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ABSTRACT The 5-Methyluridine (m5U), predominantly present in RNA and especially enriched in
transfer RNA (tRNA), significantly enhances translational accuracy and protein synthesis by ensuring
precise genetic information decoding and optimal tRNA functionality within cellular mechanisms. The
identification of m5U modification sites is crucial, as this modification has gained significant attention
in diseases such as breast cancer, stress response, and viral infections, offering insights into its molecular
mechanisms and regulatory functions in disease contexts. Nevertheless, due to the arduous nature, intricate
procedures, reliance on sophisticated and expensive instrumentation, and the need for specialized expertise,
conventional biochemical approaches for identifying m5U modification sites result in substantial resource
expenditures and notable temporal investments. Consequently, the pressing need for a precise and efficient
computational method highlights the urgency for alternative approaches in identifying m5U modification
sites. In this study, we introduce a novel computational approach called ‘‘Deep-m5U,’’ which combines
the strengths of Convolutional Neural Networks (CNNs) and tetranucleotide composition to accurately
identify methyluridine modification sites and improve overall performance. The developed Deep-m5U
method leverages CNNs to accurately detect protein-coding regions aand capture relevant motifs, while
incorporating tetra-nucleotide composition to capture global compositional characteristics, resulting in
a more robust model that significantly enhances performance. We evaluated the Deep-m5U model on
two publicly available benchmark datasets: the full transcript and mature mRNA datasets. Our results
showcase superior performance, achieving accuracies of 91.26% and 95.63% respectively, surpassing the
current cutting-edge methods. Moreover, the open-source code for Deep-m5U is freely accessible at:
https://github.com/waleed551/Deep-m5U.

INDEX TERMS 5-methyluridine, convolutional neural network, Deep-m5U, feature fusion, protein-coding
regions, RNA modification, tetranucleotide composition.
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I. INTRODUCTION
The 5-Methyluridine (m5U) is a prominent non-canonical
nucleoside that pervades RiboNucleicAcid (RNA)molecules,
exerting a pivotal influence on their functionality. This
vital molecule assumes a central role in the complex
orchestration of RNA splicing, stability, and translation
processes, thereby intricately regulating gene expression.
Beyond its foundational involvement in RNA processing,
m5U is a versatile participant in diverse cellular phenomena,
encompassing essential functions in cell differentiation,
proliferation, and programmed cell death [1]. In recent
years, the investigation of RNA transcriptome modifications
has rapidly advanced as a frontier in biological research,
facilitated by the development of state-of-the-art high-
resolution transcriptome quantification and mapping tech-
niques [2], [3]. In recent research endeavors, the exploration
of RNA modifications has revealed a substantial number,
surpassing 170, with the majority of these modifications
found within ribosomal ribonucleic acids (rRNAs) and
transfer ribonucleic acids (tRNAs) [4], [5], [6]. These
RNA modifications play crucial roles in various biological
processes, encompassing embryonic stem cell (ESC) growth,
metabolism, migration, cancer cell survival, DNA damage
response, and environmental exposure response [6], [7], [8].
However, despite being themost commonRNAmodification,
m5U still lacks comprehensive exploration in the scientific
literature, with limited research efforts focused on its
identification and in-depth functional characterization [1].

The nucleoside m5U is consistently found at position
54 within the T-loop of tRNAs in both eukaryotic and
bacterial organisms. Notably, its occurrence in human mito-
chondrial tRNAs is observed but to a lesser extent compared
to other organisms [9]. Interestingly, emerging evidence sug-
gests that m5U may play a crucial role in the pathogenesis of
breast cancer within the human genome. The implications of
m5U as a potential biomarker or contributing factor to breast
cancer development in humans warrant further investigation
into its exact mechanisms and interactions, shedding light on
its therapeutic implications and significance as a diagnostic
marker [10]. On the other hand, in the context of plants, m5U
has been reported to regulate both developmental processes
and stress responses, while also being implicated in Systemic
Lupus Erythematosus (SLE) [11]. Consequently, the precise
and reliable identification of m5U sites is imperative across
all species to comprehensively comprehend fundamental
biological functions and processes. In this context, several
advanced biochemical laboratory-based experimental tech-
niques have been developed, including FICC-seq, iCLIP,
and miCLIP-seq, to facilitate the identification of m5U
sites [9], [12]. However, the demanding nature of the
procedures, intricate protocols, dependency on sophisticated
and expensive instrumentation, and the requirement for spe-
cialized expertise associated with conventional biochemical
approaches for identifying m5U modification sites lead
to substantial resource expenditures and considerable time

investments [13]. Therefore, the pressing demand for a more
accurate, robust, and novel computational model arises, as it
can provide a cost-effective and time-efficient alternative to
conventional biochemical approaches, while ensuring higher
accuracy and improved robustness in the identification of
m5U sites [14].
Subsequently, a myriad of computational models and

