 can be find, such that |f (a, b)| ≤ α1(a) + β1(b),
|f (a, b)| ≤ α2(a)β2(b), where a ∈ Rm, b ∈ Rn.

Lemma 5 [49]: If p ≥ 1, 2
p−1
p (|α| + |β|)

1
p ≥ |α|

1
p +

|β|
1
p ≥ |α + β|

1
p , 2p−1

|αp + βp| ≥ |α + β|
p. If odd integer

p ≥ 1, 2
1
p |α − β|

1
p ≥ |α

1
p − β

1
p |, p|α − β|(αp−1

+ βp−1) ≥

|αp − βp|, c|α− β||(α− β)p−1
+ βp−1

| ≥ |αp − βp| for any
α, β ∈ R, where c is a positive constant.
Lemma 6 [49]: If p ∈ R≥1

odd , consider any real numbers α,
β, − 1

2p−1 (α − β)p+1
≥ −(α − β)(αp − βp).

Lemma 7 [51]: For any a, b ∈ R, if p =
α
β

∈ R≥1
odd , β ≥ 1,

then 21−
1
β |sgn(a)|a|α − sgn(b)|b|α|

1
β ≥ |ap − bp|.

Lemma 8 [51]: If f (a) is a sign function, we use ⌈x⌉
denotes f (a), where ⌈a⌉θ = sgn(a)|a|θ isC1, ḟ (a) = θ |a|θ−1,
θ ≥ 1, a ∈ R.

B. PROBLEM ASSUMPTIONS
Throughout this study, the model of stochastic high-order
nonlinear systems with unknown output function chosen for
our examination is as follows:

dzi(t) = (zpii+1(t) + φi(z(t)))dt + ψ⊤
i (z(t))dω(t),

dzn(t) = (upn (t) + φn(z(t)))dt + ψ⊤
n (z(t))dω(t),

y = h̄(z1(t)), (2)

where z̄i(t) = (z1(t), · · · , zi(t))⊤ ∈ Rn, i = 1, · · · , n −

1, y ∈ R and u(t) ∈ R represents the state of system,
control output and input, individually. For i = 1, · · · , n,
pi ∈ R ≥

odd
1 ≜ {

p
q ∈ R+: p and q are odd integers,

p ≥ q}. System (2) is called as high-order system if there
exists at least one pi > 1. ω(t) represents an m-dimensional
standard Wiener process defined within the framework of a
complete probability space (�,F ,P), where � denotes the
sample space, F signifies the filtration, and P stands for
probability measure. The uncertain disturbances received by
the system are denoted by the continuously differentiable
φi : Rn → Rn and ψi : Rn → Rn, i = 1, · · · , n, respectively.
φi(0) = 0, ψi(0) = 0. h̄(·) represents an output function
whose information is unknown to us.

Before proceeding with the controller design, we must
make two assumptions about the system disturbance terms
and the unknown output function. The following assumptions
play a crucial role in the process of the controller design.
Assumption 1: There exists two positive constants c1, c2,

τ ∈ (− 1

2
n∑
i=1

p1p2···pi−1

, 0) such that

|φi(z(t))| ≤ c1
i∑

l=1

|zl(t)|
ri+τ
rl ,

|ψi(z(t))| ≤ c2
i∑

l=1

|zl(t)|
2ri+τ
2rl , (3)

where ri+1 =
ri+τ
pi

, r1 =
1
2 and p0 = 1, i = 1, · · · , n.

Assumption 2: The unknown output function h̄(·) has the
following properties (1) continuous; (2) the function value is
zero at the origin.
Remark 1: Assumption 1 is a commonly used assumption

condition as in [14] and [23], where ri+1 =
ri+τ
pi

is clearly
the ratio of two odd numbers. Assumption 2 accounts for
h̄(·). In the context of this paper, h̄(·) is considered to be
only continuous, which is a weaker confidence. Compared
to previous results, when the function h̄(·) = z1, the system is
not different from [14] and [23]. Therefore, the results of this
study are also applicable to [14] and [23]. This paper differs
from [52] in that it consider the stochastic terms of systems.

III. MAIN RESULT
A. DESIGN PROCESS OF THE OUTPUT FEEDBACK FOR
SYSTEM (2)
Constructing the output feedback controller for system (2)
involves three main components. Firstly,we transform a
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system with a gain with the help of a group of coordinate
transformations. Secondly, for the nominal system, we are
aim to construct state virtual controller and reduced-order
observer. Thirdly, we examine the disturbance terms of
stochastic nonlinear systems by some specific propositions
and output feedback controller of system (2) is given.
Part I. Introduce the coordinates transformations
In order to convenience, we need to rewritten the system

model (2) by the following coordinate transformation:

xi(t) =
zi(t)
Lθi

, i = 1, · · · , n− 1, v(t) =
u(t)
Lθn

, (4)

where θ1 = 0, θi =
θi−1+1
pi−1

, i = 1, · · · , n, the gain L ≥ 1 be
selected latter. Therefore, system (2) becomes

dxi(t) = (Lxpii+1(t) + fi(x(t)))dt + g⊤
i (x(t))dω(t),

dxn(t) = (Lvpn (t) + fn(x(t)))dt + g⊤
n (x(t))dω(t),

y = h̄(x1(t)). (5)

At the same time, with the help of coordinate transformation,
Assumption 1 also can be rewritten as

|fi(·)| ≤ c1L1−ν
i∑

l=1

|xl(t)|
ri+τ
rl ,

|gi(·)| ≤ c2L1−2ν̄
i∑

l=1

|xl(t)|
2ri+τ
2rl , (6)

where fi =
φi
Lθi

, gi =
ψi
Lθi

, i = 1, · · · , n. ν = min{0 <

θi − θj
ri+τ
rj

+ 1}, ν̄ = min{0 < θi − θj
2ri+τ
2rj

+
1
2 , }, i ≥ j ≥

1, n ≥ i ≥ 1. Since φi(0) = 0, ψi(0) = 0, it is obvious that
fi(0), gi(0) have the same properties.
Part II. The design of state virtual controller and

reduced-order observer for the nominal system (5)
Let’s set aside the disturbance terms and focus on the

designing of controller for the nominal system of (5).

dxi(t) = Lxpii+1(t)dt, i = 1, · · · , n− 1,

dxn(t) = Lvpn (t)dt,

y = h̄(x1(t)). (7)

