
Received 14 December 2023, accepted 4 January 2024, date of publication 11 January 2024, date of current version 22 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3353134

X-Attack 2.0: The Risk of Power Wasters and
Satisfiability Don’t-Care Hardware Trojans
to Shared Cloud FPGAs
DINA G. MAHMOUD 1, (Member, IEEE), BEATRICE SHOKRY 1,
VINCENT LENDERS 2, (Member, IEEE), WEI HU 3, (Member, IEEE),
AND MIRJANA STOJILOVIĆ 1, (Senior Member, IEEE)
1School of Computer and Communication Sciences, EPFL, 1015 Lausanne, Switzerland
2Cyber-Defence Campus, armasuisse, 3602 Thun, Switzerland
3School of Cybersecurity, Northwestern Polytechnical University, Xi’an 710072, China

Corresponding author: Dina G. Mahmoud (dina.mahmoud@epfl.ch)

This work was supported by armasuisse Science and Technology.

ABSTRACT Cloud computing environments increasingly provision field-programmable gate arrays
(FPGAs) for their programmability and hardware-level parallelism. While FPGAs are typically used by
one tenant at a time, multitenant schemes supporting spatial sharing of cloud FPGA resources have been
proposed in the literature. However, the spatial multitenancy of FPGAs opens up new attack surfaces.
Investigating potential security threats to multitenant FPGAs is thus essential for better understanding and
eventually mitigating the security risks. This work makes a notable step forward by systematically analyzing
the combined threat of FPGA power wasters and satisfiability don’t-care hardware Trojans in shared cloud
FPGAs. We demonstrate a successful remote undervolting attack that activates a hardware Trojan concealed
within a victim FPGA design and exploits the payload. The attack is carried out entirely remotely, assuming
two spatially colocated FPGA users isolated from one another. The victim user’s circuit is infected with
a Trojan, triggered by a pair of don’t-care signals that never reach the combined trigger condition during
regular operation. The adversary, targeting the exploitation of the Trojan, deploys power waster circuits to
lower the supply voltage of the FPGA. The assumption is that, under the effect of the lowered voltage,
don’t-care signals may reach the particular state that triggers the Trojan. We name this exploit X-Attack
and demonstrate its feasibility on an embedded FPGA and real-world cloud FPGA instances. Additionally,
we study the effects of various attack tuning parameters on the exploit’s success. Finally, we discuss potential
countermeasures against this security threat and present a lightweight self-calibrating countermeasure. To the
best of our knowledge, this is the first work on undervolting-based fault-injection attacks in multitenant
FPGAs to demonstrate the attack on commercially available cloud FPGA instances.

INDEX TERMS FPGA security, hardware trojans, multitenancy, timing faults, remote attack.

I. INTRODUCTION
Individuals and companies increasingly adopt cloud com-
puting for a variety of use cases. Instead of acquiring
and managing their hardware and software, users can rent
computing instances from cloud service providers (CSPs)
and use them to test and deploy their applications [1]. Given
the widespread use of the cloud, the security of cloud-based

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Pilato .

systems is now of the utmost importance. In particular, the
systems provided by the CSPs deal with user data and must
guarantee its integrity and confidentiality.With the increasing
variety and heterogeneity of cloud computing instances,
security requirements are no longer limited to storage and
central processing units (CPUs) but also include specialized
hardware, such as graphics processing units (GPUs) and
field-programmable gate arrays (FPGAs).

FPGAs have emerged as hardware platforms well-suited
for both regular and irregular forms of application

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 8983

https://orcid.org/0000-0003-0720-1342
https://orcid.org/0009-0003-6372-6765
https://orcid.org/0000-0002-2289-3722
https://orcid.org/0000-0001-6738-4297
https://orcid.org/0000-0001-5649-5020
https://orcid.org/0000-0001-9315-1788


D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

parallelism. Unlike other computing units, they support
fine-grained (bit-level) hardware design specification and
reconfiguration at runtime. FPGAs are powerful hardware
accelerators for machine learning, big data, and crypto-
graphic applications [2], [3], [4]. Cloud service providers
such as Amazon, Alibaba, and Baidu offer clients the
possibility to rent the FPGA instances to design and deploy
their accelerators [5], [6], [7], [8]. Microsoft uses FPGAs in
their datacenters to accelerate some of their services (e.g.,
Microsoft Bing) [9], [10].

For better and more efficient cloud utilization, remote
users can share the computing resources. Sharing is usually
achieved by means of virtualization, providing the users with
virtual instances that behave similarly to physical ones. Given
that multiple virtual instances can use the same hardware, the
CSPs can manage the resource allocation each user needs.
Another advantage of virtualization is that it is cost-effective
and helps with recovering from failures [11]. The benefits
of virtualization are the reason for the increasing interest
in developing solutions for cloud FPGA virtualization and
sharing [12], which often aim to support both temporal and
spatial multitenancy.

The prospect of multitenancy has pushed researchers and
the industry to start investigating related security risks that
could affect cloud users. Security exploits involving CPUs
typically target shared memory, microarchitecture, and the
interconnect [13], [14], [15]. FPGAs are not immune to
the risks related to hardware sharing, either. Researchers
have shown attacks exploiting the underlying FPGA power
distribution network (PDN) and the communication inter-
faces [16], [17] to gain side-channel information about the
colocated FPGA tenant. Some of the attacks are less subtle:
they use the shared PDN as a medium for propagating
disturbances (e.g., glitches) with the intent of causing a
denial of service (DoS) or injecting faults in the victim’s
operation; sometimes, faults may lead to the recovery of
secret encryption keys or degradation of the accuracy of
neural network inference [18], [19].
Issues arising from multitenancy aside, FPGAs are also

vulnerable to supply chain attacks. The design and manu-
facture of FPGAs suffer from the same trust and security
concerns known to other integrated circuits [20]. Even if no
tampering occurs during the chip manufacturing, cloud users
may end up with erroneous or malicious FPGA applications
due to the use of untrusted third-party intellectual property
(IP) cores or insufficiently verified design modules. If any
of the parties supplying the modules is untrusted or compro-
mised, the insertion of malicious functionality in the form
of hardware Trojans can compromise security. Additionally,
if the designs run within a cloud instance and the CSP is
untrusted or compromised, security concernsmay arise at that
stage as well [21].

While the literature examines the possibility of stealthy
hardware Trojan insertion or undervolting for fault injection
separately, we note that the two threats combined lead to

another equally relevant attack model. In our earlier work,
we have shown for the first time that an FPGA-based
adversary can activate a stealthy satisfiability don’t-care
(SDC) hardware Trojan by generating power supply voltage
disturbances [22]. We named this attack X-Attack after the
don’t-care conditions that act as the Trojan trigger.

Satisfiability don’t cares are combinations of internal
circuit signals that, by construction, can never occur during
regular operation (not counting transient glitches that do
not affect the computation results). An SDC Trojan is,
therefore, a hardware Trojan that uses SDC signals as
a trigger. In our previous work [22], we first showed
that FPGA power supply voltage manipulations can make
SDC signals take unexpected values, potentially triggering
the SDC Trojan. Then, we demonstrated a successful
key-recovery attack against an advanced encryption standard
(AES) core, previously compromised by inserting an SDC
Trojan.

Within the context of FPGA-based undervolting attacks,
X-Attack adds to the existing body of knowledge. FPGA-
based undervolting was first used for denial-of-service (DoS)
exploits [23]. Later, researchers found ways to better control
the voltage variations to avoid DoS and, instead, perform
fault injection. Successful examples of fault-injection attacks
include differential fault analysis (DFA) attacks against AES
or intentional neural network performance degradation [18],
[19]. X-Attack, however, is an example of a remote FPGA
attack targeting a hardware Trojan; unlike a DFA attack,
X-Attack can recover an arbitrary secret payload that the SDC
Trojan is configured to leak, andX-Attack does not require the
adversary to have access to the victim inputs (in comparison,
DFA requires the adversary to be able to send plaintexts).
Within the context of hardware Trojan exploits, previous
work focused on activating SDC Trojans through physical
access to the device [24]. Instead, X-Attack shows that the
SDC Trojan can be triggered remotely without physical
access to the device.

Our earlier paper presented the X-Attack proof-of-concept
on an FPGA development board in a laboratory environ-
ment [22]. No experiments were performed on a real cloud
FPGA instance. Opting for an FPGA development board is
a frequent practice in this line of research because it is less
costly and because the adversary has complete control of the
hardware and environmental conditions, plus the freedom to
cause an FPGA reset unintentionally without consequences.
To our knowledge, no prior work on remote FPGA fault injec-
tion confirmed their findings on an actual commercial cloud
FPGA instance. Today, the security community strongly
recommends validating the vulnerabilities on the cloud,
where the PDN is more robust [25]. In comparison, DoS
and side-channel attacks have been experimentally validated
on the Amazon AWS cloud instances equipped with AMD
FPGAs [26], [27]. In thismanuscript,X-Attack 2.0, we extend
our previous publication with experiments targeting an
actual cloud instance. We demonstrate a successful exploit,

8984 VOLUME 12, 2024



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

confirming the relevance of X-Attack.1 Additionally, instead
of AMD FPGAs, we target Intel FPGAs. Our analyses
provide novel and detailed insights into undervolting effects
on a cloud instance with Intel FPGAs,2 thus complementing
the existing literature focusing on AMD FPGAs [28].

Specifically, this manuscript extends our previous
work [22] as follows:

• It demonstrates X-Attack, a novel exploit combining
remote undervolting with SDC Trojans, in an actual
cloud setting involving an Intel FPGA. The attack
target is an AES core with an integrated SDC hardware
Trojan. The attack goal is to steal the secret AES key,
by triggering the Trojan and recovering the payload.
To the best of our knowledge, this is the first work
to show successfully injected and exploited FPGA-
undervolting-based faults on commercially deployed
cloud FPGA instances.

• We systematically explore and evaluate the attack
parameters and their effect on the attack success,
focusing on the attacker size, the way it is activated and
controlled, and the distance between the attacker and the
victim. The goal is to learn how to adapt the exploit to
various targets.

• We analyze the relationship between various SDC
conditions (Trojan triggers), the victim AES circuit
operation, and the success of X-Attack.

• We implement, test, and validate a self-calibrating
version of a lightweight countermeasure [22] against
X-Attack and similar fault-injection exploits.

The remainder of this paper is organized as follows. First,
Section II presents the necessary background. The threat
model is discussed in Section III. Section IV focuses on
X-Attack. The experimental setup and the results are
presented in Sections V and VI, respectively. Section VII
addresses potential countermeasures, whereas Section VIII
discusses the obtained results. Section IX presents the related
work. Finally, Section X concludes the paper.

II. BACKGROUND
In this section, we present the necessary background for
X-Attack on embedded and cloud FPGAs. We begin with
an overview of FPGA cloud offerings and how they differ
from those used in embedded settings. We then present SDC
Trojans. Then, we discuss AES, the victim we use for the
proof-of-concept for X-Attack. Finally, we present remote
undervolting-based exploits on FPGAs.

A. CLOUD VS. EMBEDDED FPGAS
Thanks to their integration in cloud computing instances
and use for acceleration, FPGAs evolved from prototyping

1For clarity and because the underlying attack mechanism is shared
between this and previous work, we refer to the exploit as X-Attack
throughout the manuscript.

2We do not disclose the name of the CSP because the possibility to inject
faults in other FPGAs and other CSPs cannot be entirely excluded. To our
knowledge, the target CSP currently does not support spatial FPGA sharing.

platforms to widely available acceleration platforms. The
adoption of FPGAs by CSPs required developing the
necessary infrastructure to ensure efficient management of
the FPGA resources and their incorporation into the cloud
ecosystem.

In datacenters and the cloud, FPGAs are typically incor-
porated as accelerator cards connected through a peripheral
component interconnect express (PCIe) bus to the CPU
instances [29]. On the other hand, embedded offerings
typically combine the FPGAwith a CPU in the same package,
resulting in a system-on-chip (SoC) or multi-processor SoC
(MPSoC). In an SoC, the FPGA and the CPU can commu-
nicate through the advanced extensible interface (AXI) [30].
In the cloud, FPGA logic resources are typically split into the
shell and the user partitions. The shell, controlled by the CSP,
manages input/output (I/O) interfaces and the data exchange
between the user design and the rest of the system. Through
the shell management, the CSP controls resource allocation
and user isolation [7]. The division of the logic into shell and
user regions alsomeans that in cloud settings, differently from
embedded settings, user applications have less control over
the underlying hardware and interfaces.

Major CSPs commonly deploy custom-made FPGA
boards [7]. In the absence of publicly available implementa-
tion details of the cloud FPGA instances, an adversary aiming
to exploit the PDN has no alternative but to experiment with
an off-the-shelf FPGA card. However, the attack tuned for
one board is likely challenging to port to another because the
underlying PDNs differ. Accordingly, preparing an exploit
against a custom-made cloud FPGA is challenging and
requires online testing. Besides the superior PDN, cloud
FPGAs are often built in the latest technology nodes and offer
significantly more resources than smaller embedded FPGAs
(the improved technology and larger size are other reasons
why the multitenancy model is a desirable direction for cloud
FPGAs). All the differences between cloud and embedded
FPGAs pose a challenge in porting exploits between the
two deployment scenarios, which can only be addressed by
running experiments in both settings.

B. SATISFIABILITY DON’T-CARE HARDWARE TROJANS
Hardware Trojans are malicious hardware modifications aim-
ing to disable a system or leak its secrets when triggered [31].
Adversaries can implant Trojans in application-specific
integrated circuits (ASICs), microcontrollers, third-party IPs,
and by modifying FPGA bitstreams. By design, the malicious
party implements stealthy and rarely-activated Trojans to
avoid their detection [31]. Our work considers Trojans that
can break a circuit’s confidentiality by leaking its secrets to
an adversary. Specifically, we focus on satisfiability don’t-
care Trojans [24] described below.

Due to the way digital hardware circuits are designed and
built, there exist correlations among the values of internal
signals. Specifically, because of the shared inputs that affect
the values of many internal signals, the logic functions

VOLUME 12, 2024 8985



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

FIGURE 1. Example of SDC condition and its use in the SDC Trojan.
(a) Gate-level implementation of a 2-to-1 multiplexer with the SDC
condition that n1 and n3 cannot be 11 (not accounting for transient
glitches). (b) Implementation of SDC Trojan using the trigger signals
n1 and n3.

produce signals that are correlated. These correlations may
lead to signals never reaching some internal states. Such
unreachable states are known as satisfiability don’t-cares:
states that will never occur under any input sequence during
normal operation.