predictors have emerged to address RNA modifica-
tions, encompassing diverse epigenetic marks, such as
N1-methyladenosine (m1A) [15], N6-methyladenosine
(m6A) [16], [17], pm6A-CNN [18], iRNA-Methyl [19],
SRAMP [20], RNAm5Cfinder [21], 5-methylcytosine (m5C)
[22], M6AMRFS [23], and XG-ac4C [24]. These com-
putational tools, driven by cutting-edge algorithms and
leveraging machine learning techniques [25], have signifi-
cantly advanced the identification and understanding of RNA
modifications, showcasing their potential to revolutionize
epitranscriptomics research. In parallel, Jiang et al. [12] pre-
sented an innovative machine learning-driven computational
model called m5UPred, specifically designed for the accurate
identification of m5U modification sites. The m5UPred
model employed two distinct feature extraction method-
ologies, namely nucleotide density (ND) and nucleotide
chemical property (NCP), to discern crucial features from the
RNA sequences. This novel approach holds promising poten-
tial to advance the field of m5U site prediction, representing
a noteworthy contribution to the landscape of epitran-
scriptomics research [12]. Moreover, Diverse cutting-edge
classification algorithms, spanning the generalized linear
model (GLM) [26], Naive Bayes (NB) [27], random forest
(RF) [28], Support Vector Machine (SVM) [29], Particle
Swarm Optimization [30], Buffalo-Based Secure Edge-
Enabled Computing [31], [32], and neural network-based
models [33], were extensively employed to predict m5U sites.
In a recent breakthrough, Li et al. [21] developed a machine
learning-based computational model, namely iRNA-m5U,
to predict m5U sites in RNA. The model leverages ND
and NCP feature encoding schemes to transform RNA
samples into a discrete feature space. Subsequently, a SVM
was utilized as the classifier to accurately predict m5U
sites [21]. Despite being extensively trained on a vast
corpus of human data, the aforementioned state-of-the-art
computational models, namely m5UPred [12] and iRNA-
m5U [21], surprisingly demonstrated an unsatisfactory level
of prediction performance when it came to accurately
identifying elusive m5U sites within the genome of the
widely studied Saccharomyces cerevisiae, commonly known
as baker’s yeast [34]. This unexpected limitation in their
predictive capabilities has highlighted the need for further
advancements and tailored adaptations of these models to
tackle the intricacies and idiosyncrasies present in the unique
RNA characteristics of this yeast species.

To bridge the existing knowledge gap, a diligent endeavor
was undertaken to devise an innovative, precise, and resilient
computational model, designated as Deep-m5U, with the
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primary objective of predicting m5U sites. This model was
meticulously designed to address the shortcomings observed
in the earlier methodologies, m5UPred and to provide a
more comprehensive and reliable solution to the challenging
task of m5U site prediction. Through the integration of
cutting-edge deep learning techniques [35] and sophisticated
feature engineering, Deep-m5U strives to achieve superior
performance, ensuring accurate and robust identification of
m5U sites across diverse genomic contexts. The developed
novel Deep-m5U computational model adhered to the
well-established bioinformatics 5-steps rule, encompassing
the following key stages: 1) Rigorous dataset construction
or selection, 2) meticulous feature encoding, 3) judicious
selection of a classification algorithm, 4) comprehensive
cross-validation testing, and 5) provision of a webserver or
GitHub repository for accessibility and reproducibility. In this
work, our contribution can be summarized in three main
aspects:

• We proposed a novel computational approach named
‘‘Deep-m5U,’’ which synergistically combines the
strengths of CNNs features and tetranucleotide com-
position features to accurately identify methyluridine
modification sites and significantly improve overall
performance. Our method employs a CNN to extract
essential and generalized features from the input RNA
sequences, effectively identifying accurate m5U sites by
merging these features with the tetranucleotide feature
space. Utilizing multiple convolutional layers as feature
extractors, we capture intricate patterns and discrimina-
tive aspects for identifying methyluridine modification
sites. The integration of CNN-based features with
tetranucleotide information enriches the representation
of RNA sequences, enhancing the model accuracy
in discriminating between m5U and non-m5U sites.
Finally, employing dense layers for classification based
on the enriched feature map enables precise predictions,
distinguishing methyluridine modification sites from
background noise.

• In the developed mode, we have employed the highly
effective one-hot encoding technique to transform RNA
sequences into discrete feature vectors. By employing
this approach, we were able to accurately capture the
essential features of RNA sequences, while simul-
taneously mitigating data redundancy and preserving
crucial structural characteristics. Consequently, our
model demonstrated enhanced performance and inter-
pretability.

• We applied the proposed Deep-m5U model to publicly
available single-nucleotide resolution m5U sequencing
datasets from HEK293 and HAP1 cell lines, obtained
through FICC-seq and miCLIPseq technologies. Its
performance was compared against the state-of-the-
art m5uPred method, utilizing accuracy, sensitivity,
specificity, Matthews’s correlation coefficient, and the
area under the curve as evaluation metrics. Impressively,
the Deep-m5U model achieved remarkable accuracy

rates of 91.26% and 95.63% on the full transcript
and mature mRNA training datasets, respectively, and
89.43% and 93.08% accuracy on the full transcript
and mature mRNA test datasets, showing its superior
predictive capabilities for m5U sites on the benchmark
datasets.