First Step: Taking ξ1 = ⌈x1⌉
1
r1 , V1(x1) = δ1

r1
4−τ |ξ1|

4−τ

with x∗

1 = 0, δ1 > 0. By means of (9) and in accordance with
Definition 1, we can get LV1(x1) = Lδ1⌈ξ1⌉4−r2p1x

p1
2 . The

initial virtual controller x∗

2 = −( a1,1
δ1

)p1⌈ξ1⌉r2 ≜ −β
r2
1 ⌈ξ1⌉

r2

leads to LV1(x1) ≤ −La1,1ξ41 + Lδ1⌈ξ1⌉4−r2p1 (x
p1
2 −

x∗p1
2 ), a1,1 represents a constant that we will design in the
subsequent part.
Inductive Step: Assume that at Step i − 1, there is a C2,

positive definite and radially unbounded Lyapunov function
Vi−1(x̄i−1) and a series of virtual controllers x∗

1 , · · · , x
∗
i

defined by

x∗
i = −β

ri
i−1⌈ξi−1⌉

ri , ξi = ⌈xi⌉
1
ri − ⌈x∗

i ⌉
1
ri , i = 1, · · · , n,

(8)

thus

LVi−1(x̄i−1) ≤ −L
i−2∑
j=1

(
aj,j −

i−1∑
l=j+1

āl,j − ãj+1,j

)
ξ4j

+ Lδi−1⌈ξi−1⌉
4−ripi−1(xpi−1

i − x∗pi−1
i )

− Lai−1,i−1ξ
4
i−1, (9)

where āl,j, ãj+1,j are nonnegative values, where j = 1, · · · , i−
2, l = j + 1, · · · , i − 1. x̄i−1 = (x1, · · · , xi−1)⊤,
a1,1, · · · , ai−1,i−1 > 0 be selected later, β1, · · · , βi−1 >

0 are decided by a1,1, · · · , ai−1,i−1. Subsequently, we will
proceed to verify the validity of inequality (9) in Step i.
Suppose the i-th Lyapunov function

Vi(x̄i) = Vi−1(x̄i−1) +Wi(x̄i),

Wi(x̄i) = δi

∫ xi

x∗
i

⌈⌈s⌉
1
ri − ⌈x∗

i ⌉
1
ri ⌉

4−ri−τds, (10)

which δ1, δ2, · · · , δi are some positive constants. Thus,

LVi(x̄i)

≤ −L
i−2∑
j=1

(
aj,j −

i−1∑
l=j+1

āl,j − ãj+1,j

)
ξ4j − Lai−1,i−1ξ

4
i−1

+ Lδi−1⌈ξi−1⌉
4−ripi−1(xpi−1

i −x∗pi−1
i )+Lδi⌈ξi⌉4−ri+1pix∗pi

i+1

+ L
i−1∑
j=1

∂Wi

∂xj
x
pj
j+1 + Lδi−1⌈ξi⌉

4−ri+1pi (xpii+1 − x∗pi
i+1).

(11)

Following that, we reckon the components on the right
trems of (11).
Proposition 1: For any i = 2, · · · , n− 1,

Lδi−1⌈ξi−1⌉
4−ripi−1(xpi−1

i − x∗pi−1
1 ) ≤ Lãi,i−1ξ

4
i−1 + Lϱi,1ξ4i ,

where ãi,i−1 and ϱi,1 are two positive constants, ϱi,1 is
decided by the former.
Proposition 2: For any i = 2, · · · , n− 1,

L
i−1∑
j=1

∂Wi

∂xj
x
pj
j+1 ≤ L

i−1∑
j=1

āi,jξ4j + Lϱi,2ξ4i ,

where
∑i−1

j=1 āi,j and ϱi,2 are positive constants, ϱi,2 is decided
by
∑i−1

j=1 āi,j.
With the help of Propositions 1-2, Lemma 3, Lemma 8,

choosing

x∗

i+1 = −

(
ai,i + ϱi,1 + ϱi,2

δi

) 1
pi

⌈ξi⌉
ri+1 ≜ −β

ri+1
i ⌈ξi⌉

ri+1 ,

(12)

so that

LVi(x̄i) ≤ −L
i−1∑
j=1

(
aj,j −

i∑
l=j+1

āl,j − ãj+1,j

)
ξ4j − Lai,iξ4i

+ Lδi⌈ξi⌉4−ri−τ (x
pi
i+1 − x∗pi

i+1), (13)

where ai,i > 0 to be selected latter.
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Therefore, at the last Step n, the existence of a virtual
controller

x∗

n+1 = −β
rn+1
n ⌈ξn⌉

rn+1 , (14)

such that Vn(x̄n)= Vn−1(x̄n−1) +Wn(x̄n) satisfies

LVn(x) ≤ −L
n−1∑
j=1

(
aj,j −

n∑
l=j+1

āl,i − ãj+1,j

)
ξ4j − Lan,nξ4n

+ Lδn⌈ξn⌉4−rn−τ (vpn − x∗pn
n+1). (15)

Subsequently, the reduced-order observer needs to be
designed and introduced,

dηi = −Lli−1x̂
pi−1
i−1 dt,

x̂i = ⌈ηi + li−1x̂i−1⌉
ri

ri−1 , i = 2, · · · , n, (16)

where l1, · · · , ln−1 represents the gains to be decided latter
and l1, · · · , ln−1 are positive constants. x̂i represents the
estimated value and x̂1 = y. With the help of (14) and
reduced-order observer (16), the output feedback controller
can be given:

v = −β
rn+1
n ⌈ξ̂n⌉

rn+1 , ξ̂i = ⌈x̂i⌉
1
ri − ⌈x̂∗

i ⌉
1
ri ,

x̂∗
i = −β

ri
i−1⌈ξ̂i−1⌉

ri , i = 2, · · · , n. (17)

Define the observation error ei = (xpi−1i − x̂pi−1i )
1

ripi−1 (i =

2, · · · , n), choose the following Lyapunov function V

V = Vn + U , U =

n∑
i=2

Ui,

Ui = m̄i

∫
⌈xi⌉

4−τ−ri−1
ri

⌈λi⌉
4−τ−ri−1

ri−1
(⌈s⌉

ri−1
4−τ−ri−1 − λi)ds (18)

where λi = ηi + li−1xi−1 and m̄2, · · · , m̄n > 0. Evidently, V
conforms to our previous requirements.