For example, let us consider the gate-level implementation
of a 2-to-1 multiplexer (MUX), as shown in Fig. 1. The
boolean function of theMUX is O = S·A+S·B, where A and
B are the inputs, S is the select line, and O is the multiplexer
output. Since they share the common select line S, the two
AND gates (g1 and g3) produce outputs (n1 and n3) that are
correlated. In this case, the correlation is such that the outputs
can never simultaneously be logical 1. Consequently, we can
say that the signal pair (n1, n3) represents an SDC condition
such that the equality (n1, n3) = (1,1) will never be observed
under normal operating conditions (not considering transient
states when the logic is switching).

In the simple example of a MUX, the SDC condition
is related to signals within the same combinational block
and where the condition’s origin is two gates sharing the
same signal. When the SDC condition is localized in this
way, it is termed a local SDC, and satisfiability analysis
can easily identify it. However, within a large design, far-
apart signals can still be correlated at a global level. For
instance, when one of the circuit’s primary inputs is a logical
1, the path correlations will lead to some internal signals
never being 0. The concept of an SDC differs from an
external don’t-care condition, which arises from incomplete
design specifications, and is accordingly easy to eliminate.
On the other hand, SDCs are widely spread within completely
specified hardware functions and cannot be eliminated [24].
Seeing how widespread SDCs are, Hu et al. introduced

the idea of using an SDC signal pair as trigger signals for
a stealthy hardware Trojan [24]. Following the example of

the MUX in Fig. 1a, we can build the Trojan in Fig. 1b and
use n1 and n3 as its triggers. The way the Trojan is built, the
output of the circuit with the Trojan (OT ) is always equivalent
to the output of the circuit without it (O) as long as the
operating conditions are normal. This equivalence makes the
Trojan difficult to detect. Furthermore, each trigger signal
can switch freely, so a switching probability analysis will not
point to an issue with either trigger signal. Finally, using flip-
flops (FFs) for the Trojan trigger signals guarantees that no
transient glitches will accidentally activate the Trojan. The
FFs also separate the combinational block where the signals
originate from that in which the Trojan is implemented. This
separation does not change the functionality but helps prevent
the synthesis tools from optimizing away the Trojan.

The design proposed by Hu et al. relies on injecting a
fault into the operation of the circuit to have the trigger
signals reach the SDC condition [24], which is the only way
to activate the Trojan and have it leak a secret (payload)
to the output. To activate the Trojan, Hu et al. externally
manipulated the clock to inject glitches [24]. However,
as physical access to the FPGA device and control over the
victim’s clock are not always possible, regardless of whether
the target is an embedded or cloud FPGA, we choose remote
undervolting as the fault injection approach [22]. To perform
remote FPGA undervolting, an adversary requires FPGA
power wasters, which will be explained in Section II-D.

C. AES
Symmetric encryption, which uses one key for encrypting and
decrypting the data, is a fast and efficient way to secure data.
TheAES algorithm is among themost widely used symmetric
encryption algorithms. Modern devices implement AES as a
crypto-accelerator or a software crypto-library [32].

AES is a block cipher: it operates on 128-bit blocks of
data. The key size varies depending on the security level;
typically, the key has 128, 192, or 256 bits. The AES
algorithm, illustrated in Fig. 2, takes the input plaintext (the
128 bits to be encrypted) and applies round transformations
multiple times to obtain the output ciphertext (scrambled
data that cannot be read without the key). The exact number
of rounds depends on the chosen key size. For a 128-bit
key, the encryption takes ten rounds. The rounds consist of
the following operations: AddRoundKey, MixColumns (not
performed in the last round), SubBytes, and ShiftRows [33].

Due to the widespread use of AES, many hardware AES
implementations are available, and designs requiring AES
can leverage third-party IPs. When implementing AES in
hardware, the designer may opt for a lightweight circuit
by building one module for a round and executing each
round sequentially using the same module. To increase
the throughput, the designer can instantiate a module for
each round and pipeline the circuit, similarly to Fig. 2.
FPGA implementations of AES often leverage reconfigurable
resources for circuit optimization. For example, FPGA
memory elements and look-up tables (LUTs) can effectively

8986 VOLUME 12, 2024



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

FIGURE 2. Illustration of the AES algorithm with the rounds pipelined.

implement a substitution box (Sbox) for the SubBytes
operation.

Another consequence of AES’s popularity is that AES
hardware and software implementations are among the most
common attack targets. Adversaries can use side channels or
fault injection to recover the AES secret key. When using
fault injection, attackers typically aim to introduce a fault
that affects the algorithm output. Then, for instance, they can
perform a differential fault analysis (DFA) by comparing the
faulty and the correct ciphertext to reduce the search space
of the secret key [33]. Our work targets fault injection, but
instead of DFA, it uses an SDC hardware Trojan hidden in
the AES core to recover the secret encryption key.

D. REMOTE UNDERVOLTING-BASED FAULT INJECTION
With the increasing use of cloud computing and the Internet
of Things (IoT), remote device access has become a
relatively common feature. Consequently, researchers have
been studying the associated security risks, particularly the
exploits that leverage software access (including FPGA
configuration) for fault injection. Specifically, researchers

FIGURE 3. A single-LUT RO with an enable signal.

have examined the possibility of using the programmable
logic of an FPGA to build malicious circuits known as
power wasters; when active, these circuits draw excessive
current and cause on-chip voltage drops. As a consequence
of reduced voltage, the circuit delays increase. If the increase
is significant enough, timing constraints may be violated,
resulting in a faulty operation [34].

Various implementations of FPGA power wasters have
been presented in literature [35]. Given that dynamic power
consumption increases with the switching frequency, fast
oscillators such as combinational ring oscillators (ROs)
emerged as some of the most effective power wasters [36].
An RO is built by chaining an odd number of inverters and
connecting the output of the last one to the input of the
first, thus creating a closed loop. On an FPGA, an RO can
be built using a single LUT as shown in Fig. 3 [23]. Here,
the LUT implements the NAND functionality. Its output is
connected back to one of its inputs, creating an oscillator.
The second input is used to enable and disable the oscillatory
behavior. The lower the number of inverters in an RO, the
shorter the combinational path and the higher the oscillation
frequency. The effectiveness of this single-stage RO can be
further improved by increasing the output capacitive load
(e.g., by connecting the RO output to free LUT inputs or
FPGA routing wires) [26], [37]. Such power wasters use the
available hardware resources better: they complement logical
with routing resources. However, as they consume higher
power, they are more likely to trigger a permanent fault (e.g.,
reset), resulting in a DoS attack. Themore effective the power
wasters, the finer the control level required.

By analyzing the design netlists, combinational loops
can be detected. Detection and removal of combinational
loops can be incorporated into the FPGA compilation flow;
however, netlist screening is not a standard practice yet.
An exception is Amazon AWS [5], where FPGA combina-
tional loops are detected before generating the bitstreams.
The issues with preventing combinational loops by default
are twofold. First, benign circuits using combinational loops
(e.g., physical unclonable functions (PUFs) or RO-based
true random number generators) would not be supported.
Second, the absence of a combinational loop is far from
a guarantee against fault-injection attacks. Breaking the
combinational loop with a flip-flop (FF) or latch makes the
resulting RO pass the screening [38]. Other examples of
effective and combinational-loop-free power wasters include
glitch generators and glitch amplifiers, block random access
memories (BRAMs), and overclocked block ciphers [26],
[38], [39], [40].

VOLUME 12, 2024 8987



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

FIGURE 4. Threat model, with optional components represented by
dashed edges.

Instantiating and simply enabling the power wasters is
insufficient for a successful attack. An adversary needs
to carefully control the activity of the power wasters to
avoid consuming more power than the power supply can
provide (i.e., avoid FPGA reset [23]). Such control requires
extensive experimentation, analysis of the obtained effects,
and tuning of the enable signal pattern. Carefully controlled
fault injection was shown to be effective for biasing true
random number generators, and DFA exploits against AES
running in hardware or software [18], [41], [42].

III. THREAT MODEL
Fig. 4 illustrates the threat model we consider in this
work. The two main aspects are FPGA multitenancy and
the existence of a hardware Trojan. Following other works
focusing on hardware Trojans, our threat model assumes
that the target victim uses a hardware module (e.g., an IP
core) previously compromised by a hardware Trojan [22],
[24], [43]. For example, the victim uses a black-box
module offered by the cloud service provider, the FPGA
manufacturer, or an untrusted third party. We assume that a
malicious party has interfered with the production of the IP
and has hidden a stealthy Trojan within. The victim trusts
the IP and does not have access to a golden-reference IP
without the Trojan; thus, they cannot compare the netlist to
detect the existence of the Trojan. The design with the SDC
Trojan is functionally equivalent to a Trojan-free design, and
therefore, functional checks do not detect the existence of the
Trojan [24].
The exploit under consideration occurs in a multitenant

scenario, possibly in a cloud instance. The FPGA is remotely
accessible to the attacker and the victim. Each has a
private partition where arbitrary designs can be loaded. The
partitions are physically and logically separated. The cloud
shell can control all shared resources other than the PDN,
as in current cloud instances. The victim runs a security-
sensitive service, such as encryption, and leverages an IP
where an SDC Trojan [24] has been inserted during the
design phase. The victim does not implement specially

tailored countermeasures against fault injection attacks; it
relies on FPGA voltage supervisors and the cloud service
provider. The attacker can be the same party that inserted the
Trojan or another adversary (collaborative attack) who gained
knowledge of the existence of the Trojan. Through the shared
PDN, the adversary aims to influence the chip’s voltage to
trigger the Trojan.

Similarly to differential fault analysis and Trojan-based
exploits [18], [24], [42], [44], an additional requirement is
for the adversary to be able to observe the Trojan payload: in
our case, the output of the compromised IP. For example, the
victim can have a public interface for receiving requests from
other parties, including potentially malicious ones [18], [24].
The adversary, sending requests to the victim, can control the
input and receive back the output. If the victim’s IP core is
an encryption module, the encrypted data can be sent over
an unprotected or shared communication interface, which the
adversary may be able to observe. The encrypted data may
also be stored in a region of memory where other users can
read it, as the encryption should normally provide enough
protection to guarantee that the plaintext cannot be recovered
from the ciphertext [45]. Finally, the attacker may leverage
side channels (e.g., through the host CPU or shared memory)
to infer the output [15].

IV. X-ATTACK DESIGN
This section presents X-Attack, our exploit combining
undervolting with SDC Trojans. The attack has two main
components: the stealthy SDC Trojan hidden within the
victim IP and the power-wasting circuits used to attack the IP
in a multitenant scenario. We begin by explaining the Trojan
design and how an adversary would insert it into the infected
IP to avoid detection and increase the likelihood of the
attack’s success. Then, we discuss the properties of the
target victim. Finally, we discuss the attacker design and
implementation.

A. TROJAN DESIGN
As in our previous work [22], we use the SDC Trojan
proposed by Hu et al. [24]. The Trojan is to be inserted as
illustrated in Fig. 5. With access to the victim design’s
netlist, the adversary, aiming to hide the Trojan, can use a
satisfiability (SAT) solver to find signals that together form an
SDC signal pair to be used as the Trojan trigger (dc0 and dc1
in Fig. 5). We use the SAT solver in Yosys [46]. Without loss
of generality, we choose an AES IP core as the victim (more
details will follow shortly, in Section V). The search for the
signal pair can be repeatedmultiple timeswith various criteria
to find a suitable pair of signals. One requirement is that the
two triggers can take on all combinations other than the SDC
condition. Another is that the SDC signals should not be on
the critical path to avoid easy detection of the Trojan, if delay-
based hardware Trojan detection methods were to be used on
the circuit [24]. However, their delays should not be too short
either; otherwise, the SDC signals may not be affected by

8988 VOLUME 12, 2024



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

FIGURE 5. Illustration of a circuit infected with an SDC Trojan, showing
the connections between the original victim function and the Trojan and
the optional transformations impacting don’t-care signal delays and
polarity.

the attack. If the SDC signal delays are on the short side, the
adversary can, within certain limits, modify the victim netlist
to increase them (the Transformation in Fig. 5). The netlist
modification must respect the SDC signals’ ability to switch
freely and ensure the SDCs are not on the critical path.

When searching for the trigger signal pair, a valid SDC
condition is any combination of the two bits (i.e., 00, 01,
10, or 11). Additionally, whatever SDC condition is found,
it can be used as is or inverted. We will later use the inversion
to test if the change in the direction of the fault (e.g., the
transition from 0 to 1 instead of from 1 to 0) and the slight
change in the SDC delays contribute to the attack success.
Consequently, there are eight SDC conditions: 00, 00inv,
01, 01inv, 10, 10inv, 11, and 11inv. The condition 00inv
is obtained by inverting the polarity of the signals forming
the SDC condition 11 and inverting the polarity of the
multiplexers accordingly. The Trojan with the SDC condition
10 is the mirror image of the 01 Trojan, as reversing the
order of the trigger signals will reverse the SDC condition.
Therefore, it suffices to focus on 00, 00inv, 01, 10inv, 11,
and 11inv. We define two Trojan variants [22]:

• Trojan-0: without transformations (as in Fig. 1b).
• Trojan-delay: Trojan-0 with extra delay on the trigger
path (added by the Transformation block in Fig. 5).

The former Trojan variation uses the trigger signals (or their
inverse) as found by the SAT solver. The latter increases
the signal pair’s delays. The increase can be achieved by
adding buffers before the registers in Fig. 5. However, for a
stealthier design, the original SDC signals can be transformed
by combining them with other internal signals. The exact
transformation depends on the original SDC condition, as the
transformation needs to maintain the same SDC condition
and maintain the ability of the two trigger signals to switch
freely. Finally, the adversary can also opt for combining
transformations with buffers. We derive the following logical
expressions for increasing the SDC signal pair delays:

t000 = (dc000 + dc001 ) · (x + y),

t001 = (dc000 + dc001 ) · (x + y). (1)

t010 = (dc010 · dc011 ) + (x · y),

t011 = (dc010 + dc011 ) · (x + y). (2)

t100 = (dc100 + dc101 ) · (x + y),

t101 = (dc100 · dc101 ) + (x · y). (3)

t110 = (dc110 · dc111 ) + x · y,

t111 = (dc110 · dc111 ) + x · y. (4)

Here, t0 and t1 are the new trigger signals, while dc0
and dc1 are the original don’t-care signals. The superscript
indicates the SDC condition; for example, the expression
in (1) shows the transformation when the SDC condition
is 00. x and y are arbitrary victim signals chosen to
increase the delays of the transformed don’t-care signals.
The transformations use the knowledge of the values that
the don’t-care signals cannot take and ensure that the
resulting signals (post-transformation) cannot attain them
either, while freely taking on the other possible values. Since
the transformations produce signals that preserve the don’t-
care condition, they can also be applied recursively.