This article is structured as follows: Section II covers
dataset collection and construction, outlining the method-
ology for dataset splitting into training, validation, and
testing subsets. Section III provides a concise explanation
of the proposed deep learning layers and the process
of constructing feature maps for m5U site classification.
Section V discusses the evaluation metrics, while Section VI
presents a comparative analysis against related state-of-the-
art computational models. Lastly, in Section VII, we conclude
by discussing the findings, including limitations and possible
future directions.

II. MATERIALS AND METHODS
This section discusses the underlying mechanisms of the
proposed Deep-m5U model, specifically focusing on illus-
trating the fusion of features from CNN and the integration
of tetranucleotide information. Further, the implementation
of the core 5-step bioinformatics regulations with on
emphasizing dataset management to enhance result accuracy
are also presented. The section also outlines the mechanism
for generating tetranucleotide composition feature vectors
which is a vital component of the model’s architecture and
performance. The integration of these functional components
strengthening the Deep-m5U model capability to achieve
imporved results in m5U site prediction compared to existing
models and thereby marking a significant advancement in
epitranscriptomics research. A schematic representation of
the Deep-m5U model’s architecture illustrating the fusion
of these functional components and feature integration is
presented in Figure 1. The figure demonstrates the intrinsic
coupling of CNN features with nucleotide composition,
enabling the formation of a fully connected layer for effective
training and future anticipation. The subsequent sections
elaborate on the comprehensive integration of features, along
with a detailed explanation of the CNNs and nucleotide
composition mechanisms. To ensure the comprehensive inte-
gration of features and delving into the detailed mechanisms
of CNNs and nucleotide composition, we provide a deeper
understanding of the model’s architecture, which ultimately
enhances its capacity to make highly accurate predictions and
advances the reliability of m5U site prediction.

A. THE MECHANISM OF TRAINING AND
TESTING DATASETS
In this research, we meticulously compiled experi-
mentally identified m5U sites from publicly available
single-nucleotide resolution m5U sequencing data that
encompassed two distinct cell lines: HEK293 and HAP1.
These datasets were generated through advanced FICC-seq

VOLUME 12, 2024 10025



W. Alam et al.: Unveiling the Potential Pattern Representation of RNA m5U Modification Sites

and miCLIPseq technologies, known for their high precision
in capturing m5U modifications [1], [25], [28], [36], [37],
[38], [39], [40]. The data used in this study were publicly
available through the Gene Expression Omnibus (GEO)
database, with the accession number GEO: GSE109183.
Following established research precedents, we carefully
selected a sequence length of 41nt, based on its demonstrated
capability to produce the most promising prediction results.
This deliberate choice ensured the dataset’s suitability for
conducting our analysis with a focus on m5U site prediction.
The positive samples in the dataset were characterized
by the presence of the m5U site positioned at the center
of the sequence. Conversely, the negative samples were
also centered around uridine (U), but these positions did
not contain m5U modifications. To construct the negative
datasets, we randomly selected 10 samples from the same
positive transcripts, ensuring that these negative samples
only comprised unmodified uridine sites. This approach
maintained the dataset’s integrity and balanced representation
for training and testing the model effectively. To preserve a
balanced dataset, each negative set was combined with the
positive set, generating 10 unique datasets with an equal
1:1 ratio of positive and negative samples. To alleviate
batch variance during performance evaluation, the average
voting technique was applied. This approach ensured the
maintenance of a balanced representation and unbiased
assessment of the model’s prediction performance across the
datasets.Moreover, our dataset encompasses two distinct data
modalities: full transcript and mature mRNA. As a result,
the predictive performance of the model was rigorously
evaluated on both modalities. The full transcript data includes
both the exon and intron regions of the transcript, while
the mature mRNA dataset exclusively focuses on the exon
region, known to harbor m5U sites. This differentiation
in data modalities enables a comprehensive assessment
of the model’s predictive capabilities, accounting for
variations in gene expression and processing between these
transcript regions. Each full transcript dataset comprised
2447 positive and negative samples, while the mature mRNA
dataset contained 1673 positive and negative samples. For
the evaluating the Deep-m5U model we petitioned the
benchmark dataset into a ratio of 80% and 20% for training
and independent testing parts and characterized each of these
datasets as presented in Table 1.

TABLE 1. A representation of the different techniques and the dataset
used for Deep-m5U.