LV

=LVn + L
n∑
i=2

(
∂Ui
∂xi

xpii+1 +
∂Ui
∂xi−1

xpi−1
i −

∂Ui
∂ηi

li−1x̂
pi−1
i

)

≤ −L
n−1∑
i=1

(
ai,i −

n∑
l=i+1

āl,i − ãi+1,i

)
ξ4i − Lan,nξ4n

+ L
n∑
i=2

(
m̄i

4−τ−ri−1

ri
|xi|

4−τ−ri−1−ri
ri

(
⌈xi⌉

ri−1
ri − λi

)
xpii+1

− m̄ili−1(x
pi−1
i − x̂pi−1

i )
(
⌈xi⌉

4−τ−ri−1
ri − ⌈x̂i⌉

4−τ−ri−1
ri

)
− m̄ili−1(x

pi−1
i − x̂pi−1

i )
(
⌈x̂i⌉

4−τ−ri−1
ri − ⌈λi⌉

4−τ−ri−1
ri−1

))
+ Lδn⌈ξn⌉4−rn−τ (v− x∗pn

n+1). (19)

Proposition 3: For any i = 2, · · · , n− 1,

m̄i
4 − τ − ri−1

ri
|xi|

4−τ−ri−1−ri
ri (⌈xi⌉

ri−1
ri − λi)x

pi
i+1

≤

i+1∑
j=i−1

ci,j,1ξ4j + oi,2e4i + h̄i,1(li−1)e4i−1,

where
∑i+1

j=i−1 ci,j,1, oi,2, h̄i,1(li−1) are some positive con-
stants, h̄i,1(li−1) depends on li−1.
Proposition 4: For any i = 3, · · · , n,

− m̄ili−1e
ripi−1
i (⌈x̂i⌉

4−τ−ri−1
ri − ⌈λi⌉

4−τ−ri−1
ri−1 )

≤

i∑
j=i−1

ci,j,2ξ4j + oi,1e4i + h̄i,2(li−1)e4i−1,

where
∑i+1

j=i−1 ci,j,2, oi,1, h̄i,2(li−1) are some positive con-
stants, h̄i,2(li−1) depends on li−1.

Proposition 5: For any i = 2, · · · , n,

− m̄ili−1e
ripi−1
i (⌈xi⌉

4−τ−ri−1
ri − ⌈x̂i⌉

4−τ−ri−1
ri )

≤ −oili−1e4i ,

where oi is a positive constant.
Proposition 6:

m̄n
4 − τ − rn−1

rn
|xn|

4−τ−rn−1−rn
rn (⌈xn⌉

rn−1
rn − λn)vpn

≤

n∑
i=1

ci,n,1ξ4i +ōi
n∑
i=2

e4i +h̄n,1(ln−1)e
4
n−1+ō1(x1−y)

4,

where
∑n

i=1 ci,n,1, ōi, h̄n,1(ln−1), ō1 are some positive
constants, h̄n,1(ln−1) depends on ln−1.

Proposition 7:

δn⌈ξn⌉
4−rn−τ (vpn − x∗pn

n+1) ≤

n∑
i=1

c̄iξ4i + c̃i
n∑
i=2

e4i ,

where
∑n

i=1 c̄i, c̃i are several positive values.
With the help of Propositions 3-7, and (19) yields

LV ≤ −L
n−1∑
i=1

(
ai,i−

n∑
l=i+1

āl,i−ãi+1,i−

i+1∑
j=i−1

cj,i,1 − c̄i

−

i+1∑
j=i

cj,i,2 − ci,n,1

)
ξ4i −L(an,n − cn,n,1 − c̄n)ξ4n

− L(onln−1 − on,1 − ōn − c̃n)e4n − L
n−1∑
i=2

(oili−1

− oi,1 − oi,2 − ōi − h̄i+1,2(li) − h̄i+1,1(li) − c̃i)e4i
+ L(h̄2,1(l1) + h̄2,2(l1) + ō1)(x1 − y)4. (20)

For few positive constants d0, d̃1, · · · , d̃n, õn,2, · · · , õn,n,
via selecting

a1,1−
n∑
l=2

āl,1−ã2,1−
2∑
j=1

cj,1,1−
2∑
j=1

cj,1,2−c1,n,1−c̄1

≥ d̃1+d0,
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ai,i−
n∑

l=i+1

āl,i−ãi+1,i−

i+1∑
j=i−1

cj,i,1−
i+1∑
j=i

cj,i,2−ci,n,1−c̄i

≥ d̃i, i = 2, · · · , n− 1,

an,n − cn,n,1 − c̄n ≥ d̃n, (21)

and

ln−1 ≥
õn−1 + on,1 + ōn + c̃n

on
,

li−1 ≥
õi + oi,1 + oi,2 + ōi + h̄i+1,1(li) + h̄i+1,2(li) + c̃i

oi
,

l1 ≥
õ1 + o2,1 + o2,2 + ō1 + h̄3,1(li) + h̄3,2(li) + c̃1

o2
,

(22)

where i = n−1,· · ·, 3, then, (20) can be written as

LV ≤ −Ld0ξ41 − L
n∑
i=1

d̃iξ4i − L
n∑
i=2

õie4i

+ L(h̄2,1(l1) + h̄2,2(l1) + ō1)(x1 − y)4. (23)

Part III. Design of state virtual controller and reduced-order
observer for the system (5)

Aim to (5), we construct controller and observer by
using the similar constructions as (16), (17). Denote X =

(x1, · · · , xn, η2, · · · , ηn)⊤, system (5), (16) and (17) can be
represented by

dX = 4dt + Fdt + G⊤dω, (24)

where 4 = (Lxp12 ,· · · ,Lv
pn ,−l1Lx̂

p1
2 ,· · ·,−ln−1Lx̂

pn−1
n )⊤,

F = (f1, · · · , fn, 0, · · · , 0)⊤, G = (g1, · · · , gn, 0, · · · , 0).
Construct the same Lyapunov function as V . In view of
Definition 1, (23) and (24), as a result,

LV ≤ −Ld0ξ41 − L
n∑
i=1

d̃iξ4i − L
n∑
i=2

õie4i + L(h̄2,1(l1)

+ h̄2,2(l1) + ō1)(x1−y)4+
∂V
∂X

F+
1
2
Tr
{
G
∂2V
∂X 2G

⊤

}
≤ −Ld0ξ41 − L

n∑
i=1

d̃iξ4i − L
n∑
i=2

õie4i + L(h̄2,1(l1)

+ h̄2,2(l1) + ō1)(x1 − y)4 +

n∑
i=1

∣∣∣∣∂Vn(X )
∂xi

fi

∣∣∣∣
+

n∑
i=1

∣∣∣∣(∂U (X )
∂xi

+
∂U (X )
∂ηi

)
fi

∣∣∣∣+ n∑
i=2

∣∣∣∣∂U (X )
∂xi−1

fi−1

∣∣∣∣
+
1
2
Tr
{
G
∂2Vn
∂X 2 G

⊤

}
+
1
2
Tr
{
G
∂2U
∂X 2G

⊤

}
(25)

We estimate (25) using some propositions and their
detailed proofs process are provided in the Appendix.
Proposition 8:

n∑
i=1

∣∣∣∣∂Vn(X )
∂xi

fi

∣∣∣∣ ≤ L1−ν
(
n−1∑
i=1

ān,iξ4i + λn,1ξ
4
n

)
,

where ān,i, λn,1 > 0.