Once the trigger signals are chosen, the adversary routes
them to the two FFs, as shown in Fig. 5. Consequently, faults
injected through undervolting will render the outputs of the
FFs faulty. They, in turn, are the select signals for the MUXes
controlling the output of the victim IP. Depending on the SDC
condition, the inputs to the MUXes are arranged such that for
the three combinations of the don’t-care signals that are not
the SDC condition, the output will match the output of the
IP without the Trojan. However, if the two select lines reach
the SDC condition, the output will be the secret the adversary
wishes to leak. In our case, that secret is the encryption key
of an AES module.

B. ATTACKER DESIGN
In the multitenant FPGA setup, the adversary aims to inject
faults into the IP’s operation to reach the SDC condition
and trigger the Trojan. Given the absence of physical
access to a cloud FPGA, the attacker cannot manipulate
the victim’s clock signal. Instead, they can manipulate the
on-chip voltage; hence, the exploit leverages power-wasting
circuits.

First, the adversary decides on the power waster to use
(e.g., ROs, register-based ROs, encryption rounds) [26],
[38]. If the remotely accessible FPGA has no limitations
on the circuits that can be instantiated (e.g, not forbidding
combinational loops or not restricting access to phase-locked
loops (PLLs)), the malicious party can design power wasters
freely. The choice can be made according to available
resources, the quality of the PDN (and, accordingly, the
required power consumption), and the attacker’s experience.

We instantiate the power wasters inNB blocks ofNW power
wasters (the exact values will be given in Section V). The
power wasters within each block share the enable signal, and
the control for each enable signal is independent of other
enable signals. We control the start and duration of the attack,
whether the signal is continuously active or toggling, and,
if toggling, the signal’s period and duty cycle. The period
determines the number of clock cycles of each repetition

VOLUME 12, 2024 8989



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

of the toggling of the signal, and the duty cycle determines
the ratio of the period during which the enable signal is
high. Controlling the period and the duty cycle is essential as
it introduces frequency components that render the voltage
drop more significant due to the frequency-dependent PDN
impedance [28].

The adversarymust carefully control all the power wasters’
variable parameters to ensure a substantial enough voltage
drop to inject faults into the Trojan triggers path. The strength
of the attack also affects how frequently the Trojan will be
activated and, accordingly, how easy it will be to distinguish
the leaked secret at the output, which is essential if the
attacker cannot control the input. In addition, the adversary
aims to limit the voltage drop to ensure the board does not
reset.

Once the suitable parameters of the attack are identified,
the victim’s output can be collected to be analyzed. Prior to
the attack, the adversary can collect a large set of outputs
to obtain a baseline distribution of values at the output.
Finally, the secret can be identified as (one of) the most
repeated value(s) that appears only when the power wasters
are active and never appears otherwise (i.e., a value that does
not fit the baseline distribution). Optionally, if the victim
exposes a public input interface to receive requests from
other parties (e.g., the victim performs publicly available
encryption services), the attacker can send a fixed set of
predefined input values, observe the obtained outputs, and
quickly distinguish the faulty output values and the leaked
secret from the correct ones without having to examine the
output distribution.

V. IMPLEMENTATION
We test X-Attack on an embedded FPGA platform and
a commercial cloud FPGA instance. The embedded setup
serves as a test for the attack feasibility and an initial
exploration of its control parameters. Then, we port X-Attack
on the cloud to understand how the differences between the
two setups affect the attack parameters and to analyze in detail
additional variables affecting the attack’s success. In what
follows, we describe the two experimental setups.

A. EMBEDDED SETUP
We use an Intel DE1-SoC development kit with Cyclone V
SoC as the embedded test platform. Intel Quartus Standard
Edition 19.1 is used for FPGA compilation [47]. Fig. 6
illustrates the system architecture. The FPGA provides a
dual-core ARM Cortex-A9 as a hard processing system
(HPS), which we leverage for control purposes. The design
comprises the parts discussed in the following three sections:
the attacker, the victim, and the data collection subsystem.

1) ATTACKER
The adversary employs power-wasting circuits to lower the
chip’s voltage, increase the path delays within the victim
circuits, and inject faults. The goal with the embedded setup
for X-Attack is to investigate the possibility of leveraging

FIGURE 6. System design for the embedded setup.

the undervolting generated by the power wasters to activate
the SDC Trojan. To that end, we use single-LUT ROs: they
are effective and easy to control. Specifically, the attacker
design consists of two large equally-sized blocks of ROs.
The adversary can choose to continuously enable one block
(resulting in only half of the ROs active), continuously enable
both blocks (all of the ROs are active), or periodically enable
and disable both blocks [41].

The software on the HPS controls the activation of the
two RO blocks. The interface between the HPS and the
FPGA allows the adversary to initiate the attack (Start
signal in Fig. 6) and to choose how to activate the ROs
(CTRL signal in Fig. 6). Based on Start and CTRL, the
hardware generates the enable signals that control the ROs.
Specifically, the Start initiates the attack. CTRL is a
pair of two signals. If their values are 00 and 11, then
the power wasters are disabled and enabled, respectively.
In our implementation, 01 defines the case when both blocks
are toggling (i.e., periodically enabled and disabled), while
10 continuously activates only one block. The hardware
terminates the attack once the preset duration has elapsed to
ensure that FPGA-HPS communication delays do not cause
the exploit to last longer than intended and risk resetting
the FPGA. The clock frequency is 160 MHz, and the attack
duration is set to 4,096 clock cycles (equivalent to 25.6 µs).

2) VICTIM
In a general context, an adversary would implant an SDC
Trojan in an IP core with a secret to leak. Accordingly,
and without loss of generality, our attack targets an AES
cryptographic core. Symmetric encryption has two secrets:
the plaintext and the encryption key. The adversary aims to
obtain the key, which allows decrypting the ciphertexts.

For reproducibility of our results, we choose an open-
source 128-bit pipelined AES implementation [48]. As the
AES core is pipelined, targeting a specific round for a DFA
exploit is challenging. X-Attack, on the other hand, does not
attempt to gain information by introducing a fault into the
algorithm. Instead, the exploit faults one or two specific paths
(of the trigger signals) to leak the entire secret to the output
of the infected IP, as illustrated in Fig. 5. The satisfiability
analysis of Yosys [46] helps identify pairs of don’t-care

8990 VOLUME 12, 2024



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

signals within the Sbox, to use as Trojan triggers. We find
that a suitable signal pair can be identified for any of the
two-bit SDC conditions. However, we focus first on 11 (and,
correspondingly, 00inv), leaving a thorough analysis of other
two-bit SDC conditions for the cloud FPGA setup.

Having identified a suitable signal pair with the SAT solver,
we insert the Trojan shown in Fig. 5 (where dc0 and dc1 are
the don’t-care signal pair [24]) and verify that Intel Quartus
does not optimize it away. Initial results show more frequent
secret key leakage with 00inv than with 11 SDC condition;
hence, we opt for 00inv. The delays of the corresponding
don’t-care signals as reported at the slow 100◦C corner
are 3.274 ns and 4.376 ns. From our experience, for the
embedded setup, the slowest model is conservative enough to
guarantee correct timing and aligns well with experimental
observations: correct operation when no power wasters are
active and faulty operation otherwise.

We supply the plaintexts to the AES in one of the following
two ways: as the output of a 128-bit linear feedback shift
register (LFSR) implemented in hardware [49] or a repeating
sequence of two different plaintexts hardcoded in hardware.
We shall refer to these options as pseudorandom and fixed
plaintexts. The fixed plaintexts allow us to test the attack
while knowing what each ciphertext should be. They also
simulate cases where the AES encrypts plaintexts taking
values within a limited range. The pseudorandom plaintexts
correspond to the test case when the encryption requests
arrive from various sources and take on values following a
distribution unknown to the attacker. The key and the fixed
plaintexts are provided in Appendix A.

3) DATA COLLECTION
To account for the clock frequency and throughput difference
between the system’s hardware and software counterparts,
we use on-chip first-in, first-out (FIFO) buffers for data
collection. While the exploit runs, the FIFOs store the
ciphertexts and the corresponding trigger signal values.
Although the adversary would generally have access only
to the ciphertext, we store triggers to validate the results.
The interface between the hardware and the software allows
offloading of the collected values for processing by the HPS.

B. CLOUD SETUP
Both in deployed FPGA cloud platforms and in multitenant
FPGA platforms proposed in the literature, the programmable
fabric is divided into a static region (the shell) and a dynamic
region for programming the user circuits [9], [50], [51].
The shell typically includes the memory and communication
interfaces, and the FPGA tenants cannot modify it. Our
implementation targets a commercial cloud FPGA instance
providing access to Intel FPGA devices.

Intel cloud platforms use the Intel Open Programmable
Acceleration Engine (OPAE) [52]. The OPAE is the software
framework for managing and accessing FPGAs, providing
users with a software development kit and the necessary

Linux drivers. Within the Intel framework, the static region is
called the FPGA Interface Manager (FIM), and it controls the
communication between the FPGA and the host CPU through
PCIe. The dynamic region, which includes supporting logic
for interfacing with the host through the FIM, is called
the Accelerator Functional Unit (AFU). The user needs to
provide the register-transfer level (RTL) description of the
function implemented by the AFU. The AFU is mapped
to a partial reconfiguration region, where PLLs cannot be
instantiated. Therefore, the user is constrained to selecting the
desired clock frequency within the AFU specifications [53].
The AFU uses the Core Cache Interface (CCI-P) to

communicate with the host. The CCI-P interface comprises
three command/response channels: the AFU uses channels 0
and 1 for host memory read requests and responses and
can also receive memory-mapped input/output (MMIO) read
and write requests from the host on the response port of
channel 0. In addition, channel 1 is used for issuing write
fences and interrupts. Finally, the AFU uses channel 2 for
sending MMIO read responses to the host [53]. The width
of the data part of the interface is 512 bits [54].

We deploy the design for testing X-Attack on a rented
commercially available cloud instance. Knowing that the CSP
may attribute any available FPGA instance, we focus on one
geographical region only where we counted seven different
FPGA instances. We record the instance identification (ID)
number in each experiment, to correctly aggregate the results
corresponding to the same FPGA instance. For comparison
purposes, we repeat some experiments on more than one
FPGA instance. The results we will present in Section VI
will target the same instance unless noted otherwise; yet,
we will show and discuss if the observed effects apply
to other tested FPGAs. The FPGA instances are Intel
Arria 10 GX programmable accelerator cards (PACs) [29].
Our design follows the platform structure of the Intel OPAE
framework. The system design for the cloud setup is similar
to the embedded setup, with changes only to adapt to
different interfaces and ensure the AFU requirements are met.
It comprises the three main parts shown in Fig. 7: the attacker,
the victim, and the communication and control interfaces. The
CSP provides the shell design and functionality, which we use
as is.

1) ATTACKER
As the targeted cloud instance does not enforce any
constraints preventing potentially malicious constructs (e.g.,
combinational loops), we opt for power wasters that are
effective and easy to control: ROs, grouped in blocks of
NW = 4,096 instances each. We found experimentally that
this number is a good compromise between having an overly
complex control network (i.e., too many enable signals) and
overly sized RO blocks (and, consequently, large voltage
steps). In total, NB = 20 blocks are instantiated, which use
about 10% of the FPGA resources. More than 20 active RO
blocks are likely to cause FPGA reset. The RO blocks are

VOLUME 12, 2024 8991



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

FIGURE 7. System design for the cloud setup.

constrained to a LogicLock region in one half of the FPGA
(Fig. 13). The control interface is configured to allow the
user to choose the number of RO blocks to activate in each
experimental run. The clock frequency is 320 MHz. The
attack typically lasts 4,096 clock cycles, equivalent to 12.8 µs.
The user can set the frequency and the duty cycle of the RO
enable signal.

2) VICTIM
The same victim is used as in the embedded setup:
the open-source pipelined AES core [48]. We constrain the
placement of the victim to a LogicLock region in the
remaining half of the FPGA (Fig. 13); the adversary and
the victim are logically and physically separated. The AES
operates at 320MHz.We validate that all obtained ciphertexts
are correct and that no key leakage occurs in the absence of
RO activity.

Two sets of experiments are performed. The first is a
detailed analysis of factors impacting the attack’s success.
To collect a statistically relevant number of successful
attack attempts for such an analysis, we increase the
delay of the original don’t-care signal pair (dc0 and dc1).
Specifically, we add buffers to the signal paths and apply the
transformations detailed in Section IV. As a result, the trigger
signals delays for the SDC condition11 as reported at the fast
100◦C corner are 2.784 ns and 2.699 ns. The second set of
experiments validates the attack feasibility and measures the
success rate when the trigger signal delays are unmodified
(see Section VI-D).
Similarly to the embedded setup, we supply the plaintexts

to the AES either as the output of a 128-bit LFSR
implemented in hardware [49] or a sequence of 16 hardcoded
predefined plaintexts. The secret key and the sequence of
fixed plaintexts are listed in Appendix A.

3) COMMUNICATION AND CONTROL
The host CPU provided with the cloud instance controls
the functionality of the FPGA by supplying all necessary

FIGURE 8. Finite state machine used for the interface between the host
CPU and the user region in the FPGA.

parameters. We follow the sample design provided by Intel
and modify it to integrate the desired functionality of our
setup [55]. The implemented interface is shared between
the victim and the attacker for experimental purposes. The
sharing makes synchronization easier but does not affect
the exploit’s success, as synchronization can alternatively
be achieved through side channels [27], [56]. The main
requirement is for the power wasters to be active while the
victim runs. Similarly to the embedded design, we collect all
data during an experimental run in on-chip FIFOs. After the
run terminates, the hardware offloads the data to the host CPU
of the cloud instance. The FIFOs operate at a fixed frequency
of 160 MHz, half of the frequency of the AES. We collect the
data in two FIFOs to avoid timing violations when writing to
the buffers.