B. THE CROSS VALIDATION MECHANISM
In this section, we delve into the mechanism of cross-
validation, a well-known method for analyzing the perfor-
mance of ML and deep learning models. It is considered
highly effective, especially when dealing with limited data
sample sizes [25], [41], [42], [43]. This method involves
dividing the dataset into distinct subsets, namely training,
validation, and test sets [41]. Subsequently, for each sub-test
set, a portion of the data is selected, while the remaining
samples are utilized for the training subset. This process
iterates until each data point has been considered at least once
in both the training and test phases [42], [44]. This process
leads to obtain robust performance metrics that help avoid
the potential bias impact in the dataset, enabling an unbiased
assessment of the model’s generalization capabilities across
various data distributions [43]. Thus, this mechanism allows
each test set to represent unknown data against the trained
models, resulting in an unbiased evaluation of the model’s
performance [45].

C. THE TETRANUCLEOTIDE COMPOSITION
FEATURE VECTOR
Given the efficiency of k-mers in extracting suitable features
from genomics and proteomics datasets [46], we utilize this
technique to divide the long sequences into overlapping
subsequences with each of length k . For example consid-
ering a DNA sequence, which can be broken down into
possible subsequences of length k , with each subsequence
representing a combination of four nucleotides (A, C,
G, and T) [47]. It is noteworthy that the selection of
k value depends on the user choice and each of the
subsequence is considered as a k-mer and we have discussed
it in Eq. (1). To capture the nucleotide composition in a
sequence, we count the occurrences of each k-mer in the
sequence. This generates a frequency vector that represents
the abundance of different k-mers in the sequence [48].
The frequency of each k-mer serves as a feature, and
together, these features form a numerical representation of
the sequence, capturing its local sequence patterns [49]. The
k-mer technique, advantageous due to its ability to provide a
compact and informative representation of sequences, allow-
ing for efficient storage and computation, finds widespread
usage across various bioinformatics applications, includ-
ing sequence classification, prediction tasks, and sequence
alignment [50].∫ k−mer

k=1
=

∫ k−mer

1

∫ k−mer

2

∫ k−mer

3

∫ k−mer

4k
(1)

Here, we selected k = 4 as the parameter for the
k-mer technique to extract a comprehensive amount of
information from 5mU sequences. For instance, a given
RNA sequence ‘ACCUGUACU’ is divided into ‘ACCU’,
‘CCUG’, ‘CUGU’, ‘UGUA’, ‘GUAC’, and ‘UACU’ through
the 4-mer representation. This process allows us to capture
overlapping subsequences of length four, providing a rich
and detailed representation of the sequence’s local patterns.
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FIGURE 1. An illustration of the architecture of the proposed
5-Methyluridine (m5U) model, emphasizing the feature fusion
mechanism and outlining the overall procedure of the proposed method.

By setting k = 4, we aim to maximize the information
obtained from the sequences, enabling more accurate and
meaningful analyses in our investigation. Nevertheless, each
RNA sequence is transformed into a 4k-dimensional vector,
where k = 4 in our case, leading to a 4 × 4 × 4 × 4 =

256-dimensional representation, as indicated by Eq. 2. This
256-dimensional vector captures the abundance of each 4-
mer in the sequence, providing a comprehensive and detailed
numerical representation of the RNA sequence, which is
instrumental in our analysis and enables us to effectively
leverage the k-mer technique for improved results. In sequel
of this process, each RNA sequence is transformed into a 4k-
dimensional vector, resulting in a long sequence with a length
of 256, as demonstrated in Eq. (3).∫ 4−mer

k=1
=

∫ 4−mer

1

∫ 4−mer

2
· · ·

∫ 4−mer

256
(2)∫ 4−mer

k=1
=

∫
1
(AAAA)

∫
2
(AAAC) · · ·

∫
256

(TTTT ) (3)

III. THE ROLE OF DEEP LEARNING AS A FUNDAMENTAL
COMPONENT IN THE PROPOSED DEEP-M5U MODEL
The deep learning model based on a CNN has emerged
as the most widely recognized and promising approach for
addressing numerous biological classification and prediction
problems, including sequence classification and prediction
tasks [46], [47], [48]. The proposed Deep-m5Umodel adopts
a sophisticated architecture, leveraging a series of CNN
layers to extract generalized feature maps from the input
data [46]. These feature maps capture essential patterns and
information vital for accurate m5U site prediction. Then,
concatenates the CNN features with tetra-nucleotide compo-
sition features. Subsequently, the model utilizes dense layers
for classification, enabling it to make informed decisions
based on the learned features [47]. This design ensures
an effective and comprehensive learning process, ultimately
leading to enhanced performance and precise predictions in
the task of m5U site identification [48]. Thus, the proposed
model exhibits increased reliability and accuracy, especially
in scenarios with limited available training data and concerns
about overfitting. This remarkable performance is attributed
to the model’s adeptness in effectively generalizing from a
smaller dataset, making it a robust solution for m5U site
prediction even under constraints of limited training data.
In the context of the proposed network, the one-hot