Proposition 9:

n∑
i=1

∣∣∣∣∂U (X )
∂xi−1

fi−1

∣∣∣∣
≤ L1−ν

( n∑
i=1

µ̄i,1ξ
4
i +

n∑
i=2

di,1e4i +
n∑
i=3

ρi,1(li−1) · e4i−1

)
+ L1−νρ2,1(l1)(x1 − y)4

where µ̄i,1, di,1 > 0.
Proposition 10:

n∑
i=1

∣∣∣∣(∂U (X )
∂xi

+
∂U (X )
∂ηi

)
fi

∣∣∣∣
≤ L1−ν

( n∑
i=1

µ̄i,2ξ
4
i +

n∑
i=2

di,2e4i +

n∑
i=3

ρi,2(li−1)e4i−1

)
+ L1−νρ2,2(l1)(x1 − y)4,

where µ̄i,2, di,2 > 0.
Proposition 11: For any i = 1, · · · , n,

1
2
Tr
{
G
∂2Vn
∂X 2 G

⊤

}
≤ L1−2ν̄

( n−1∑
i=1

µ̄i,3ξ
4
i + λi,2ξ

4
n

)
,

where µ̄i,3, λi,2 are positive constants.
Proposition 12: For any i = 1, · · · , n,

1
2
Tr
{
G
∂2U
∂X 2G

⊤

}
≤ L1−2ν̄

( n−1∑
i=1

µ̄i,4ξ
4
i + λi,4ξ

4
n

)
,

where µ̄i,4, λi,4 are the positive constants.
According to Propositions 8-12, we arrive at

LV ≤ −Ld0ξ41 − L
n∑
i=1

d̃iξ4i − L
n∑
i=2

õie4i

+ L1−ν
( n∑

i=1

c̄i,1ξ4i +

n∑
i=2

c̃i,1e4i

)

+ L1−2ν̄
n∑
i=1

c̄i,2ξ4i + L(h̄2,1(l1)

+ h̄2,2(l1) + ō1 + ρ2,1(l1) + ρ2,2(l1))(x1 − y)4, (26)

where c̄i,1, c̄i,2 and c̃i,1 > 0.
Using (5), (17) and (18), the output feedback controller of

system (2) can be sorted as follow:

u = −L(
n∑
i=1

β̄i⌈ξ̂i⌉
1
ri )rn+1 , ξ̂i = ⌈x̂i⌉

1
ri − ⌈x̂∗

i ⌉
1
ri ,

x̂∗
i = −β

ri
i−1⌈ξ̂i−1⌉

ri , dηi = −li−1Lx̂
pi−1
i dt,

x̂i = ⌈ηi + li−1x̂i−1⌉
ri

ri−1 , i = 2, · · · , n. (27)
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B. UNKNOWN OUTPUT FUNCTION AND FINITE-TIME
STABILITY ANALYSIS
In this section,by presenting the following theorem and its
proof, we address the handling of the system unknown output
function and conduct an analysis of the system finite-time
stability.
Theorem 1: In the presence of the Assumptions 1-2,

a maximal open sector � can be found, we define � =

(1−ρ̄, 1+ρ̄), ρ̄ > 0. If the unknown output function h̄(·) lies
within any closed sector contained in �, the output feedback
controller (27) can make system(1) globally finite-time
stability in probability.
Proof.:We firstly select a1,1, · · · , an,n, β1, · · · , βn. By the

first step, for any given δ1,ā2,1, · · · ,ān,1, ã2,1, c1,1,1,c2,1,1,
c1,1,2,c2,1,2,c1,n,1,c̄1, d0, d̃1, by (21), a1,1 can be chosen.
By β1 =

a1,1
δ1

, β1 is obtained. During the second step,
δ2 is an any constant, via Proposition 1, Proposition 2,
we know ϱ2,1, ϱ2,2. For any given ā3,2,· · · ,ān,2,ã3,2,c1,2,1,
c2,2,1,c3,2,1,c2,2,2,c3,2,2, c2,n,1,c̄2 and d̃2, according (21), a2,2
can be selected and β2 from (12). Step by step, until the nth
step, for any given δn, from Proposition 1, Proposition 2,
ϱn,1, ϱn,2 also can be calculated. For any δn, cn,n,1, c̄n, d̃n,
according to (21), we can select an,n. By (12), βn can be
obtained.

Secondly, our goal is to select ln−1, · · · , l1. For the given
δn, c̄n, cn,n,1 and any given m̄n, from Proposition 6 and
Proposition 7, c̃n,1 and ōn can be chosen. Thus, for any
given on,on,1,õn−1, by (22), ln−1 can be selected. For the
given δn,cn−2,n−1,1,cn−1,n−1,1,cn−,n−1,1,cn−1,n−1,2,cn,n−1,2,
cn−1,n,1,c̄n−1 and any given mn−1, by Propositions 3-5, one
can get on−1,1, on−1,2, ōi, on−1, h̄n,1(ln−1), h̄n,2(ln−1), c̃n−1,1.
By (22) and any constant õn−1, ln−2 can be chosen. Step by
step, ln−3, · · · , l1 can be listed respectively.
Lastly, we begin to find the � of h̄(·) and to discuss the

stability of system (2). Define h̄2(l1)=h̄2,1(l1) + h̄2,2(l1) +

ō1 + c̃1,1 + ρ2,2(l1) + ρ2,1(l1), ρ = ρ(l1) =
√
d0/h̄2(l1).

The supremum of ρ can then be determined. Defining
Ul = {l = (l1, · · · , ln−1)|a1,1 −

∑n
l=2 āl,1 − ã2,1 −∑2

j=1 cj,1,1 −
∑2

j=1 cj,1,2 − c1,n,1 − c̄1 ≥ d̃1 + d0, ai,i −∑n
l=i+1 āl,i − ãi+1,i −

∑i+1
j=i−1 cj,i,1 −

∑i+1
j=i cj,i,2 − ci,n,1 −

c̄i ≥ d̃i, i = 2, · · · , n − 1, an,n − cn,n,1 − c̄n ≥ d̃n,
kn−1 ≥ õn−1 + on,1 + ōn + c̃n,1/on, ki−1 ≥ õi + oi,1 +

oi,2 + ōi + h̄i+1,1(li) + h̄i+1,2(li) + c̃i,1/oi, i = n− 1, · · · , 3,
k1 ≥ õ1+o2,1+o2,2+ ō1+ h̄3,1(li)+ h̄3,2(li)+ c̃1,1/o2}, κ =

(δ1, · · · , δn, ã2,1, · · · , ãn,n−1, ā2,1, ā3,1, ā3,2, · · · , ān,1,
· · · , ān,n−1, m̄2, · · · , m̄n, c1,2,1, c2,2,1, · · · , cn,n,1, c2,2,2,
c3,2,2, · · · , c1,n,1, · · · , cn,n,1, c̄1, · · · , c̄n, o2,1, o2,2, · · · on,1,

ō1, · · · , ōn, o1, · · · , on, c̃1,1, · · · , c̃n,1, d̃0, d̃1, · · · , d̃n, õ1,
· · · , õn), one can select constant

ρ̄ = sup
κ∈R+,l∈Ul

ρ(l1). (28)

Label the supremum of ρ. Therefore, by Definition 2, � =

(1 − ρ̄, 1 + ρ̄). Suppose there exists ε, where 0 < ε < ρ̄.
During h̄(x1) of (5) included in [1 + ε − ρ̄, 1 − ε + ρ̄] ⊂ �.