Following the example design from Intel, the finite state
machine (FSM), shown in Fig. 8, controls the user region. The
FSM always starts in the IDLE state, where all parameters are
reset to their default value. After the host de-asserts the reset
signal, the interface waits for a valid signal on the receiver
of channel 0 to read the parameters specified by the host
CPU. These parameters include the enable signal frequency
and duty cycle. Once the interface has read these parameters,
it asserts the read signal. Once read is asserted, the FSM
transitions into the SAFE state. Within the SAFE state, if the
victimwas reset, it can operate freely without an active attack.
This window of safe operation allows the key of the AES
to also be set (asserting the key_set signal). During the
SAFE state, the interface waits for the control signal, which
determines the number of power wasters to activate and their
activation pattern, and for the start signal. Once start is
asserted by the host CPU, and the victim is operating with a
valid key, the attack commences, and the FSM reaches the
ATTACK state. The FSM then awaits the assertion of the

8992 VOLUME 12, 2024



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

FIGURE 9. Enable signal and the corresponding set of parameters.

done signal to indicate that the attack has finished and to
transition into the WRITE state. Finally, the interface controls
the transfer of the data collected during the exploit to the
host CPU in the WRITE state and stops once the FIFOs that
collected the data are empty. If the reset signal is asserted
during any state, the FSM returns to the IDLE state. If the
transition condition is not asserted, the FSM remains in its
current state.

VI. EXPERIMENTAL EVALUATION
This section presents the experiments we carried out on
embedded and cloud FPGAs to evaluate the success of
X-Attack and the factors affecting it. The first set of exper-
iments focuses on the adversary, with the goal of identifying
the optimal parameters of the power-wasting circuits. Then,
we turn to the victim to examine how the different SDC
conditions for the hardware Trojan affect the exploit’s suc-
cess. We then investigate the effects of changing the distance
between the attacker and the victim. Finally, we examine
the success of the exploit when the trigger signal delays are
decreased to avoid the critical paths of the victim IP.

A. FINDING OPTIMAL ATTACKER PARAMETERS
The adversary employs the power-wasting circuits with the
goal of consuming enough power to increase the signal delays
to the point of activating the SDC Trojan but, ideally, not
causing faults in the communication interfaces or the reset of
the board. To achieve that, we give the attacker control over
the attack duration and the following set of parameters for
tuning the voltage drop (see Fig. 9):

• Attacker size: the number of ROs used in the attack,
or the number of blocks receiving the enable signal.

• Attacker mode: whether the enable signal of the power
wasters is constantly active or toggling for the entire
attack duration (the latter corresponds to the scenario
shown in Fig. 9).

• Enable signal period: the number of clock cycles to
complete the pattern of activating the power wasters
before repeating it again.

• Enable signal duty cycle: the ratio of the number of
clock cycles for which the enable signal is active over
the enable signal period.

1) ENABLE SIGNAL PARAMETERS
Embedded Setup: Finding the RO enable signal parameters
for the embedded design did not require sweeping a large
set of values. The parameters were easy to find thanks to

FIGURE 10. The average occurrence of leakage (i.e., successful Trojan
triggering over the total number of attempts) in percent, as a function of
the period of the RO enable signal. A relatively small attacker containing
seven RO blocks (28,672 ROs) was instantiated.

the similarity between ours and the setups in previous works
on remote fault injection [18], [22], [41]. First, both blocks
of ROs were activated with a toggling enable signal; the
enable signal’s period and duty cycle were set to 400 ns and
75%, respectively. Then, one block was disabled, and one was
continuously enabled. Finally, both blocks were continuously
enabled. The software controls the sequence of activation
patterns, targeting a toggling enable signal for the first 48%
of the attack duration, followed by a short activation of one
block, and then the remaining half of the attack duration is
spent with both blocks continuously active.
Cloud Setup: In the cloud instance, the PDN differs, and,

in the literature, there are no results for fault injection on the
same platform on which to base the choice of enable signal
parameters. Therefore, we swept the period and duty cycle
of the enable signal. Additionally, we gradually increased the
power-wasting effects to avoid resetting the remote FPGA.
Once we observed the reset of the data collection FIFOs,
while the board remained responsive, we considered the
attack to be too strong, and stopped increasing the number
of power wasters. Regarding the RO enable signal pattern,
we found that continuously activating the ROs is ineffective
for fault injection. Toggling the activation of the power
wasters is necessary to successfully inject faults, which
aligns with observations in previous work [18], [22], [28].
Comparing continuous toggling, on one side, with toggling
for the first half of the exploit followed by continuous
activation in the second half, on the other, we observed that
the latter configuration increased the likelihood of the FIFOs
resetting. Consequently, we opted for toggling the enable
signal for the entire duration of the exploit.

Next, we focused on the duty cycle sweep. The initial
experiments revealed that a duty cycle above 50% is more
likely to affect the FIFOs, increasing the risk of a DoS attack.
Hence, we keep the duty cycle around 30%. To minimize the
risk of a DoS, a relatively small attacker containing seven RO
blocks (28,672 ROs) was instantiated.

Fig. 10 presents the results of the sweep of the enable
signal period. For each configuration, the ratio (in percent) of
AES encryptions where the Trojan was successfully triggered

VOLUME 12, 2024 8993



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

over the total number of encryptions is computed. The three
lines plotted correspond to fixed plaintexts, pseudorandom
plaintexts, and the sum (i.e., the total or combined leakage).
We report the average over five experiments, each containing
15 runs of 4,096 encryptions of fixed plaintexts and 15 runs
of pseudorandom plaintexts. The results indicate that the
leakage occurs when the enable signal period is between 14
(∼23 MHz) and 22 clock cycles (∼14 MHz). For a larger
attacker (typically 12 blocks or more), the faulting range is
wider, reaching 45 MHz. The obtained results are consistent
with previous work, which has shown that frequencies close
to the PDN resonance frequencies lead to stronger power-
wasting effects [28]. Another interesting observation from
Fig. 10 is that the probability of triggering the Trojan changes
with the choice of input plaintexts; we will return to these
effects in greater detail in Section VI-A2.

2) ATTACKER SIZE
The power wasters’ activity effects depend on the enable
signal parameters and the resources used. We expect the
power consumption to increase with the number of power
wasters. Yet, the optimal attacker size (i.e., the size resulting
in frequent leakage) is likely not the maximum possible
because too large an attacker can cause faults other than those
required to activate the Trojan (e.g., by inducing more bit
flips than needed or by faulting the communication interfaces,
FIFOs, etc.). To find the suitable attacker size, experiments
are carried out as follows.
Embedded Setup: We vary the total number of ROs for

two design floorplans shown in Fig. 11. In the first, shown
in Fig. 11a, the attacker is in a LogicLock region on the
left side of the FPGA, and the victim is constrained to the
right, while in the second, shown in Fig. 11b, the attacker
is in the space above the victim. The Trojan is embedded
into the AES circuit with SDC condition 00inv without any
additional delay (as explained in Section V-A2). The baseline
is the case where no ROs are active. The attacker’s region
is then gradually filled with ROs; the maximum number
of instantiated ROs was 22 k (34.3% of the total number
of adaptive logic modules (ALMs) available). The trigger
signal delays were 3.274 ns and 4.376 ns for the floorplan
in Fig. 11a, and 2.639 ns and 4.17 ns otherwise.

In the initial experiments (i.e., with small attacker sizes),
we send fixed plaintexts to the AES. Knowing the expected
ciphertexts permits detecting the first occurrence of faulty
outputs, and documenting the Hamming distance (HD)
between the observed ciphertexts and their expected values.
For the attacker sizes for which we observe faults, we supply
the pseudorandom plaintexts, to document how often the
secret key leaks to the output (i.e., the attack is successful)
and whether the FPGA resets. Fig. 12 summarizes the results
for the two floorplans and 100 repetitions of the experiments.
Four different symbols highlight four attack outcomes: the
AES operation was correct, faults other than the desired
occurred, the secret leaked (i.e., the Trojan was triggered),
and the board reset. The y-axis is the HD, i.e., the number

FIGURE 11. Floorplans in the embedded setup experiments.

FIGURE 12. Hamming distance between the obtained and the expected
ciphertexts, averaged over 100 runs.

of faulty bits in the ciphertext. The attacker size for which
the Hamming distance becomes higher than zero marks the
beginning of the appearance of faults. There is clearly a range
of attacker sizes suitable for fault injection.

Given that the increased power consumption leads to
a lower voltage and increased on-chip delays, we expect
to see effects similar to increasing the clock frequency
and inducing timing faults. Consistently with the expected
behavior, Fig. 12 shows faults occur before the key leakage.
As the Trojan triggers are not critical paths of the AES design,
the high-criticality paths fail first. As the number of ROs
increases, more faults occur, as the growing HD indicates.
Again, this result matches the effect that we expect an even
higher clock frequency to have. Then, at 18k ROs, with

8994 VOLUME 12, 2024



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

FIGURE 13. Floorplan in the cloud setup. The view is rotated by 90◦ for
space reasons.

faults still occurring, the attack triggers the Trojan. Finally,
with more than 20k ROs, the board resets before the end of
the 100 runs of the attack. From the results, it is clear that
the attacker size is a factor the adversary needs to carefully
control to ensure being within the range that causes leakage
but not reset. It is worth noting that the two different RO
placements, while affecting the faults observed (as seen by
the different HD), do not significantly affect the adversary’s
ability to distinguish the key as the most repeating value at
the output [22].
Cloud Setup: Turning to the cloud setup and a larger

FPGA, we increase the attacker size to 20 blocks, each with
4,096 ROs. Activating an attacker size larger than 16 blocks
results in the FIFO resetting (the exact number of ROs that
trigger the FIFO reset varies slightly from one FPGA instance
to another), so we limit our analysis to 16 blocks and leave
the last four implemented blocks unused. The period of the
enable signal and the duty cycle are set to eight clock cycles
and 62.5%, respectively. We set the period to a conservative
value (below the range that caused leakage in Fig. 10) to avoid
resetting the FIFOs or the FPGA. The somewhat higher duty
cycle is chosen to compensate for the lower period. Fig. 13
illustrates the floorplan, where the RO blocks are constrained
to a LogicLock region in one half of the FPGA.

First, we examine if the attack causes faulty AES
encryptions or the leakage of the key to the output. We find
the HD between the obtained and expected ciphertexts in the
function of the number of active attacker blocks for the fixed
plaintexts case. To collect data, we run ten experiments, each
containing 15 runs with fixed and 15 runs with pseudorandom
plaintexts; a run consists of 4,096 encryptions. Fig. 14 shows
how the HD between the obtained and expected ciphertexts,
averaged across the ten experiments, changes with the
number of active attacker blocks. As expected, the HD
increases with the attacker size because the number of faults
is likely to increase when a more aggressive attacker is active.
Leakage starts occurring when eight RO blocks (32,768 ROs)
are active. These trends are similar to the embedded setup
(Fig. 12). The main difference is the minimum attacker size
required for fault injection: it is larger for the cloud setup,
which is expected because cloud FPGA instances have a

FIGURE 14. HD between the obtained and the expected AES ciphertexts
for the fixed plaintexts case, averaged over 10 experiments, each
containing 15 runs with fixed plaintexts and 15 runs with pseudorandom
plaintexts; a run consists of 4,096 encryptions.

FIGURE 15. The probability that the key is the most occurring output
value, computed as a function of the number of obtained ciphertexts (i.e.,
output samples) and attacker size. We refer to this probability as the
accuracy of the prediction that the key is the most occurring output value.

higher-quality PDN. Finally, we observe no DoS, which is
exactly what an adversary would want to achieve.

The next important insight is the relationship between the
attacker size and the number of attack runs (determining
the necessary total duration of the attack), on one side, and
the probability that the secret key is the most frequently
appearing value at the victim output, on the other. For
a predefined attacker size, we run ten experiments, each
with 15 attack runs of 4,096 encryptions of pseudorandom
plaintexts (61,440 encryptions per experiment). In every
experiment, we take NCT ciphertexts (0 ≤ NCT ≤ 61, 440)
and count the number of occurrences of the secret key.
If the key was the most frequently encountered value among
the analyzed ciphertexts, we consider that attack duration
sufficient for a successful attack. We count in how many
(out of 10) attacks the duration was sufficient to compute
the final success rate. We see the obtained success rate as
an estimate of the accuracy of the prediction that, for a
certain number of encryptions, the most repeating value at
the output will be the leaked secret. Fig. 15 summarizes the
results for attacker sizes ranging from nine to 16 blocks. For

VOLUME 12, 2024 8995



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

example, looking at the plot corresponding to the attacker
size of nine blocks, we see that at least 58k ciphertexts (i.e.,
14 attack runs) were required for the key to become the
most frequently appearing value among the faulty ciphertexts.
Furthermore, it was only in one of the ten experiments that
the abovewas observed (hence the likelihood/accuracy of 0.1,
i.e., 10%). From Fig. 15, we conclude that the key becomes
the most occurring value (with 100% probability) when the
adversary employs 11 or more RO blocks. The attack is
more successful earlier for larger attacker sizes; hence, if the
duration of the attack is of concern, an adversary should
deploy more ROs. Interestingly, the correlation between the
attacker size and the accuracy is not always consistent, e.g.,
an attack with 14 blocks attains 100% accuracy earlier than
with 15 blocks. We will explain shortly why a stronger
attack can result in undesired faults, effectively reducing
the likelihood of the leakage. In conclusion, with enough
ciphertexts (output samples) collected and enough power
wasters, the key eventually becomes the most repeating
output value. It is worth noting that the key search space is
significantly reduced if the adversary considers the top few
(e.g., top 10) most occurring values at the output.

Finally, it is necessary to investigate the factors that impact
the observed leakage. Fig. 16 shows the average absolute
number of recorded occurrences of leakage in the function of
the number of RO blocks, for the fixed and the pseudorandom
plaintexts in isolation, as well as the corresponding sum.
As observed earlier, the leakage increases with the attacker
size. However, in the fixed plaintext case, the leakage appears
to decrease when the attacker size grows beyond 15 blocks.
Given that for that number of ROs, the attack is not yet strong
enough to cause a reset, the results seem counterintuitive.
To understand why, we analyze the Trojan triggers (i.e.,
the don’t-care signal pair after the transformation in Fig. 5)
before and during the attack more closely in Table 1. The
rows are the values of the trigger signals in the absence of
the attack—the SDC condition 11 is omitted as it normally
never occurs in the absence of the attack; the columns show
the observed faulty values. For each trigger signal pair, the
average count of occurrences of the faulty values is given.
As no change in the trigger equals no fault, the corresponding
cells are left empty (symbol -). The first column of Table 1
specifies the number of active RO blocks.