encoding technique was employed to transform the RNA
sequences into a format suitable for input data, as the
RNA sequences are composed of four different nucleotides:
Adenine (A), Cytosine (C), Guanine (G), and Uracil (U) [51].
The one-hot encoding process represents each nucleotide as
a binary vector of length four, with a single ‘‘1’’ at the
position corresponding to the nucleotide and ‘‘0’’s elsewhere.
Specifically, the one-hot encoding representations for the four
nucleotides are as Adenine (A): (1, 0, 0, 0), Cytosine (C): (0,
0, 1, 0), Guanine (G): (0, 0, 0, 1), and Uracil (U): (0, 1, 0,
0), respectively. For instance, if we have an RNA sequence
‘‘ACGU,’’ the corresponding one-hot encoding would be the
concatenation of the one-hot vectors for each nucleotide:
(1, 0, 0, 0)(0, 0, 1, 0)(0, 1, 0, 0)(0, 0, 0, 1), resulting in
([[1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1],[0, 1, 0, 0]]). Thus
leveraging the one-hot encoding scheme, each RNA sequence
is transformed into a numerical representation that can be
effectively processed by the proposed Deep-m5U network.
The benchmark dataset consists of samples, each contain-

ing RNA sequences with a fixed length of 41 nucleotides.
To feed these sequences into the CNN network for m5U
site classification [49], the input shape was represented as
a 41 × 4 matrix. This matrix format enables the CNN to
process the nucleotide information effectively. This impies
that proposed Deep-m5U, is constructed with multiple layers,
encompassing convolution layerss, normalization layers, and
fully connected layers. These various layers contribute to
the model’s ability to learn complex patterns and features
from the input data. Moreover, to optimize the model’s
performance, hyper-parameters have been fine-tuned using
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the grid search algorithm, that systematically explores
different combinations of hyper-parameter values to identify
the optimal configuration for the Deep-m5U model.

The convolution layer plays a crucial role in extracting
high-level features from the input data. It consists of multiple
convolutional units, and their parameters are optimized
through the backpropagation process. While, as an activation
function for the convolution layer, the Rectified Linear Unit
(ReLU) is utilized, which is widely adopted in deep learning
architectures due to its ability to introduce non-linearity
and alleviate the vanishing gradient problem [52]. After the
convolution layer, a group normalization layer is applied,
which serves as an effective alternative to batch normaliza-
tion, especially when dealing with small batch sizes, as it
normalizes the activations within each group, promoting
stable and efficient training [53]. The normalization is applied
as a regularization technique in groups, and for this study,
a group size of two is chosen. Subsequently, a dropout
layer with a dropout probability of 0.75 is incorporated
into the proposed Deep-m5U model, as illustrated in the
bird’s-eye view of Figure 1. During the training process, the
dropout layer is crucial in preventing overfitting by randomly
deactivating certain neurons, thereby encouraging the model
to rely on a more diverse set of connections and reducing
the risk of memorizing specific patterns. Subsequent to the
dropout layer, a fully connected layer is applied, using ReLU
as the activation function. ReLU introduces non-linearity to
themodel, enabling it to capture complex relationships within
the data [54]. To further address overfitting and promote
better generalization, L2 regularization is employed on both
the bias and weight terms with a regularization parameter set
to {1 × 10exp-2}. L2 regularization penalizes the model for
having larger weights, encouraging the network to prioritize
smaller, more evenly distributed weights [55]. The final layer
in the architecture utilizes the sigmoid activation function,
assigning probabilities to the outputs, allowing them to be
mapped as either an m5U site or a non-m5U site [56]. The
one-dimensional convolution layer is mathematically defined
by Eq. (4) [57], which operates on the input RNA sequence
denoted as X .

Cov(X )j,k = ReLU
( Z−1∑

s=0

I−1∑
n=0

W k
snXj + s, n

)
(4)

where the convolution filter is represented by the index k ,
and j signifies the index of the output position. Each Wk
corresponds to a convolution filter, which is a weight matrix
with dimensions Z×I . Here, Z represents the size of the filter,
and I denotes the number of input channels or features.
The ReLU activation function employed in the architecture

is mathematically represented by Eq. (5).

ReLU (x) =

{
x If x > 0
0 If x ≤ 0

(5)

In this equation, the function ReLU takes the input x and
returns the maximum value between 0 and x. The ReLU

activation function introduces non-linearity to the model
replaces negative values with zeros, effectively deactivating
certain neurons in the network, which aids in preventing
the vanishing gradient problem and promotes more effective
learning during training [54].

The fully connected layer, combined with the dropout
operation mk having a probability p sampled from the
Bernoulli distribution, is mathematically represented in
Eq. (6).

d = ReLU
(
wd+1

d∑
k=1

mkwkzk

)
(6)

where, zk is a 1 × d dimensional feature vector representing
the output from the previous layer,wk is the weight associated
with zk and wd+1 is the additive bias term. The operation
mk refers to the dropout process, which stochastically
deactivates certain neurons in the fully connected layer during
training, with a probability p sampled from the Bernoulli
distribution. The output of the fully connected layer is
obtained by applying the ReLU activation function to the
linear combination of the weighted inputs zk with wk and the
bias term wd+1.
The sigmoid activation function, depicted in Eq. (7),

utilizes the input x for constructing the iRNA-methyl model.