FIGURE 1. The sector of h̄(z1).

According to Definition 2, we obtain

0 ≥ (h̄(x1) − x1(1 + ρ̄ − ε))(h̄(x1) − x1(1 − ρ̄ + ε))

⇒ x1(h̄(x1)−(1−ρ̄+ε)x1) ≥ 0 ≥ x1(h̄(x1)−(1+ρ̄−ε)x1)

⇒ x21 (1 + ρ̄ − ε) ≥ x1h̄(x1) ≥ x21 (1 − ρ̄ + ε)

⇒ x21 (ρ̄ − ε) ≥ x1(h̄(x1) − x1) ≥ x21 (−ρ̄ + ε)

⇒ |x1|(ρ̄ − ε) ≥ |x1 − h̄(x1)|

⇒ ξ41 (ρ̄−ε)4 ≥ |x1−y|4. (29)

From (28), (26) is reformulated as

LV ≤ −L
n∑
i=1

d̃iξ4i − L
n∑
i=2

õie4i + L1−ν
( n∑

i=1

c̄i,1ξ4i

+

n∑
i=2

c̃i,1e4i

)
+ L1−2ν̄

n∑
i=1

c̄i,2ξ4i . (30)

By choosing

L ≥ max
i=1,··· ,n,j=2,··· ,n

{
(
4ci,1
d̃i

)
1
ν , (

4ci,2
d̃i

)
1
2ν̄ , (

2c̃j,1
õj

)
1
ν , 1

}
.

(31)

Therefore, (30) becomes

LV ≤ −L
n∑
i=1

d̃i
2
ξ4i − L

n∑
i=2

õi
2
e4i . (32)

Based on the definition of ri, we choose the dilation weight

1 = (r1, r2, · · · , rn,︸ ︷︷ ︸
for z1,··· ,zn

r1, r2, · · · , rn−1︸ ︷︷ ︸
for η1,··· ,ηn−1

). (33)

It is not difficult to see that system (24) is homogeneous
of degree τ . Therefore, V and the right terms of (24) is
homogeneous of degree 4 − τ and 4, respectively. So, it is
easy to get that there exist two constants ζ1 > 0, ζ2 > 0 can
make

V ≤ ζ1∥X∥
4−τ
1 , LV ≤ −ζ2∥X∥

4
1. (34)

Hence, a constant ζ > 0 can ensure

LV ≤ −ζ∥V∥

4
4−τ
1 . (35)
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FIGURE 2. Response curves of state x1, x2,unknown output function y , state observer η2,
estimate value x̂2 and control input u.

Subsequently, we will demonstrate following the first
hitting timeπX0 , the solution X (t + πX0 ) = 0 for all
t ≥ 0 almost sure. The solution of the closed-loop system,
comprising (1) and (17), is uniquely defined immediately
after the first hitting time πX0 .

Define the stopping timeπn = inf t ≥ πX0; |X (t;X0)| ≥ n.
It is evident that πn is a growing sequence of stopping times.
By the Itô formula, it can easy obtain:

EV (X ((t + πX0 ) ∧ πn)

= EV (X ((πX0 ∧ πn)) + E
∫ (t+πX0 )∧πn

πX0

LV (X (s))ds

+ E
∫ (t+πX0 )∧πn

πX0

∂V (X (s))
∂X

G⊤(X (s))dω(s)

= E
∫ (t+πX0 )∧πn

πX0

LV (X (s))ds. (36)

Due to the positive definiteness of V (X ), we can get
EV (X ((t+πX0 )∧πn)) = 0, which means X ((t+πX0 )∧πn) =

0 almost surely, for all t ≥ 0. As n approaches∞, we observe
that X ((t + πX0 ) = 0 for all t ≥ 0 with almost sure certainty.
According to Lemma 1, Lemma 2 and Definition 3, we can
get the system (2) is finite-time stability in probability.
Remark 2: In previous studies on unknown output func-

tion, [45] employed an observer to estimate the system’s state
and subsequently design a controller based on the estimated
state, while [34] by adjusting the controller parameters
based on the error between the system output and the
estimated output to adapt to the variations in the unknown

output function. The assumptions regarding unknown output
function differ slightly between the two approaches; [45]
requires the unknown output function to be continuously
differentiable and [34] requires the unknown output function
to be Liphchitz continuity. However, for stochastic systems,
the handling of differential operators often involves second-
order derivatives. Therefore, the assumptions in the works
of [34] and [45] may not be applicable when dealing with
such systems. For system (2) satisfying Assumption 1,
by finding the � of h̄(·), h̄(·) only needs to belong to any
closed subinterval of �, the output feedback controller (27)
is feasible for guaranteeing globally finite-time stability in
probability of system (2).

What needs highlighting is that such output functions are
universal. We use the shadow region of FIGURE 1 to show
the sector of h̄(·).

IV. ILLUSTRATIVE EXAMPLES
Take into account the second-order stochastic nonlinear
system described below

dz1 = (z
11
9
2 + 0.1 sin z1)dt + 0.1 sin z1dω,

dz2 = (u+ 0.025(z
81
110
1 + z

1620
1719
2 ))dt,

y = h̄(z1). (37)

At the beginning, choose τ = −
9
400 ∈ (− 9

40 , 0). It is

not difficult to know r1 =
1
2 , r2 =

1719
4400 , r3 =

81
220 ,λ1 =

0 ,λ2 =
9
11 , λ3 =

20
11 . Observing the above system, we can

also get p1 =
11
9 , p2 = 1. Assumption 1 holds obviously.
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Following the design procedure, one introduces the
coordinate change x1 = z1, x2 =

z2

L
9
11
, v =

u

L
20
11
, then the

above system (37) becomes

dx1 = (Lx
11
9
2 + 0.1 sin x1)dt + 0.1 sin x1dω,

dx2 = (Lv+ 0.025(x
19
20
1 + L−

9
11 x

1620
1719
2 )dt,

y = h̄(x1). (38)