The results in Table 1 suggest that the trigger signal
combinations (which depend on the workload) and the
observed faults determine how often the key will leak (i.e.,
how often the desired SDC condition is reached). The first
notable behavior is that, regardless of the attacker size, only
the value 10 succeeded in faulting to 11 (as highlighted in
bold in Table 1). Examining the average occurrence rate of
the faults from 10 to 11, we see that increasing the attacker
size, in general, results in more leakage. An exception is the
transition from 15 to 16 blocks, where the leakage decreases.
The explanation is quite simple, in fact. Looking closer at the
total number of faults occurring for the trigger 10 (i.e., the
sum of all the values in the corresponding rows), we find

FIGURE 16. Number of occurrences of the key at the output, averaged
over 10 experiments, each containing 15 runs with fixed plaintexts and
15 runs with pseudorandom plaintexts; a run consists of
4,096 encryptions.

TABLE 1. Summary of the average number of faults observed for the
11 SDC condition with various attacker sizes for the fixed plaintexts case.
The numbers are averaged over ten experiments each containing 15 runs.
One run consists of 4,096 encryptions. In bold, the faults leading to
leakage. In italic, the values corresponding to double bit flips.

that with the attacker size growing, more faults do occur.
However, as the attack grows stronger, the probability of other
faulty values increases: for 12 blocks, only one type of fault is
observed:10 faults to11 (one bit flip, from0 to1).When the
attack becomes stronger, 10 starts faulting to 00 and 01 (two
bit flips); these faults are not useful to the attacker, as only
reaching the desired SDC condition matters for the Trojan
to leak the secret. The appearance of two bit-flips indicates
that the attack is stronger than needed, reducing instead of
improving the overall attack success.

The above-discussed effects likely differ when pseudo-
random (or, simply, unknown) plaintexts are used because
of the different probability distribution of the trigger signal
pair values. Indeed, Fig. 16 shows a different leakage trend
when testing with pseudorandom plaintexts: the number of
leaky samples increases at a slower pace. For a pseudorandom
(or, in a general case, unknown) sequence of plaintexts, the
value 10 may occur infrequently, reducing the likelihood of

8996 VOLUME 12, 2024



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

leakage and of double bit-flips for the given attacker size.
To overcome this challenge, the attacker has at least two
options. First, if some knowledge of the workload is available
(e.g., their probability distribution), the adversary can use it
to calibrate the attack strength so as to improve the likelihood
of the successful exploit. Or, if the attacker has control over
the victim inputs, they can repeat the attack with various input
sequences to find one that increases the likelihood of leakage
for the given number of RO blocks.

B. EFFECTS OF SDC ON ATTACK SUCCESS
Previous experiments on the cloud FPGA instances con-
sidered SDC condition 11. In a general case, when trying
to insert an SDC hardware Trojan, one may find a variety
of candidate don’t-care signal pairs with different SDC
conditions. Furthermore, choosing one condition over the
others may matter. In this section, we investigate in what
way the choice of the trigger signals and their SDC
condition affects the exploit’s success. We hypothesize that
the associated signal delays and the likelihood of the normally
occurring values faulting precisely to the targeted SDC
condition (governed by both the choice of the trigger signals
and the input plaintexts) are the main factors impacting the
attack’s success.

1) TRIGGER SIGNALS
To answer the above hypothesis, repeating the experiments
with a range of valid SDC conditions is required. With
Yosys [46], we find signal pairs for SDC conditions 00,
01 and 11, while ensuring that every pair can reach all
combinations of two-bit values except the SDC condition
itself. To the above SDC conditions we further add 11inv,
10inv, and 00inv, by inverting the original three. As a result,
we obtain six slightly different variants of the AES with the
SDC Trojan (the difference being the choice and routing of
the trigger signal pair).

2) DISTRIBUTION OF TRIGGER VALUES
As described in Section V-B2, depending on the experiment,
we supply the plaintexts to the AES in one or both of
the following two ways: a fixed sequence of 16 plaintexts
(listed in Appendix A) or a sequence of pseudorandom
numbers generated with a 128-bit LFSR implemented in
hardware.When using fixed plaintexts, we know the expected
ciphertexts. Hence, after the attack, we are able to tell exactly
which ones are faulty and which bits are faulty. On the
contrary, with pseudorandom plaintexts, we cannot tell if a
ciphertext is faulty; we can only measure the distribution of
the values at the output and look for outliers. This scenario
corresponds to a case when adversary has no control over the
victim inputs.

We know that the values the trigger signal pairs take
during encryption depend on the plaintexts. Therefore,
we hypothesize that the likelihood and nature of faults (i.e.,
which bit flips occur and with what probability) also depend

TABLE 2. Distribution of the Trojan trigger values (in %) for all tested SDC
conditions in the absence of the attack. AES encrypts pseudorandomly
chosen plaintexts. Each row corresponds to a different SDC condition, i.e.,
a different trigger signal pair. The experimental runs do not always use
the same sequence of pseudorandom plaintexts, due to delays in
CPU-to-FPGA communications. Accordingly, the distributions are not
exactly the same for an SDC condition and its inverse.

TABLE 3. Distribution of the Trojan trigger values (in %) for all tested SDC
conditions in the absence of the attack. AES encrypts a fixed set of
16 plaintexts (Appendix A). Each row corresponds to a different SDC
condition, i.e., a different trigger signal pair.

on the plaintexts. To evaluate this hypothesis, we start by
running encryptions and recording the trigger signals.

Table 2 shows the distribution of the values of the
trigger signal pair, for all tested SDC conditions and for
pseudorandom plaintexts. The first column lists the SDC
conditions, each corresponding to a specific trigger signal
pair. The next four columns show how often (in %), in the
absence of the attack, the trigger signal pair takes the values
00, 01, 10, and 11. Table 3 shows how the distributions
change when pseudorandom plaintexts are replaced with a
fixed set of 16 plaintexts (listed in Appendix A).

Tables 2 and 3 confirm that the distributions differ,
as expected. Moreover, some trigger combinations are
significantly more frequent than others, which we expect will
significantly impact the likelihood and the nature of faults.

3) ANALYSIS OF THE FAULTS
To each SDC pair, we add delay elements (buffers alone or
buffers in combination with transformations in equations 1, 2,
and 4) to, first, equalize the SDC signal delays (preventing
delay imbalance from impacting the conclusions) and, sec-
ond, make them the victim’s critical path. The consequence
of the latter is that a statistically significant number of
trigger events should occur, allowing us to perform insightful
statistical analysis. The baseline experiments run without
ROs active and with fixed and pseudorandom plaintexts.
Next, we activate the ROs with the same enable signal

VOLUME 12, 2024 8997



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

FIGURE 17. Average leakage occurrences (log-scale) for each tested SDC
condition, multiple attacker sizes, and pseudorandom plaintexts.

TABLE 4. Delays (in nanoseconds) of the trigger signals for each tested
SDC condition.

parameters as before (period of eight clock cycles and a duty
cycle of 62.5%), which should guarantee a successful attack
without causing a DoS.

Fig. 17 reports the average number of successful attacks
(i.e., a desired fault occurring) as a function of the chosen
SDC condition, for multiple attacker sizes and pseudorandom
plaintexts, for one FPGA instance. We include the results for
another instance in Appendix B. Not unexpectedly, leakage
occurs for every tested SDC condition. Most interestingly, the
highest number of leakage events corresponds to the trigger
condition 01. In comparison, the SDC conditions 00 and its
inverse 11inv are triggered least often. The similar likelihood
of faults for 00 and 11inv is due to our inverting 00 to obtain
11inv, which resulted in keeping the distribution of trigger
signal values the same for both SDC conditions.

To understand the reasons for the results in Fig. 17, we first
extract the delays of the don’t-care signals from Intel Quartus.
In Table 4, t1 and t0 are the most- and least-significant bit of

TABLE 5. Summary of the analysis of the likely faults and the faults
resulting in leakage for the tested SDC conditions.

the trigger signal pair, respectively.We observe that the delays
of the trigger signals do not necessarily correlate with the key
leakage. The SDC condition 00inv has the highest delays of
the six conditions tested, as seen in Table 4. However, the
highest leakage occurs for the 01 case, according to Fig. 17.
The SDC condition 00inv, with the pseudorandom plaintexts,
has a distribution of the trigger signal values where 01
appears relatively infrequently (0.39% according to Table 2).
With the least significant bit being slower (third row in
Table 4) and, hence, more vulnerable to fault injection, 01 is
the value that would most likely fault to the SDC condition.
Given that 01 occurs infrequently compared to the other
values, the likelihood of a fault leading to the SDC condition
00inv is significantly reduced. We carry out a similar analysis
for the other SDC conditions and summarize it in Table 5.
The situation is different for the SDC condition 01, where
the value00 occurs frequently when using the pseudorandom
plaintexts, according to Table 2. As t0 is slower than t1 (Slow
column in Table 5), it is more susceptible to fault (fourth
row in Table 4) and, hence, 00 faulting to 01 is a likely
event, as highlighted in the fourth row in Table 5. The trigger
signal faults likely to occur result from a fault affecting the
slower of the two signals, in the most frequently occurring
pairs of values. Accordingly, considering the example of SDC
condition 01, the faults most likely to occur are 00 (the most
occurring column in Table 5) faulting to 01 (the likely faults
column in Table 5) and, similarly, 10 faulting to 11. One
can reason similarly about the other SDC conditions. We will
shortly ascertain that the distribution of the input plaintexts
affects the resulting faults and leakage, when we examine the
case with the fixed plaintexts.

To check whether the predicted faults correlate with the
experiments, we use fixed plaintexts (because the correct
values of the trigger signals are known). Table 6 shows
the number of observed faults for each trigger signal
combination. The list of triggers and faulty values are given
in the second column and the first row, respectively. Some
trigger signals in our implementation never occur in the fixed
plaintext case; those are marked in italic. Some values not
occurring means that all the faults that can be obtained by
flipping one of the trigger signals are equally unlikely. Given
the differences between the fixed and pseudorandom input
cases, the results in Table 6 do not necessarily match the
observations in Fig. 17. However, they give us an indication

8998 VOLUME 12, 2024



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

TABLE 6. Average number of occurrences of the faults in the trigger
signals for all tested SDC conditions over ten experiments each
containing 15 runs with fixed plaintexts. The attack uses 16 blocks of ROs.
The values in bold denote the number of occurrences of the bit flips
necessary for leakage. The values in italic indicate that the original value
does not occur, and so all transitions in that row never happen.

and allow us to analyze the effect of the SDC condition
and the distribution of the trigger signal values on the
exploit’s success. Moreover, the differences across various
SDC conditions present useful insights into the fault-injection
exploit.

Examining Tables 5 and 6 together, we see that the
predicted faults based on the slowest trigger signal and the
most occurring trigger signal values match with the results
in Table 6. For example, for SDC condition 00, Table 5
predicts most likely faults to be 01 and 11. This behavior
is confirmed in Table 6, where the three rows corresponding
to the SDC condition 00 show only 19 occurrences of 01 and
22 occurrences of 11. Somewhat different, yet explainable,
effects are seen with 01 and 10inv. For these two cases, the
trigger signal with the largest delay does not toggle, due to
one of the possible trigger signals values not occurring with
the fixed plaintexts (e.g.,00 for SDC condition10inv, marked
by the italic in Table 6). As a result, the one signal which does
not toggle (in these two cases being the slow trigger signal)
faults with a very low probability, and hence, faults that are
observed are different than what would occur if the slow
trigger signal had faulted. In fact, the issue is not the attack
strength as the attack can induce faults in the AES IP (we do
observe faulty ciphertexts that are not the key for the01 case).
At the same time, the values of the trigger signals specifically
are not faulty, supporting the hypothesis that whether or not
a signal switches affects the likelihood of the attack faulting
that signal.

Finally, we notice the occurrence of two-bit faults for the
cases 10inv, 11 and 00inv, as shown in Table 6.While Fig. 17,
which corresponds to the pseudorandom inputs case, does not
show any decrease in the leakage, the two-bit faults observed

FIGURE 18. Floorplan for testing the effect of the distance on the success
of X-Attack in the cloud. For space reasons, the view is rotated by 90◦.

here, for the fixed plaintext case, could indicate that the attack
is stronger than necessary. This observation is consistent with
the results in Fig. 16, which showed a decrease in the leakage
for the fixed plaintexts for the SDC condition 11.

In conclusion, the distribution of plaintexts, the trigger
signal values, the possibility of the trigger signals switching
(affected by their distribution), and the delays of the trigger
signals all affect the leakage rate and the success of the
exploit. Therefore, while the adversary inserting the Trojan
can choose the trigger signals and their SDC condition, the
success ofX-Attack will also depend on the input distribution,
which may or may not be controlled by the adversary, and
how the inputs interact with the key to produce the internal
signals that are used as trigger signals (potentially changing
the ability of the trigger signals to switch and accordingly the
likelihood of the undervolting affecting them).

C. EFFECT OF DISTANCE ON ATTACK SUCCESS
With the optimal attack parameters chosen for a specific
Trojan-infected victim, the adversary then tries to ensure
that the victim is colocated on the same FPGA. While the
attacker can try to identify cotenants and ensure cotenancy
with the victim, only the CSP can control the distance
between the tenants. The power-wasting effect propagates
throughout the chip and can even affect components not
within the programmable logic [16]. However, the attack
has the strongest effect on the logic closest to the power
wasters. As a result, the distance between the power wasters
and the Trojan can require the adversary to change the attack
parameters.