Sigmoid(x) =
1

1 + e−x
(7)

The sigmoid function applies transformation to the input
x, mapping it to the value between 0 and 1, and is commonly
used for binary classification tasks, like m5U site prediction
in this context, where the output represents the probability
of a sample belonging to a particular class. The Adam
optimizer, with a learning rate of 0.00021, was chosen
for training the proposed model. Adam is an adaptive
learning rate optimization algorithm that efficiently updates
the model’s weights during the training process [58]. For the
loss function, binary cross-entropy was employed. This loss
function measures the discrepancy between the probability
distributions of the actual class and the predicted class
probabilities, making it suitable for binary classification
tasks [59]. The model was trained for a maximum of 40-
epochs with a batch size of 64 such that during each epoch,
the model processes the training data in batches of 64 samples
before updating the weights based on the optimizer’s rules.

IV. EXPERIMENTAL SETUP
In this study, we utilize the Python programming language
as the foundation to implement our proposed methodology
for predicting m5U modification sites within mature mRNA
and full transcript tRNA sequences. The BioPython package
serves as our tool of choice for the extraction of data
from FASTA files, ensuring a robust and efficient data
acquisition process [60]. To facilitate the transformation of
sequence data into suitable input for our deep learning model,
we employ fundamental Python programming techniques
for data encoding. For the development of our predictive
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model for feature extraction and m5U site identification,
we turn to industry-standard frameworks: TensorFlow [61]
andKeras [62]. These libraries are renowned for their capabil-
ities in constructing sophisticated deep-learning models. Our
choice of these frameworks underscores our commitment to
achieving accuracy and efficiency in the prediction of m5U
modification sites.

V. PERFORMANCE EVALUATION CRITERIA
The performance metrics play a critical role in evaluating
the model’s performance and its capacity to accurately
classify m5U sites. Consequently, the effectiveness of our
model was thoroughly assessed using five key performance
metrics: overall accuracy (ACC) [19], [20], Sensitivity
(SN) [22], [23], [63], Specificity (SP) [28], [37], [41],
[42], Matthews’s correlation coefficient (MCC) [38], [39],
[40], [42], [64], and Area under the Receiver Operating
Characteristic (AUC) [65], [66], [67]. The overall ACC
represents the ratio of correctly classified samples to the
total number of samples, providing an overall measure of
the model’s performance as shown in Eq. (8) [19], [20].
The SN measures the proportion of actual m5U sites that
are correctly identified by the model, indicating its ability to
detect positive cases accurately, as shown in Eq. (9) [22], [23],
[63]. The SP quantifies the model’s capability to correctly
classify non-m5U sites, reflecting its accuracy in identifying
negative cases, as presented in Eq. (10) [28], [37], [41],
[42]. The MCC provides a comprehensive evaluation of
the model’s performance by considering both true positive
and true negative predictions, as it is particularly useful for
imbalanced datasets and is presented in Eq. (11) [38], [39],
[40], [42], [64]. Finally, the Area under the AUC assesses the
model’s ability to distinguish between positive and negative
samples across different probability thresholds, offering a
summary of its discriminatory power. It represents the area
under the curve of the Receiver Operating Characteristic
(ROC) curve. The ROC curve is a plot of the true positive rate
(Sensitivity) against the false positive rate (1 - Specificity) as
the discrimination threshold varies and can be represented by
Eq. (12) [65], [66], [67]. The AUC value ranges from 0 to 1,
where a higher AUC indicates better discriminatory power
and performance of the model in distinguishing between
positive and negative samples. An AUC of 0.5 indicates
random guessing, while an AUC of 1.0 represents a perfect
classifier.

ACC =
TN + TP

TP+ FN + TN + FP
(8)

SN =
TP

TP+ FN
(9)

SP =
TN

FP+ TN
(10)

MCC =
TP× TN − FP× FN

√
(TN + FP)(TN + FN )(TP+ FP)(TP+ FN )

(11)

AUC =

∫ 1

0
SN

(
SP−1d(x)

)
dx (12)

where the terms true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN) represent the
total count of different instances [48], [68], [69], [70].
To ascertain the sensitivity and specificity of the outcomes,
a threshold of 0.5 was utilized. To evaluate the sensitivity
and specificity of the results, a threshold value of 0.5 was
employed.