Take κ = (1, 0.2, 0.3, 1, 0.3, 0.1, 0.1, 0.2, 0.1, 0.2, 0.1, 0.4,
0.4, 0.4, 0.2, 0.5, 0.1, 0.3, 0.4, 0.3), l1 = 50, β1 = 1, β2 =

25, the sector supκ∈R+,l∈Ul ρ(l1) = 0.053 can be obtained.
Choosing L = 1.5 and output function h̄(z1) = z1+0.1 sin z1,
which is continuous and belongs to [0.947, 1.053]. It is worth
mentioning that [0.947, 1.053] is included in �. Under the
controller

u = −L
20
11 β

81
220
2

⌈
β

1719
4400
1 ⌈y⌉2 + ⌈x̂2⌉

4400
1719
⌉ 81

220 ,

x̂
11
9
2 = ⌈η2 + l1y⌉

191
200 , dη2 = −Ll1x̂

11
9
2 dt, (39)

by selecting the initial conditions (x1(0), x2(0), η2(0)) =

(0.5,−0.5, 0.5), FIGURE 2 demonstrates the feasibility of
the controller designed in this study.

V. CONCLUSION
This work solves the issue of finite-time stability in proba-
bility by output feedback for a set of stochastic high-order
nonlinear systems with unknown output function. Through
the integration of the homogeneous domination techniques,
backstepping method, sign function, selecting Lyapunov
function that matches the characteristics of stochastic non-
linear systems, then the output-feedback controller can be
obtained. Subsequently, Theorem 1 presents an analytical
method to get maximum open sector �. By combining
finite-time stability theory for stochastic nonlinear systems,
the designed output feedback controller can make the
closed-loop system globally finite-time stability in probabil-
ity. Lastly, the feasibility of the proposed approach is shown
by numerical simulation results.

APPENDIX
For the convenience of subsequent calculations, we estimate
some important terms for the entire calculation by Lemma 3
and Lemma 5. For i = 1, · · · , n, j = 1, · · · , i− 1,

∂(−⌈x∗
i ⌉

1
ri )

∂xj

=

i−1∑
k=1

∂
(∏i−1

l=k βl
)

∂xj
⌈xk⌉

1
rk +

∏i−1
l=j βl

rj
|xj|

1
rj
−1

≤

i−1∑
k=1

(1+βk−1)(
i−1∏
l=k

βl)|1+ξ2k +ξ2k−1|
rj
2 (|ξk−1|1−rj+|ξk |

1−rj )

+

∏i−1
l=k βl(1 + βj−1)1−rj

rj
(|ξj−1|

1−rj + |ξj|
1−rj )

≤ γj,1

i−1∑
k=1

|ξk |
1−rj , (A.1)

where γj,1 are positive values.

∂2(−⌈x∗
i ⌉

1
ri )

∂x2j

=

i−1∑
k=1

∂2
(∏i−1

l=k βl
)

∂2xj
⌈xk⌉

1
rk + 2

∂
(∏i−1

l=j βl
)

∂xjrj
|xj|

1
rj

−1

+
(1 − rj)

∏i−1
l=j βl

r2j
⌈xj⌉

1
rj

−2

≤

i−1∑
k=1

(1+βk−1)
( i−1∏
l=k

βl
)
|1+ξ2k−1+ξ

2
k |
rj (|ξk−1|1−2rj+|ξk |

1−2rj )

+
2(1+βj−1)1−rj

rj
(
i−1∏
l=j

βl)|1+ξ2k−1+ξ
2
k|
rj
2 (|ξj−1|

1−2rj+|ξj|
1−2rj|)

+
(1 − rj)

∏i−1
l=k βl(1+βj−1)1−2rj

r2j
(|ξj−1|

1−2rj + |ξ |1−2rj )

≤ γj,2

i−1∑
k=1

|ξk |
1−2rj , j = 1, . . . , i− 1, (A.2)

where γj,2 are positive values.

∂2(−|x∗
i |

1
ri )

∂xk∂xj
=
∂2(−|x∗

i |
1
ri )

∂xj∂xk

≤

i−1∑
k=1

(1 + βl−1)
( i−1∏
l=k

βl
)
|1 + ξ2l−1 + ξ2l |

rj+rk
2 (|ξl−1|

1−rk−rj

+ |ξl |
1−rk−rj ) +

∏i−1
l=k βl(1 + βj−1)1−rj

rj
|1 + ξ2j−1 + ξ2j |

rj
2

· (|ξj−1|
1−rk−rj + |ξj|

1−rk−rj ) +

∏i−1
l=j βl(1 + βk−1)1−rj

rj

· |1 + ξ2k−1 + ξ2k |
rk
2 (|ξk−1|

1−rj−rk + |ξk |
1−rj−rk )

≤ γj,3

i−1∑
k=1

|ξk |
1−rk−rj , k = 1, · · · , i− 1, (A.3)

where γj,3 are positive values.
Proof of Proposition 1: According to Lemma 3,

δi−1⌈ξi−1⌉
4−ripi−1(xpi−1

i − x∗pi−1
i )

≤ Lδi−1⌈ξi−1⌉
4−ri+1−τ

(
(x

1
ri
i )ripi−1 − (x∗

i

1
ri )ripi−1

)
≤ L 21−ripi−1δi−1⌈ξi−1⌉

4−ripi−1⌈ξi⌉
ripi−1

≤ Lãi,i−1ξ
4
i−1 + Lϱi,1ξ4i .

Proof of Proposition 2:Based on (8), (9), (A.1) and Lemma 3,
Lemma 5 and Lemma 7,

L
i−1∑
j=1

∂Wi

∂xj
x
pj
j+1
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=L
i−1∑
j=1

(4−ri−τ )

∣∣∣∣∂(−⌈x∗
i ⌉

1
ri )

∂xj

∣∣∣∣∫ xi

x∗
i

∣∣∣∣⌈s⌉ 1
ri −⌈x∗

i ⌉
1
ri

∣∣∣∣3−ri−τds·xpjj+1
≤L

i−1∑
j=1

(4 − ri − τ )γj,1
i−1∑
k=1

|ξk |
1−rj |ξi|

3−τ
|ξj|

rj+1pj

≤L
i−1∑
j=1

āi,jξ4j + Lϱi,2ξ4i .