We test the effect of the distance on the success of X-Attack
by placing the attacker as shown in Fig. 18. Each column
consists of seven blocks (for a total of 21 blocks), where a
block has 4,096 ROs.We can activate each column separately,
in pairs, or all together. Since a column has only seven
RO blocks, activating one at a time results in no leakage.
However, activating them all results in a voltage drop that
is too strong. The effect of the distance is apparent when
activating Col0 and Col1 together compared to activating
Col1 and Col2. For 150 runs with fixed plaintexts and

VOLUME 12, 2024 8999



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

150 with pseudorandom plaintexts, the average number of
leakage occurrences is two for Col0 and Col1, while it
is 0.6 for Col1 and Col2. Faults occur more often, with
approximately 16 on average for the closer placement and
15 for the farther. The distance appears to affect the leakage
more than the occurrence of faults, likely because leakage
requires faulting only one or two specific paths (of the trigger
signals). In comparison, faulting higher criticality paths is
more likely, leading to faults other than the secret key leakage.
We observe the same effects when repeating the experiment
on a different FPGA instance. In conclusion, the larger the
separation between the attacker and the victim, the more
challenging it is for the exploit to succeed.

D. RUNNING X-ATTACK
The experiments in the previous sections studied the corre-
lation between attacker parameters, Trojan parameters, and
deployment parameters, on one side, and the key leakage,
on the other side. As mentioned earlier, to enable the collec-
tion of statistically significant number of faults, the trigger
signals delays were increased through the transformations in
Section IV-A, to the point of becoming the critical path of
the victim design. However, such implementation may render
the Trojan easier to detect (e.g., if one decides to inspect the
signals on the critical path). Our final experiment aims to
assess the attack’s success in a different, stealthier setup: on
the cloud, with trigger signals not on the critical path.

To that end, we modify the Trojan by decreasing the delays
of the trigger signals and run experiments using the best
parameters for the attack previously found. The delays of
the trigger signals are 2.17 ns and 2.227 ns, i.e., 10–15%
lower than the smallest delay in Table 4. On the same FPGA
instance as in Section VI-B, we activate 15 blocks of ROs
(the range that causes leakage in Fig. 16), with an enable
signal period of 19 clock cycles (Fig. 10) and a duty cycle
of 31.58%. We run ten experiments, each comprising 15 runs
with fixed and 15 with pseudorandom plaintexts, and count
how many times the key leaks to the output. The results
show higher leakage for the fixed (approx. 75 times per
experiment, on average) than for the pseudorandom plaintext
(eight times per experiment, on average). The key becomes
the most occurring value after 53,248 encryptions, a result
similar to the one reported in Section VI-A2. With this attack
configuration, we sometimes observed FIFO resetting, but
not in a manner that stops the exploit.

Repeating the experiment on another FPGA instance
initially resulted in no significant leakage. However, with
slight change of parameters, a significant number of leakage
events were captured. The attacker size was 12 blocks (in
the range that causes leakage in Fig. 16). The power wasters
were enabled with a period of 16 clock cycles (Fig. 10)
and a duty cycle of 31.25%. As a result, the key was
found to leak approximately 88 times per fixed-plaintext
experiment, on average, and 30 times per pseudorandom-
plaintext experiment, on average. The key becomes the most
occurring value after 20,480 encryptions.

FIGURE 19. Our design of a protection against X-Attack. This example
uses only three buffers in the delay chain. In normal operation, Valid is set
and the AES output is routed to the OUT port. However, under the attack,
the signal passing through the delay chain suffers from a timing fault;
this results in clearing the Valid signal, thus forcing OUT to constant zero.

Finally, it is worth noting that because this setup is the most
conservative due to fast trigger signals, the key sometimes
may not be the most occurring value at the output (but
it remains one of the most frequently occurring values).
We repeat the experiments on five different FPGA instances
and, on all of them, we successfully inject faults and induce
leakage, proving that the risk associated with X-Attack
is relevant across different devices from the same FPGA
family. These experiments further show that using the insights
obtained through the parameter sweeps and the analyses we
performed or a similar offline evaluation that the adversary
can carry out facilitates the attack.

VII. COUNTERMEASURES
With our understanding of X-Attack, we aim to design
a lightweight and easy-to-implement defense. There are
many potential countermeasures against X-Attack, some even
requiring new FPGA designs, as we discuss in Section IX.
However, our design targets protecting hardware running
on currently available FPGA-based systems. Consequently,
the main criteria for our countermeasure are the prevention
of exploitable leakage, ease of deployment, and low usage
of resources. First, we present below the initial design we
proposed in our previous work [22]. Then, we discuss how
we improve it for easier deployment in cloud environments.

A. INITIAL COUNTERMEASURE DESIGN
The main idea behind our countermeasure is introducing a
combinational path that will fail if the voltage within the
circuit drops enough to induce faults or leakage. Accordingly,
the protection circuit leverages a delay chain (a sequence of
buffers) that we ensure matches the delay of the longest path
within the victim to protect. We show the countermeasure
design in Fig. 19. We instantiate the delay chain between
two registers, one of which takes as input the output of
the delay chain, while the other’s input is the inverse of
the input to the delay chain. As a result, the two registers
should generate opposite signals, assuming normal operating
conditions. Since the Valid signal is the result of XORing the
two outputs, it will be set, and the multiplexer’s output will
match the victim output.

When an adversary lowers the on-chip voltage, the increase
in delay will affect the delay chain. Consequently, timing

9000 VOLUME 12, 2024



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

faults should be observed in the output of the register whose
input is supplied by the delay chain before or at the same
time faults start occurring within the victim circuit. When
this happens, the Valid signal becomes 0, and the output of
the multiplexer receives a dummy value. The dummy value
prevents the adversary from gaining information from the
faulty output. Furthermore, the output can be connected to
an interface to monitor such attacks and take action. The
dummy value indicates to the interface the existence of a
problem without requiring a validation of the correctness
of the encryption through redundancy or by decrypting the
ciphertext to compare the plaintexts. Since no data is going
through the delay chain, the circuit is more likely to fault than
the victim, where the paths taken to produce output signals
during each encryption are data-dependent. Accordingly,
if the delay of the countermeasure is calibrated well, the
countermeasure should replace the output with the dummy
value before any leakage occurs.

When implemented on the Intel DE1-SoC, the protection
circuitry requires only 76 ALMs, i.e., only 2.84% of the
number of ALMs used by the AES core. Moreover, we only
add a multiplexer on the victim’s path, while the rest of the
protection hardware is separate. This separation minimizes
the effect of the countermeasure on the maximum design
clock frequency; in our experiments, the design clock
frequency remains unchanged. It is also possible to add
a flip-flop after the multiplexer to guarantee that transient
effects will not change the final output, increasing the latency
by only one clock cycle.

When testing the countermeasure, we first validate that it
does not affect the victim when there is no attack or the attack
is not strong enough to cause faults. We increase the delay
of the trigger signals used in the AES by using equation 1
on SDC condition 00inv to place them on the critical path
and increase the likelihood of leakage. Then, we test several
configurations where we manually calibrate the delay of the
buffer chain in the range from 0.3 ns below to 1.5 ns above the
AES critical path delay. Depending on the delay difference,
we sometimes observe faulty ciphertexts. However, the key
does not leak to the output in all cases. As expected, when
the delay of the buffer chain is larger, we observe no faults as
the countermeasure is activated earlier.

B. AUTOMATIC CALIBRATION AND CONTROLLABLE
PARAMETERS
Our proposed countermeasure for X-Attack requires calibrat-
ing the buffer chain to match the critical path delay or the
clock period. In our previous work, we manually calibrated
the delay chain, which is feasible in an embedded setup [22].
However, when deploying designs to the cloud, it is desirable
not to rebuild to test the calibration. Therefore, we augment
our countermeasure with a self-calibrating functionality. The
only thing the user would need to investigate and decide on
is the length of the delay chain to use for calibration. The
length should not be too short as to prevent the calibration
but long enough to have a delay equivalent to the clock

FIGURE 20. Calibration FSM for the countermeasure.

period. The length should also be limited to ensure reduced
resource utilization overhead. Given the limitations on the
reconfigurability of clocks within the cloud, we only calibrate
to the clock period, which makes the defense very sensitive to
increases in delay. Avoiding dummy outputs when the delay
increases but not enough to affect the victim to be protected
requires calibrating to the unknown critical path. It is difficult
to compare to the critical path in practice because the delays
can depend on the data.

The main changes to introduce self-calibration to the
design are as follows. First, we connect MUXes to the delay
chain such that the input of each buffer comes from the output
of its corresponding MUX. The MUX’s inputs come from
the previous buffer and the first register. By changing the
select signals of the multiplexers, we change the delay of the
chain. We show the modified buffer chain in Fig. 19 (the dark
blue MUXes represent the modifications to the delay chain).
Quartus combines the buffer and the MUX into one LUT so
that the multiplexers do not introduce additional delays. The
second change is the introduction of a calibration FSM to
test the delay chain and calibrate the delay chain to the clock
period. We show the FSM in Fig. 20.
The FSM starts in the IDLE state, where it remains as long

as the reset is asserted. If the reset is asserted while the FSM
is in any other state, the FSM goes back to the IDLE state.
Within the IDLE state, the select signals of the multiplexers
are all 0 so that the output of the first register is directly
connected to the input of the second register. Therefore, once
the FSM no longer receives an asserted reset signal, the FSM
goes to INCR state, which increments the number of MUXes
used by changing the last select to 1. Every time the FSM
goes to the INCR state, one more select line changes to 1.
After each increment, the FSM goes to the WAIT_I state,
where it waits for a specified number of clock cycles for the
change in the length of the delay chain to take effect. While
waiting, if the logic detects that the Valid signal changes
to 0, the state changes to DECR. Otherwise, when the waiting

VOLUME 12, 2024 9001



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

period is done, the FSM goes to the READ_I state, where
it checks the length of the delay chain and reads the Valid
signal. If the delay chain uses themaximumnumber of buffers
and the Valid signal remains 1, the calibration has failed.
The FSM goes to FAIL state where it remains. If the Valid
signal remains 1, and the countermeasure has not used the
maximum number of buffers, the FSM goes back to the INCR
state. The reason for using the WAIT_I state is to guarantee
that if the increased delay causes metastability, the FSM can
still capture the Valid signal changing to 0 and change the
chain length accordingly. In the READ_I state, if the Valid
signal is 0, the FSM moves to the DECR state to decrement
the number of buffers by one to return to a valid state, where
the delay is calibrated to the clock period. To guarantee that
no issue has occurred, we also include the two states WAIT_D
and READ_D to wait for the change in the multiplexers to take
effect and to ensure that the final state of the multiplexers
results in a Valid signal equal to 1. If that is the case, the
calibration was successful, and the FSM goes to the END
state, where it remains until reset. If for some reason, the
Valid signal is still 0, the FSM goes back to the DECR state
to remove an additional buffer. Once in the END state, the
calibration value can be read and possibly overwritten if the
calibration has rendered the countermeasure too sensitive.

We test the self-calibrating countermeasure in the cloud
setup with 50 buffers in the delay chain and the SDC
condition 11. The defense calibrates with about 10 buffers,
depending on the FPGA instance assigned, as the delay of
the chain, if it uses all 50 buffers, is 11.891 ns. We choose
to instantiate more buffers than those required to match the
clock period of 3.125 ns to ensure that the calibration will
be successful. The countermeasure uses around 5% of the
resources used by the AES (113.5 adaptive logic modules
for the countermeasure and 2336 for the AES). The delays of
the trigger signals t0 and t1 are 2.68 and 2.634 ns. The attack
uses an enable period of eight clock cycles and a duty cycle
of 62.5%.

Given that our countermeasure calibrates to the clock
period, and not the critical path, when the ROs are all inactive,
there is still a chance that the delay will momentarily increase
and that the dummy value will appear at the output. However,
since the design supports overwriting the calibration value,
the user can slightly adjust the calibration to eliminate any
false positives. Depending on the FPGA instance assigned
by the CSP, the calibration can succeed without any false
positives, or can need some small adjustments. We validate
that, with the selected calibration value, when the ROs are
inactive, the dummy value does not appear.

On the same FPGA instance as in Section VI-B, the
countermeasure calibrates using eight buffers. Launching
the attack with an increasing number of ROs, we observe
that the countermeasure starts blocking the value of the
ciphertext with three RO blocks, as shown in Table 7. The
countermeasure activation rate surpasses 10% with six RO
blocks. We also validate that up to 16 RO blocks, the key
never leaks to the output, despite the trigger signals reaching

TABLE 7. Proportion of dummy values at the output for a range of
attacker sizes.

the SDC condition at 12 RO blocks ormore. For large attacker
sizes, faults still appear at the output but at a reduced rate
compared to the case without a countermeasure. The faults
are most likely due to faults that occurred in earlier stages of
the pipeline, and propagated to the output at a time when the
ROs and the countermeasure were inactive.

We repeat the attack with the countermeasure active on
another FPGA instance. The countermeasure calibrates with
nine buffers. We report the results for this board in Table 8.
The countermeasure activation rate surpasses 10% with four
blocks of ROs. The higher reactivity is to be expected, given
the extra buffer in the calibration. On this FPGA instance, the
FIFOs reset with 16 blocks of ROs, which is why Table 8
contains only 15 entries.

VIII. DISCUSSION
This work demonstrates that, in the FPGA multitenancy
context, combining stealthy hardware Trojans with remote
undervolting can threaten the security of FPGA-based appli-
cations. We show how to deploy and control FPGA power
wasters to remotely create power supply voltage fluctuations,
with the goal of activating an SDC Trojan by faulting
the trigger signals to a normally never-reached state. Once
activated, the SDC Trojan can leak a secret—in our case,
the encryption key of an AES—to the output of the victim
module. We have analyzed the effect of the attacker and
Trojan parameters on the exploit’s success in an embedded
and cloud setup. We have also proposed a lightweight
self-calibrating countermeasure suitable for deployment in

9002 VOLUME 12, 2024



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

TABLE 8. Proportion of dummy values at the output for a range of
attacker sizes and a different FPGA instance.

cloud environments. In this section, we highlight interesting
observations derived from our results and discuss the
generality and limitations of X-Attack.

A. ANALYSIS OF X-ATTACK
The first notable result is the difference between the attack
results in embedded and cloud settings. Many things differ
between the two setups, from the delays of various design
elements to the maximum clock frequency that can be used
and the attacker parameters for a successful exploit.While the
possibility of fault injection exists in both setups, an adversary
would need to spend some calibration effort to port the attack
from one platform to another.