VI. RESULTS AND DISCUSSION
We conducted a comprehensive evaluation of the perfor-
mance of our proposed model, Deep-m5U, on two well-
established benchmark datasets. These datasets consisted of
a training dataset and an independent testing dataset, each
serving a crucial role in assessing the model’s generalization
capabilities. On the training dataset, which comprised
complete transcriptions, our model demonstrated remarkable
proficiency across multiple performance metrics. It achieved
an impressive sensitivity of 86.63%, indicating its ability to
correctly identify positive instances. Additionally, the model
exhibited a high specificity of 93.74%, reflecting its aptitude
for accurately recognizing negative instances. Moreover,
the model’s overall accuracy on the training dataset was
91.26%, reaffirming its competence in correctly classifying
both positive and negative samples. TheMatthews correlation
coefficient, a valuable metric for imbalanced datasets,
achieved a noteworthy value of 0.807, further corroborating
the model’s robustness. Furthermore, the area under the
receiver reached 0.967, signifying excellent discriminative
power and a strong ability to differentiate between the two
classes.

In the context of the mature mRNA mode, our model
showcased commendable performance, achieving 93.48%
sensitivity, 97.76% specificity, 95.63% accuracy, a Matthews
correlation coefficient of 0.913, and an area under the receiver
of 0.990. On a distinct note, the Deep-m5U model underwent
evaluation using an independent test set, wherein it displayed
differing results. For independent dataset, the full transcript
mode, the model achieved 87.00% sensitivity, 91.10% speci-
ficity, 89.43% accuracy, a Matthews correlation coefficient
of 0.781, and an AUC ROC of 0.953. Moreover, for inde-
pendent dataset, the mature mRNAmodel, the corresponding
metrics were 90.61% sensitivity, 95.54% specificity, 93.08%
accuracy, aMatthews correlation coefficient (MCC) of 0.862,
and an AUC of 0.959. A comparison of the outcomes of the
Deep-m5U model with fully trascript and matured mRNA
are presented in Table 2. Following that, a comprehensive
analysis is carried out to compare the performance of the
Convolutional Neural Network against conventional learning
algorithms. This evaluation encompasses the use of both
a benchmark dataset and an independent dataset to ensure
robustness and generalizability. Eventually, we critically
assess the outcomes produced by the Deep-m5U model and
present a comparative study against previously established
models.

VOLUME 12, 2024 10029



W. Alam et al.: Unveiling the Potential Pattern Representation of RNA m5U Modification Sites

TABLE 2. Performance evaluation of the proposed Deep-m5U pertaining to the two datasets.

A. MODEL HYPER-PARAMETERS
A Convolutional Neural Network model is characterized
by several pivotal parameters known as hyper-parameters,
whose appropriate tuning significantly impacts the model’s
performance. Critical aspects requiring configuration during
model setup encompass hidden layers, learning rate, number
of neurons, and activation functions. Among the plethora
of techniques proposed for hyper-parameter tuning, the grid
search approach stands as a widely embraced method for
hyper-parameter optimization, as referenced in works [24],
[42]. In this work, we have diligently employed the
grid search approach to identify the optimal configuration
values for the model’s hyper-parameters. The grid search
approach for hyper-parameter tuning due to its efficiency
in systematically exploring the hyper-parameter space [71].
Thereby, evaluating a predefined set of hyper-parameter
values arranged in a grid, the facilitate to thoroughly assess
the model’s performance across various configurations. Con-
sequently, through systematic exploration of various hyper-
parameter combinations, we have successfully determined
the most effective setup. The resulting optimal configuration
values of these hyper-parameters are comprehensively listed
in Table 3.

TABLE 3. The optimum hyper-parameters utilized for the proposed
Deep-m5U method.

1) PERFORMANCE EVALUATION OF DEEP-M5U WITH
BENCHMARK AND INDEPENDENT TESTING DATASETS
When contrasted with existing state-of-the-art method-
ologies, our novel computational approach, Deep-m5U,
emerges as a remarkably dependable solution. The outcomes

FIGURE 2. The full-transcript AUC on training dataset.

FIGURE 3. The full-transcript AUC on testing dataset.

presented in Table 4 exemplify how the Deep-m5U approach
effectively enhances sensitivity, specificity, accuracy, and
Matthews correlation coefficient. Through rigorous exper-
imentation, we have conclusively established the clear
superiority of our prediction approach, surpassing the per-
formance of current methods by a substantial margin. This
remarkable success can be attributed primarily to the inherent
strengths of the convolutional neural network features with
tetra-nucleotide composition features employed in ourmodel.

10030 VOLUME 12, 2024



W. Alam et al.: Unveiling the Potential Pattern Representation of RNA m5U Modification Sites

FIGURE 4. The mature mRNA AUC on training dataset.

Based on our current understanding, Deep-m5U stands out
as the most reliable computational technique for precisely
locating m5U sites within the human transcriptome. Conse-
quently, we conducted a comprehensive comparison of Deep-
m5U and m5UPred in their capacity to accurately identify
m5U sites. Through evaluation on both the full-transcript and
mature mRNA datasets, it was evident that m5UPred only
managed to achieve an accuracy of 88.32% and 89.91%,
respectively, in detecting m5U sites. In contrast, the Deep-
m5U model displayed significantly higher accuracy in pin-
pointing m5U sites, reaching 91.26% for the full-transcript
dataset and an impressive 95.63% for the mature mRNA
dataset. Detailed performance comparisons on the training
dataset can be found in Table 4. Our proposed Deep-m5U
model convincingly outperformed the existing computational
model, as demonstrated in Table 5.