Proof of Proposition 3: By using Lemma 3,

|xi−1−x̂i−1|=|(xi−1)pi−2−(x̂i−1)pi−2 |≤2
1− 1

pi−2 |ei−1|
ri−1 ,

|⌈xpi−1i ⌉

ri−1
ripi−1 −⌈x̂pi−1

i ⌉

ri−1
ripi−1|≤di|ei|ri−1+d̂i|xi|

ri−1
ri . (A.4)

Following Lemma 3 and Lemma 4, one has∣∣∣∣x 4−τ−ri−1−ri
ri

i xpii+1

∣∣∣∣
≤ c(|ξi|ri−1 + |ξi−1|

ri−1)(|ξi+1|
ri+1pi+|ξi|

ri+1pi |)

≤ (|ξi−1|
4−ri−1 + |ξi|

4−ri−1 + |ξi+1|
4−ri−1 ). (A.5)

Using (A.4), (A.5), we can get

m̄i
4−τ−ri−1

ri
|xi|

4−τ−ri−1−ri
ri (⌈xi⌉

ri−1
ri −λi)x

pi
i+1

≤ m̄i
4−τ−ri−1

ri
x

4−τ−ri−1−ri
ri

i (|xpi−1
i − x̂pi−1

i |

ri−1
ripi−1

− ki−1|xi−1 − x̂i−1|)x
pi
i+1

≤

i+1∑
j=i−1

ci,j,1ξ4j + oi,2e4i + h̄i,1(li−1)e4i−1.

Proof of Proposition 4: By Lemma 3, Lemma 5 and (A.4),

− m̄ili−1e
ripi−1
i (⌈x̂i⌉

4−τ−ri−1
ri − ⌈λi⌉

4−τ−ri−1
ri−1 )

=−m̄ili−1|ei|ripi−1
∣∣∣∣⌈ηi+li−1x̂i−1⌉

4−τ−ri−1
ri −⌈ηi+li−1xi−1⌉

4−τ−ri−1
ri−1

∣∣∣∣
≤−m̄il2i−1|ei|

ripi−1 |ei−1|
ri−1(|x̂i|

4−τ−2ri−1
ri +|li−1ei|4−τ−2ri−1)

≤

i∑
j=i−1

ci,j,2ξ4j + oi,1e4i−1 + h̄i,2(li−1)e4i .

Proof of Proposition 5: Following Lemma 6, (A.4) and
definition of ei,

− m̄ili−1e
ripi−1
i (⌈xi⌉

4−τ−ri−1
ri − ⌈x̂i⌉

4−τ−ri−1
ri )

≤ −m̄ili−1e
ripi−1
i 2

1−
4−τ−ri−1
ripi−1 |xpi−1

i − x̂pi−1
i |

4−τ−ri−1+ripi−1
ripi−1

≤ −oili−1e4i .

Proof of Proposition 6: Following Lemma 3 and the
homogeneity of v,

m̄n
4−τ−rn−1

rn
|xn|

4−τ−rn−1−rn
rn (⌈xn⌉

rn−1
rn − λn)vpn

≤ (|ξn|4−τ−rn−1−rn+|ξn−1|
4−τ−rn−1−rn )(

n∑
i=1

|xi|
rn+τ
ri +

n∑
i=1

|ei|rn+τ )

· (c|ei|ri−1+c(|ξi|ri−1+|ξi−1|
ri−1)+li−12

1− 1
pi−2 |ei−1|

ri−1)

≤

n∑
i=1

ci,n,1ξ4i +

n∑
i=2

ōie4i + h̄n,1(ln−1)e4n−1 + ō1(x1 − y)4.

Proof of Proposition 7: Based on (17) and Lemma 5,

δn⌈ξn⌉
4−rn−τ (vpn − x∗pn

n+1)

≤ |ξn|
4−rn−τ

(
|x̂

1
rn
n − x

1
rn
n |

rn+τ + |x̂
1

rn−1
n−1 − x

1
rn−1
n−1 |

rn+τ

+ · · · + |x̂
1
r2
2 − x

1
r2
2 |

rn+τ
)

≤ c |ξn|
4−rn−τ

( n∑
i=2

|x
1
ri
i − x̂

1
ri
i |

)rn+1pn

≤ c|ξn|4−rn−τ
n∑
i=2

(
|ei|rnpn+1 + |ξi|

rnpn+1 + |ξi−1|
rnpn+1

)

≤

n∑
i=1

c̄iξ4i +

n∑
i=2

c̃ie4i .

Proof of Proposition 8: By using Lemmas 3-5, (A.1) and
Integral mean value theorem,

n∑
i=1

∣∣∣∣∂Vn(X )
∂xi

fi

∣∣∣∣
≤

n−1∑
i=1

(4−rn+1pn)
∫ xn

x∗
n

|⌈s⌉
1
rn−|x∗

n |
1
rn |

3−rn+1pnds

∣∣∣∣∂(−⌈x∗
n⌉

1
rn )

∂xi

∣∣∣∣|fi|
+|ξn|

4−rn+1pn |fn|

≤ L1−ν
n−1∑
i=1

c121−rn (4 − rn+1pn)γi,1|ξn|3−τ
i∑

j=1

|ξi|
1−rj

·

j+1∑
l=1

|ξl |
rj+1pj + c1L1−ν |ξn|4−rn+1pn

n∑
l=1

|ξl |
rn+1pn

≤ L1−ν
( n−1∑

i=1

ān,iξ4i + λn,1ξ
4
n

)
.

Proof of Proposition 9:With the help of Lemma 3 and (A.5),

n∑
i=1

∣∣∣∣∂U (X )
∂xi−1

fi−1

∣∣∣∣
≤

n∑
i=1

|m̄ili−1(⌈xi⌉
4−τ−ri−1

ri − ⌈λi⌉
4−τ−ri−1

ri−1 ||fi−1|

≤L1−ν
n∑
i=1

|mili−1c1|ei|4−τ−ri−1

i−1∑
j=1

|ξj|
ri−1+τ |+L1−ν

n∑
i=1

|m̄i

· li−1c1|ei−1|
ri−1

i−1∑
j=1

|ξj|
ri−1+τ (|ei|ri + |ξi|

ri |ξi−1|
ri )

4−τ−2ri−1
ri

+L1−ν
i−1∑
j=1

|ξj|
ri−1+τ

n∑
i=1

|mili−1c1||li−1ei−1|4−τ−ri−1

i−1∑
j=1

|ξj|
ri−1+τ
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≤ L1−ν
( n∑
i=1

µ̄i,1ξ
4
i +

n∑
i=2

di,1e4i +

n∑
i=3

ρi,1(li−1)e4i−1
)

+ L1−νρ2,1(l1)(x1 − y)4.

Proof of Proposition 10:With the help of Lemma 3. It is not
difficult to get that ri−1

ripi−1
=

ri−1
ri−1+τ

> 1. Based on (24) and
Lemma 5,

n∑
i=1

∣∣∣∣(∂U (X )
∂xi

+
∂U (X )
∂ηi

)
fi

∣∣∣∣
≤

n∑
i=1

|m̄i
4−τ−ri−1

ri
|xi|

4−τ−ri−1−ri
ri (⌈xi⌉

ri−1
ri − λi)||fi|

≤

n∑
i=1

|mi
4−τ−ri−1

ri
|xi|

4−τ−ri−1−ri
ri (|xpi−1

i −x̂pi−1
i |

ri−1
ripi−1

−li−1|xi−1−x̂i−1|)||fi|

≤L1−v
( n∑

i=1

µ̄i,2ξ
4
i +

n∑
i=2

di,2e4i +

n∑
i=3

ρi,2(li−1)e4i−1

)
+ L1−vρ2,2(l1)(x1 − y)4.