In our experiments, we use two types of workloads as
plaintexts, the pseudorandom and the fixed set of plaintexts
(see Section VI-B). As a consequence, the results of
various analyses also differ. This difference in the results
highlights how the signal paths activated (and therefore, the
combinational delays for one specific encryption), the values
of the signals and how they change, and, accordingly, the
likelihood of fault injection are data-dependent. We show
that, once the voltage is lowered, a signal with a long delay,
whose value is not constant throughout the clock cycles when
the undervolting occurs, is more likely to fault than others.
We predicted the faults most likely to be observed in the
trigger signal pair and found that experiments confirm our
predictions. The effects of the signal values and whether
they switch between ‘0’ and ‘1’ are why, for pseudorandom
plaintexts, we observed leakage with fewer attacker blocks
than for fixed plaintexts. All this means that, evenwith remote

undervolting, to increase the chances of a successful attack,
the adversary will likely have to repeat the exploit several
times. Repetitions allow tryingwith variousworkloads (either
by controlling the input or by waiting for different input
values from other sources to the victim) until the trigger
signals fault to the desired SDC state and the secret leaks.

The chosen SDC condition and the delays of the trigger
signals are also decisive factors for the exploit’s success.
When inserting the Trojan, the adversary should consider the
best SDC condition (i.e., the one that is most susceptible to
faults). However, we have seen that the effect of the SDC
condition on the attack’s success depends on the properties
of the input dataset. Without any knowledge of the input,
the chosen SDC condition may be suboptimal, rendering the
attack more challenging and requiring more trials. Once the
SDC condition is chosen, the adversary will likely want to
select a pair of suitable trigger signals that are close in delay
to the critical path of the victim module. The higher the clock
frequency at which the victim is running (e.g., close to the
maximum operating frequency), the more likely the attack is
to succeed.

Finally, our work demonstrated successful fault injection
on cloud platforms, using a relatively small fraction of
available resources. Even after accounting for additional
resources for changing the design of the power wasters to be
stealthier (e.g., adding latches) or for creating larger voltage
drop to fault designs operating at lower than the maximum
frequency, the risk of fault injection would persist. Whether
the faults would be exploitable and in what way would
ultimately depend on the victim functionality and the goals
of the adversary in charge of inserting the Trojan (e.g., neural
networks, encryption circuits, etc.) [18], [19], [22].

B. GENERALITY OF X-ATTACK
We demonstrate X-Attack on two members of the Intel
FPGA families: Arria 10, one of the state-of-the-art com-
mercially available cloud FPGA devices, and Cyclone
V, commonly used in embedded systems. Nevertheless,
we believe X-Attack is a threat to other FPGAs because,
as we will explain shortly, all aspects of the exploit can be
generalized.

The underlying mechanism enabling the remote under-
volting part of the exploit is the same across most (if not
all) available FPGA boards. Gnad et al. were the first to
demonstrate remote undervolting to reset an FPGA board,
testing on AMD boards [23]. Later work showed that an
adversary could also instantiate power-wasting circuits on
Intel FPGAs [57]. Zhu et al. systematically analyzed the PDN
of AMD FPGA boards to understand the mechanism behind
side-channel and fault-injection exploits [28]. The results
on the relationship between the PDN resonance frequency
and the generated voltage drop were also demonstrated on
other AMD boards for fault-injection exploits [42]. Our work
carries out a similar analysis on Intel FPGAs. Therefore,
the undervolting aspect of the exploit can be adapted to

VOLUME 12, 2024 9003



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

various FPGA PDNs to ensure successful undervolting of
the chip. Furthermore, the evaluation we present on a
commercially available cloud FPGA, without access to the
PDN parameters, indicates that the optimal attack parameters
can be experimentally found for various boards.

An adversary in a realistic scenario would need to test the
power-wasting circuits on the target platform to map out the
limits of the parameters to use and their expected effects.
To ensure the ability to test without detection, the adversary
can test on a local instance of the FPGA (if available), or rent
an instance as a single tenant. The adversary will also need
to gradually increase the strength of the exploit to ensure that
an accidental denial of service does not occur and trigger a
warning to the CSP. Depending on the target platform and
where it is deployed, the adversary may need to change the
power wasters to avoid checks for combinational loops, or to
leverage other logic resources within the programmable logic
region. There will also be some differences depending on the
specific FPGA instance. However, as shown in our results (in
Section VI, and Appendix B), the variations across FPGAs do
not change the observed trends regarding which parameters
control the attack’s success.

The second essential component of X-Attack is the Trojan.
The multiplexers and registers (the Trojan components) are
readily available as basic components of all commercially
available FPGAs. Furthermore, given how the Trojan is
designed, once inserted into the victim design, the synthesis
tools should not optimize it away because, first, the trigger
signals are freely switching, and, second, the combinational
blocks in which the trigger signals originate and in which
the Trojan is, are separated. Our work tests the Trojan
insertion with two different FPGAs from Intel, and we
validate that Quartus does not automatically remove the
Trojan. Previous work [24] has also tested the Trojan on an
AMD board (SASEBO-W board with a Xilinx XC6S150T
FPGA), and reported that the Trojan was not optimized
away. We have also validated that the Trojan remains for
an AMD Zynq UltraScale+ board when synthesized with
Vivado. Moreover, our results in Section VI-B highlight how
the trigger condition of the Trojan can change and what
factors govern the exploit’s success. This means that an
adversary targeting a different victim module than the AES
circuit used here can still find and choose a pair of trigger
signals with a specific SDC condition and adapt the Trojan
accordingly.

An adversary aware of the existence of a module compro-
mised by an SDC Trojan will aim to ensure colocation with
the victim [58]. Colocation is possible for a malicious CSP,
for a malicious tenant in a multitenant cloud environment,
or through the deployment of a malicious application
within an embedded system. The adversary can then launch
X-Attack, and collect the victim output to test for leakage.
In the case of an attack against AES, the adversary can collect
the most occurring ciphertexts, and test them as the key
to see if the plaintext can be recovered from the observed
ciphertexts. Given that the two aspects of X-Attack can be

generalized to other targets, X-Attack is a threat to various
applications on multitenant FPGAs.

C. LIMITATIONS OF X-ATTACK
While X-Attack is a strong attack vector, it still has some
limitations. The first concerns the Trojan and the process
of implanting it. A malicious party must be involved in the
supply chain of an IP that will be handling secrets to be able
to hide the Trojan within the IP. Depending on the target
victim circuit, that malicious party needs to carefully choose
the trigger signals and the placement of the Trojan, to ensure
it cannot be detected, while ensuring that the activation of
the Trojan by faulting the circuit is not unlikely. Once the
Trojan is successfully hidden within the IP which is then
used by the victim, the attacker still faces many challenges.
Namely, the adversary cannot guarantee that when the Trojan
is included in the victim design, its triggers will be anywhere
near the critical path. Specifically, if the Trojan paths have a
much shorter delay as compared to other circuit components,
increasing their delay to trigger secret leakage might become
infeasible. As we have discussed in Section VI, increasing the
strength of the power wasting circuits can lead to the board
resetting.

The second challenge that the adversary faces is to
ensure colocation with the victim that uses the Trojan.
While challenging, this colocation is not impossible. In the
most constrained scenario, which is cloud multitenancy, the
adversary can instantiate their design within various FPGAs,
and then use a side channel to determine the tenants sharing
the FPGA fabric until the victim is found [58]. Furthermore,
the adversary needs to be able to observe the victim’s output
to be able to distinguish the secret leaking. Accordingly, the
adversary needs to be able to establish communication with
and send requests to the victim, or establish a side channel to
monitor the output. Finally, as the attacker has no knowledge
of the secret prior to the attack, and potentially has no control
on the input, ensuring the switching of the trigger signals
can also be difficult. As we have shown in Section VI-B, the
switching of the trigger signals and the distribution of their
values relate to the success of X-Attack. Despite the strength
of X-Attack, the adversary will still face the limits of factors
outside their control that affect the likelihood of the attack
succeeding.

IX. RELATED WORK
This section presents related work on hardware Trojans,
remote fault injection, and countermeasures. We also high-
light how our work contributes to the research on remote fault
injection.

A. DON’T-CARE HARDWARE TROJANS
Thewidespread use of electronic chips and themanufacturing
complexity have opened the door for new vulnerabilities.
Hardware Trojans, especially, have emerged as a potential
threat with the involvement of many parties in the design
and fabrication of integrated circuits. Consequently, many

9004 VOLUME 12, 2024



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

researchers have examined the various types of Trojans, their
insertion, and their triggering [59]. The increased research
on hardware Trojans and the improved detection methods
have led to stealthier Trojan designs, specifically those which
use don’t-care conditions. For example, Fern et al. leverage
external don’t-care conditions for Trojan insertion [43].
The lack of design specification for these external don’t-
cares makes the Trojan hard to detect, as the user cannot
check whether the behavior is as expected. The unspecified
functionality can also exist in a finite state machine, which
Nahiyan et al. combine with fault attacks to send the
design into a Trojan state, where the design performs
malicious activities instead of the specified functionality [60].
Krieg et al. showed how to trigger a Trojan using the
discrepancy between the behavioral simulation and the
hardware implementation of a don’t-care state [61]. Prior
to deployment on hardware, the simulation will show that
the design with the Trojan is equivalent to the specification,
making the malicious modification challenging to detect.
Hu et al. used internal don’t-care conditions as a Trojan
trigger [24]. Finally, Hu et al. targeted obfuscated designs
by focusing on incorrect obfuscation keys as unspecified
functionality to insert the Trojan [62]. Works on hardware
Trojans assume a strong threat model, where the adversary
has physical or logical access to the design. The attacker
activates the Trojan by sending a specific input sequence,
manipulating the clock frequency, or injecting faults. Then,
the attacker can probe the Trojan payload. Our work instead
removes the requirement of physical and logical access. The
only requirements for our exploit are cotenancy with the
victim circuit and the ability to observe its output.

B. ATTACKS IN MULTITENANT FPGAS
With the adoption of FPGAs in the cloud, security
researchers have examined potential security threats affecting
remotely accessible FPGAs. Some researchers have ques-
tioned whether the CSP is a trusted entity in such a case,
and offered solutions to encrypt the designs deployed by the
users, while still ensuring that they are safe to deploy within
the cloud [63]. However, given the multitenancy customary in
cloud platforms, the possible malicious efforts of a cotenant
on the same FPGA have been a focus of many research
works. Gnad et al. were the first to use ROs to waste
power to reset the board for a denial-of-service attack [23].
Krautter et al. leveraged the power wasters to inject faults
suitable for DFA against a colocated AES module, while
Mahmoud et al. showed how the voltage drop could bias
a true random number generator [18], [22]. Both works
have shown that careful control of the ROs transforms the
attack from DoS to exploitable fault injection. Zhu et al.
have modeled the PDN of FPGA boards, and their work
demonstrates the importance of tuning the frequency of the
enable signal, as the voltage drop is at its maximum when
the frequency is close to the resonance frequency of the
PDN [28]. Researchers have also demonstrated successful

fault injection exploits leveraging other attack primitives
(e.g., block random access memory, register- and latch-based
ROs, and overclocked AES encryption rounds) [26], [38],
[39], [40].

In addition to fault-injection exploits, researchers have
examined side-channel leakage in multitenant FPGAs. Sen-
sors implemented within the programmable fabric can sense
power variations within the same chip or from another chip
to gain side-channel information [64], [65]. The sensors
can enable side-channel exploits in deployed commercial
FPGAs as Glamočanin et al. show in their work targeting
an Amazon EC2 F1 instance [5], [27]. An adversary can
utilize the side-channel leakage to steal encryption keys and
neural network inputs and structure [66], [67]. Furthermore,
power variations are not the only channels for leakage,
as crosstalk-coupling between neighboring long wires in
an FPGA facilitates covert communication and side-channel
exploits [68], [69].

Our work is a remote fault-injection exploit targeting mul-
titenant FPGAs. However, X-Attack assumes the existence
of a hardware Trojan within the victim circuit. We leverage
the remote undervolting to activate a stealthy SDC Trojan
and target a commercial cloud FPGA instance. Additionally,
unlike DFA, we do not target a specific encryption round; if
the fault affects the trigger signals of the Trojan, the secret
leaks directly to the output of the target hardware module.

C. COUNTERMEASURES
Given the myriad security issues for integrated circuits
in general and FPGAs in particular, researchers have
devoted significant efforts to defense mechanisms. X-Attack
combines hardware Trojans with FPGA-based undervolting.
Researchers have examined both hardware Trojans and power
wasters.

On the hardware Trojans side, many defense techniques
require access to a golden design against which to compare
or rely on applying various input patterns to test for abnormal
behavior [70]. However, the reference design may only
sometimes be available to compare against. Moreover, only
an injected fault activates an SDC Trojan, which means that
testing with various input values will not activate the Trojan.
Dai and Yavuz have proposed a countermeasure focusing
on the don’t-care states in FSMs. Their detection approach
works at the gate and register transfer levels and requires no
golden design [71]. Given the stealthiness of SDC Trojans,
researchers have looked into specific detection methods for
them. Wu et al. propose a method to look for specious
LUTs, or LUTs where certain entries cannot be covered
due to SDC conditions [72]. Hu et al. show how integrating
information flow tracking into high-level synthesis design
flows can detect the design modifications necessary for an
SDC Trojan [73].

On the remote undervolting side, the defense mechanisms
either focus on the malicious circuit or the undervolting
effects. It is also possible to focus on the architecture of

VOLUME 12, 2024 9005



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

future FPGA devices. For example, Ahmed et al. proposed
the design of an optimized LUT with input-to-output delays
with decreased sensitivity to changes in the supply voltage.
They also proposed using separate voltage islands for LUTs
and routing [74]. For the detection of malicious circuits,
Krautter et al. [75] and La et al. [26] focused on searching
for malicious circuits in the final design bitstream. They
achieved it by building bitstream scanners, reconstructing the
design netlist, and searching for specific patterns suggesting
potentially malicious circuits. The developed scanners target
the Lattice iCE40 [75] and the AMD-Xilinx Ultrascale+ [26].

On the other hand, many researchers focus on detecting
the effects of power wasters. For instance, the detection can
rely on instantiating multiple instances of security-critical
functions and checking that their outputs match. Given the
area overhead of redundancy countermeasures, researchers
have also proposed sensing-based countermeasures. These
include glitch detectors [76], aging sensors [77], [78], shadow
registers [79], and razor latches [80]. Researchers have also
proposed detectors for voltage drops, which can suppress
clock edges to avoid fault injection [81]. The cloud service
provider can even deploy voltage sensors within the FPGA
in a distributed fashion to locate the malicious tenant [57],
[82]. The detection of the lower voltage can be combined
with a mechanism to disable the offending circuit to limit
the damage it can do, as proposed by Nassar et al. [83]. The
main differences between our design and previous proposals
are its independence from the victim and self-calibration
capabilities. Our defense does not include a correction
mechanism but simply disconnects the faulty output and
sends an alarm using the dummy output.