2) PERFORMANCE COMPARISON OF DEEP-M5U WITH
OTHER CUTTING-EDGE MODELS USING TRAINING
DATASETS AND INDEPENDENT DATASETS
In comparison to state-of-the-art methods, our proposed
Deep-m5U computational approach exhibits superior robust-
ness in achieving success. As evidenced by the data presented
in Table 4, our prediction method, Deep-m5U, yields
substantial improvements in sensitivity, specificity, accuracy,
and MCC. The experimental outcomes unambiguously
establish the significant superiority of our proposed Deep-
m5U method over the existing approach. This remarkable
accomplishment can be primarily attributed to the effective
utilization of a convolutional neural network in our model.
To the best of our knowledge, Deep-m5U stands as the
accurate computational method for effectively identifying
m5U sites within the human transcriptome. Thus, we con-
ducted a thorough performance comparison between Deep-
m5U and m5UPred to assess their efficacy in m5U site
identification. The evaluation outcomes on training datasets
indicated that m5UPred achieved an accuracy of 89.04%

FIGURE 5. The proposed method training results comparison with
existing state-of-the-art method.

FIGURE 6. The proposed method independent test results comparison
with existing state-of-the-art method.

and 91.18% for identifying m5U sites in the full-transcript
and mature mRNA datasets, respectively. Conversely, the
Deep-m5U model displayed superior accuracy on training
dataset, achieving 91.26% for the full-transcript dataset and
an impressive 95.63% for the mature mRNA dataset in m5U
site identification. For detailed insights into the performance
comparison on the training dataset, please refer to Table 4 and
Figure 5.

In a similar vein, we performed a comprehensive perfor-
mance comparison between Deep-m5U and m5UPred on
independent datasets to assess their efficacy in identifying
m5U sites. As evident from the results presented in Table 5,
our proposed Deep-m5U model consistently outperformed
the existing m5UPred models across all evaluation parame-
ters. Remarkably, our model achieved an impressive accuracy
of 89.43% on the Full transcription dataset and an even higher
accuracy of 93.08% on the Mature mRNA dataset. Detailed
performance comparisons on the independent datasets are
meticulously documented in Table 5 and Figure 6.

VII. CONCLUSION
In this paper, we introduced ‘‘Deep-m5U,’’ a novel compu-
tational approach that combines the strengths of Convolu-
tional Neural Networks and tetra-nucleotide composition to

VOLUME 12, 2024 10031



W. Alam et al.: Unveiling the Potential Pattern Representation of RNA m5U Modification Sites

TABLE 4. Performance evaluation of the proposed method compared to existing methods using training datasets.

TABLE 5. Performance evaluation of the proposed method compared to existing methods using independent datasets.

accurately identify 5-Methyluridine (m5U)modification sites
in RNAmolecules. Them5Umodification plays a crucial role
in essential cellular processes, making the identification of
these sites vital for understanding molecular mechanisms and
regulatory functions in disease contexts. The proposed Deep-
m5U model uniquely combines CNNs, which are proficient
in detecting protein-coding regions and capturing relevant
motifs, with the tetra-nucleotide composition to capture
global compositional characteristics, thereby enabling the
model to extract both local and global features, contributing
to its robust performance. One critical aspect of Deep-m5U
is the utilization of one-hot encoding that transforms RNA
sequences into numerical inputs, facilitating the learning
process and enhancing prediction accuracy. We conducted
assessments on two benchmark datasets: the full tran-
script and mature mRNA datasets. Remarkably, Deep-m5U
demonstrated outstanding performance with accuracies of
91.26% and 95.63%, respectively, surpassing current state-
of-the-art methods. The model’s high AUC ROC values on
the training (0.997) and testing (0.953) datasets for full
transcript, as well as on independent datasets (0.99 and
0.959) for mature mRNA, further validate its efficacy and
reliability. The Deep-m5U model’s ability to identify m5U
sites with superior accuracy and efficiencymakes it a valuable
tool for drug discovery and academic research, providing
crucial insights into molecular processes and regulatory
functions. It is crucial to note that the performance of
computational models is significantly influenced by the
datasets used. The quality of these datasets varies based
on factors such as diversity, size, and the representations
of both training and testing data, ultimately impacting the
model’s performance. In our current approach, we applied
the m5U model to two datasets of considerable size and
evaluated its performance against state-of-the-art approaches
likemiCLIP-Seq [9] andm5uPred [12].We further conducted
evaluations using various training and testing datasets to
comprehensively assess the model’s capabilities. However,
for ensuring the accuracy and authenticity of our proposed
model, we plan to extend it by incorporating more com-

prehensive and diverse training datasets. This extension has
the potential to significantly enhance the model’s robustness
and improve its generalization capabilities in practical
applications.
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