Proof of Proposition 11: Using Lemmas 3-5, Integral mean
value theorem, (A.1), (A.2) and (A.3), one get

1
2
Tr
{
G
∂2Vn
∂X 2 G

⊤

}
≤

1
2

n∑
i=1

( i∑
k,j=1,k ̸=j

∣∣∣∣ ∂2Wi

∂xk∂xj

∣∣∣∣ |gk ||gj| +

i−1∑
k=1

∣∣∣∣∣∂2Wi

∂x2k

∣∣∣∣∣ ||gk ||2
+ 2

i−1∑
k=1

∣∣∣∣ ∂2Wi

∂xi∂xk

∣∣∣∣ |gi||gk | +

∣∣∣∣∣∂2Wi

∂x2i

∣∣∣∣∣ ∥gi∥2
)

≤
1
2

n∑
i=1

([ i−1∑
k=1,j=1,k ̸=j

(4 − ri+1pi)(3 − ri+1pi)

·

∣∣∣ ∫ xi

x∗
i

⌈
⌈s⌉

1
ri − ⌈x∗

i ⌉
1
ri

⌉2−ri+1pi
ds
∣∣∣
∣∣∣∣∣∣∂⌈x

∗
i ⌉

1
ri

∂xk

∣∣∣∣∣∣
∣∣∣∣∣∣∂⌈x

∗
i ⌉

1
ri

∂xj

∣∣∣∣∣∣
+ (4−ri+1pi)

∣∣∣ ∫ xi

x∗
i

⌈
⌈s⌉

1
ri −⌈x∗

i ⌉
1
ri

⌉3−ri+1pi
ds
∣∣∣
∣∣∣∣∣∣∂

2
⌈x∗
i ⌉

1
ri

∂xk∂xj

∣∣∣∣∣∣
· |gk ||gj|

]
+

i∑
j=1

[(
(4 − ri+1pi)(3 − ri+1pi)

∣∣∣
∣∣∣∣∣∣∂⌈x

∗
i ⌉

1
ri

∂xk

∣∣∣∣∣∣
2

·

∣∣∣ ∫ xi

x∗
i

⌈
⌈s⌉

1
ri−⌈x∗

i ⌉
1
ri

⌉2−ri+1pi
ds+(4−ri+1pi)

∣∣∣ ∫ xi

x∗
i

⌈
⌈s⌉

1
ri

−⌈x∗
i ⌉

1
ri

⌉3−ri+1pi
ds
∣∣∣
∣∣∣∣∣∣∂

2
⌈x∗
i ⌉

1
ri

∂x2j

∣∣∣∣∣∣)||gj||2
]
+2

i−1∑
j=1

(4−ri+1pi)

· |ξi|
3−ri+1pi

∣∣∣∣∣∣∂⌈x
∗
i ⌉

1
ri

∂xk

∣∣∣∣∣∣ ∥gi∥∥gk∥ +
4 − ri+1pi

ri
|ξi|

3−ri+1pi

· |xi|
1
ri

−1
∥gi∥2

)

≤ L1−2ν̄
n∑
i=1

(
α1

i−1∑
k,j=1,k ̸=j

(
|ξi|

2−τ
i−1∑
l=1

|ξl |
1−rj

i−1∑
l=1

|ξl |
1−rk

+ |ξi|
3−τ

i−1∑
l=1

|ξl |
1−rk−rj

) j∑
l=1

|ξl |
2rj+τ

2

k∑
l=1

|ξl |
2rk+τ

2

+α2

i−1∑
j=1

(
|ξi|

2−τ ( i−1∑
l=1

|ξl |)2+|ξi|
3−τ

i−1∑
l=1

|ξl |
1−2rj

)
(
i∑

l=1

|ξl |
2rj+τ
2 )2

+ α3|ξi|
3−ri+1pi

i−1∑
j=1

i−1∑
l=1

|ξl |
1−rj

i∑
l=1

|ξl |
2ri+τ

2 ·

j∑
l=1

|ξl |
2rj+τ

2

+ α4|ξi|
3−ri+1pi (|ξi−1|

1−ri + |ξi|
1−ri )(

i∑
l=1

|ξl |
2ri+τ

2 )2
)

≤ L1−2ν̄
( n−1∑
i=1

µ̄i,3ξ
4
i + λi,2ξ

4
n

)
.

Proof of Proposition 12: With the help of Lemma 3, (8)
and (18),

1
2
Tr
{
G
∂2U
∂X 2G

⊤

}
≤

1
2

n∑
i=1

( i∑
k,j=1,k ̸=j

∣∣∣∣ ∂2Ui∂xk∂xj

∣∣∣∣ ∥gk∥∥gj∥+

i∑
j=1

∣∣∣∣∣∂2Ui∂x2j

∣∣∣∣∣ ∥gj∥2
+

i∑
j=1

∣∣∣∣∣∂2Ui∂η2j

∣∣∣∣∣ ∥gj∥2 +

i∑
j=1

∣∣∣∣ ∂2Ui
∂xj∂ηj−1

∣∣∣∣ ∥gj∥∥gj−1∥

+ 2
i∑

j=1,k=2

∣∣∣∣ ∂2Ui∂xj∂ηk

∣∣∣∣ ∥gj∥∥gk∥)

≤
1
2

n∑
i=1

( i∑
j=1

(
m̄i

4−τ−rj−1

rj
|xj|

4−τ−rj−1−2rj
rj (|xj|

rj−1
rj −λj)

+ m̄i
4 − τ − rj−1

rj
|xj|

4−τ−rj−1−rj
rj |xj|

rj−1−rj
rj

)
||gj||2

+

i∑
j=1,k=j−1

(−m̄j
4 − τ − rj−1

rj
li−1|xj|pj−1)∥gj∥∥gj+1∥

)

≤
1
2

n∑
i=1

L1−2ν̄
(
α5

i∑
j=1

|ξj|
4−τ−rj−1−2rj+rj−1

i∑
l=1

|ξl |
2rj+τ

+α6

i∑
j=1,k=j−1

|ξj|
4−τ−rj−rj−1

j∑
l=1

|ξl |
2rj+τ

2

j−1∑
l=1

|ξl |
2rj−1+τ

2

)

≤ L1−2ν̄(
n−1∑
i=1

µ̄i,4ξ
4
i + λi,4ξ

4
n ).
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