X. CONCLUSION
The integration of FPGAs in the cloud has led tomultitenancy
proposals to offer efficient resource utilization. However, the
low-level programmability of FPGAs introduces a variety of
electrical-level security threats. A thorough investigation of
the vulnerabilities is necessary to propose a better design
for FPGAs to integrate safely into the multitenancy model
of cloud environments. In this work, we have investigated
the undervolting resulting from power wasters within an
FPGA on embedded and cloud FPGAs. We have also
shown how an adversary can employ the lowered voltage
to activate a stealthy SDC Trojan within a cryptographic
core. Our analysis examined attacker, Trojan, and deployment
parameters to determine their effect on the probability
of a successful exploit. Finally, we have designed a
self-calibrating countermeasure to protect circuits from the
effects of undervolting. Our work highlights the need for
research on secure multitenant designs for cloud FPGAs,
before allowing multitenancy in the cloud. Future work can
focus on testing X-Attack with other victim circuits or on
future devices. Additional work can also examine the power
isolation of tenants and the detection of stealthy Trojans and
stealthy power waster designs.

APPENDIX A
ENCRYPTION KEYS AND PLAINTEXTS
To facilitate the reproducibility of the results presented in this
work, we list below the AES key and the hardcoded (fixed)
plaintexts used in the embedded and the cloud setup.

A. EMBEDDED SETUP

Key:
0x85458A2BB4A9AAFD C5620273D3CF034A

Plaintexts:
0x0000000000000000 0000000000000051
0xDA705E312B8D9705 7E94B4A810D531EF

Ciphertexts:
0xF745C51C0911D0F4 D1C2C6B69A894F42
0xE3657A2422FA7811 86C4045A7202EABA

B. CLOUD SETUP

Key:
0x7E151628AED2A6AB F7158809CF4F3C0D

Plaintexts:
0xDA705E312B8D9705 7E94B4A810D531EF
0xAB93743290CD9432 7432427FE4580327
0xFFFFFFFFFFFFFFFF FFFFFFFFFFFFFF29
0x7142127714212771 4212771421270123
0x0000000000000000 0000000000000025
0x1234560000000000 0000000000000026
0xABCD000000000000 0000000000000027
0x0000000000076543 0000000000000028
0xFFFFFFFFFFFFFFF0 FFFFFFFFFFFFFF29
0x0000000000000000 0000000000000038
0x0000000000000000 0000000000000050
0x0000000000000000 0000000000000049
0x0000000000000000 0000000000000046
0x0000000000000000 0000000000000047
0x0000000000000000 0000000000000045
0x0000000000000000 0000000000000051

Ciphertexts:
0x2F4032BB10F20482 FFE3985BBC186B0D
0x2F29AE6E636C7D5C 0E8CCB3E1AE085BE
0xF4A84F93AB21D9C5 16D252967A0B9896
0x7FFFEB39C2E8899E AFF8899048A9A60D
0x2F2A29D754DF610D 7E3BEDA124E2B568
0x6046E22933797889 92159155AC270E95
0x3FF240968A572F9D 87B8ED66C87C1BB6
0xE5E884F43925E9E9 4A4E2E0F0379ECA5
0x07D7454AD710758C 57797AEDB02278A8
0xD6529F90F7A205F4 A507B8FB192AAAD9
0x8F889A12C593309D EA30C1AAD938C314
0x50177771DD1D942F 91DFBD130E0B99C0
0x1E3AEC3F75FDC0CC 1AFB8BB948E53F91

9006 VOLUME 12, 2024



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

0x68BA6ED9D6E9068D DC4ACD5CFB2AF1D6
0xC34BFB11F6597820 2262E5166FF652A6
0xC40AD3CBF7E4FEB5 CEB586C4257B1255

APPENDIX B
RESULTS ON OTHER CLOUD FPGA INSTANCES
When a user requests a cloud FPGA instance in a spe-
cific geographical region, they get assigned one of the
available instances, i.e., they cannot choose upfront the pre-
ferred instance. Similarly, when launching our experiments,
we would get access to different FPGAs. Given that every
instance has an identification number, we could choose
to either proceed with the experiments or request another
instance at a later point in time. In SectionVI, we show results
of the experiments performed on the same FPGA instance.3

To assess the generality of X-Attack, we repeated the
experiments on different FPGA instances. In this appendix,
we show a sample of the results obtained using a second
Intel Arria 10 cloud FPGA instance provided by the same
CSP. We chose not to repeat the sweep of the enable signal
frequency, because changing the frequency poses the highest
risk of resetting the board. The potentially different sensitivity
of other boards to the undervolting can lead to a DoS, which
we wanted to avoid. Hence, we used the results in Fig. 10 as
general guidelines for choosing the enable signal parameters
irrespective of the allocated FPGA instance. In what follows,
we discuss the results of the additional experiments.

1) AVERAGE LEAKAGE OCCURRENCE
Fig. 21 shows the average number of AES key leakage
occurrences for each tested SDC condition, multiple attacker
sizes, and pseudorandom plaintexts (similar to Fig. 17). The
attacker size varies between 12 and 15 blocks. We do not
show the results for 16 blocks because, on this instance, the
FIFOs were likely to reset when the attacker size exceeded
15 blocks. In comparison, on the FPGA instance used in
Section VI-B, 16 blocks would not cause FIFO reset. From
our experience, minor differences in board-level sensitivity to
undervolting are to be expected. With logic delays increasing
and metastability, some variability in the results is inevitable
which is why we report the average across a large number
of experiments. Minor differences aside, general trends are
consistent: First, the SDC conditions resulting in the highest,
respectively lowest, average number of leakage occurrences
are the same between the two FPGA instances. Second, the
leakage occurs more often as the attacker size increases,
consistent with Fig. 16. Last but not least, as the figure
does not show data for the attacker of 16 blocks, it is
worth mentioning that we did observe leakage for all SDC
conditions, including 00.

3An exception is the experiment with varying distance between the
adversary and the victim (Section VI-C), for which we were unable to get
access to the desired instance.

FIGURE 21. Average leakage occurrences (log-scale) for each tested SDC
condition, multiple attacker sizes, and pseudorandom plaintexts for the
second FPGA instance.

TABLE 9. Summary of the average number of faults observed for the 11
SDC condition with various attacker sizes for the fixed plaintexts case.
The numbers are averaged over ten experiments each containing 15 runs.
One run consists of 4,096 encryptions. The results are for a different
FPGA than the one used in Table 1 In bold, the faults leading to leakage.
In italic, the values corresponding to double bit flips.

2) AVERAGE FAULT OCCURRENCE
Table 9, similarly to Table 1 shows the average number of bit
flips occurring in the trigger signal pair for the SDC condition
11, with varying attacker sizes. The two tables show the
same trend of the faults leading to leakage increasing with
the attacker size. They both also show that only one value of
the trigger signals faults to the SDC condition and results in
leakage.

Table 10, similarly to Table 6 in Section VI-B, shows the
bit flips occurring in the trigger signal pair, for all tested SDC

VOLUME 12, 2024 9007



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

TABLE 10. Average number of occurrences of the faults in the trigger
signals for all tested SDC conditions over ten experiments each
containing 15 runs with fixed plaintexts. The attacker has 15 blocks of
ROs. Experiments run on a different cloud FPGA than the one used for
Table 6. The values in bold denote the number of occurrences of the bit
flips that lead to leakage. The values in italic indicate that the
corresponding pair of trigger signals (second column) does not occur,
meaning that none of the transitions in that row can happen.

conditions. As a reminder, only 15 RO blocks are activated on
this second cloud FPGA instance and the reported numbers
are likely to differ. Despite of that, the general trends these
two tables show are the same: the expected faults indeed
happen, the unexpected ones are not observed. One minor
difference is that, on the second instance, we detected leakage
with SDC condition 00inv, albeit very rarely.

3) ATTACK DURATION REQUIREMENTS
Next, we analyze the number of encryptions (i.e., attack dura-
tion) required for the secret key to become the most occurring
value at the victim’s output. We run 10 experiments with
61,440 encryptions each (same setup as in Section VI-A2).
In every experiment, we look at the NCT obtained ciphertexts
(0≤NCT≤61,440) to count the number of occurrences of the
secret key. If the key was the most frequently encountered
value among the analyzed ciphertexts, we consider that
attack duration sufficient for a successful attack. If the attack
duration is confirmed sufficient in all 10 experiments, the
probability (attack success in Fig. 22) is the highest value
equal to one. Comparing Figs. 15 and 22, we see that
on the second FPGA instance, for an attack to succeed
across all 10 experiments (100% accuracy) more encryptions
were required. For example, for 15 RO blocks, approx. 35k
encryptions were needed on the second FPGA instance,
compared to approx. 20k encryptions on the first FPGA
instance. However, for 9 out of 10 attacks to succeed
(90% accuracy), approx. 20k encryptions were sufficient on
both instances. We find such differences both expected and

FIGURE 22. The probability that the key is the most occurring output
value in the function of the number of obtained ciphertexts (i.e., output
samples). The AES encrypts a sequence of pseudorandom plaintexts,
while the number of RO blocks varies from 12 to 15. The horizontal axis
corresponds to the number of analyzed ciphertexts. We refer to this
probability as the accuracy of the prediction that the key will be the most
occurring output value for a given number of output samples (i.e., attack
duration).

acceptable. Finally, 13 blocks appear more effective than
14 or 15. A similar effect was observed on the first FPGA
instance and explained in Section VI-A2.

4) CONCLUDING REMARKS
In conclusion, given that the fault injection can be affected by
the process variations, aging, temperature, and possibly other
effects the adversary has no control over, some differences
across FPGA instances are expected. We observed and
reported them. Importantly, we found that the general trends
are consistent, confirming the portability of the attack across
the target FPGA instances. In practice, these variations may
aid the exploit as much as they can make it more challenging
(see Section VIII-C).

REFERENCES
[1] Cloud Computing Services—Amazon Web Services. Amazon

Web Services. Accessed: Jul. 10, 2023. [Online]. Available:
https://aws.amazon.com

[2] A. Shawahna, S. M. Sait, and A. El-Maleh, ‘‘FPGA-based accelerators of
deep learning networks for learning and classification: A review,’’ IEEE
Access, vol. 7, pp. 7823–7859, 2019.

[3] J. Hoozemans, J. Peltenburg, F. Nonnemacher, A. Hadnagy, Z. Al-Ars,
and H. P. Hofstee, ‘‘FPGA acceleration for big data analytics: Challenges
and opportunities,’’ IEEE Circuits Syst. Mag., vol. 21, no. 2, pp. 30–47,
2nd Quart., 2021.

[4] H. Li, Y. Tang, Z. Que, and J. Zhang, ‘‘FPGA accelerated post-quantum
cryptography,’’ IEEE Trans. Nanotechnol., vol. 21, pp. 685–691, 2022.

[5] FPGA-Based Amazon EC2 F1 Computing Instances. Amazon
Web Services. Accessed: Jul. 10, 2023. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/f1/

[6] (May 2022). Compute Optimized Type Family With FPGA. Alibaba Cloud.
[Online]. Available: https://www.alibabacloud.com/help/en/elastic-
compute-service/latest/compute-optimized-type-family-with-fpga

[7] C. Bobda, J. M. Mbongue, P. Chow, M. Ewais, N. Tarafdar, J. C.
Vega, K. Eguro, D. Koch, S. Handagala, M. Leeser, M. Herbordt, H.
Shahzad, P. Hofste, B. Ringlein, J. Szefer, A. Sanaullah, and R. Tessier,
‘‘The future of FPGA acceleration in datacenters and the cloud,’’ ACM
Trans. Reconfigurable Technol. Syst., vol. 15, no. 3, pp. 1–42, Sep. 2022.

[8] Baidu Cloud Compute (BCC). Baidu AI Cloud. Accessed: Jul. 10, 2023.
[Online]. Available: https://intl.cloud.baidu.com/product/bcc.html

9008 VOLUME 12, 2024



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

[9] J. M. Mbongue, D. T. Kwadjo, A. Shuping, and C. Bobda, ‘‘Deploying
multi-tenant FPGAs within Linux-based cloud infrastructure,’’ ACM
Trans. Reconfigurable Technol. Syst., vol. 15, no. 2, pp. 1–31, Dec. 2021.

[10] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, D. Lo, S. Alkalay,M. Haselman, andM. Abeydeera,
‘‘Serving DNNs in real time at datacenter scale with project brainwave,’’
IEEE Micro, vol. 38, no. 2, pp. 8–20, Mar. 2018.

[11] What is Virtualization? Amazon Web Services. Accessed: Jul. 1, 2023.
[Online]. Available: https://aws.amazon.com/what-is/virtualization/

[12] A. Vaishnav, K. D. Pham, and D. Koch, ‘‘A survey on FPGA virtualiza-
tion,’’ in Proc. 28th Int. Conf. Field Program. Log. Appl. (FPL), Dublin,
Ireland, Aug. 2018, pp. 131–138.

[13] R. Paccagnella, L. Luo, and C. W. Fletcher, ‘‘Lord of the ring(s): Side
channel attacks on the CPU on-chip ring interconnect are practical,’’ in
Proc. 30th USENIX Secur. Symp., Aug. 2021, pp. 645–662.

[14] Y. Wang, R. Paccagnella, E. T. He, H. Shacham, C. W. Fletcher, and
D. Kohlbrenner, ‘‘Hertzbleed: Turning power side-channel attacks into
remote timing attacks on x86,’’ inProc. 31st USENIX Secur. Symp., Boston,
MA, USA, Aug. 2022, pp. 679–697.

[15] X. Lou, T. Zhang, J. Jiang, and Y. Zhang, ‘‘A survey of microarchitectural
side-channel vulnerabilities, attacks, and defenses in cryptography,’’ ACM
Comput. Surv., vol. 54, no. 6, pp. 1–37, Jul. 2021.

[16] D. G.Mahmoud, V. Lenders, andM. Stojilović, ‘‘Electrical-level attacks on
CPUs, FPGAs, and GPUs: Survey and implications in the heterogeneous
era,’’ ACM Comput. Surv., vol. 55, no. 3, pp. 1–40, Feb. 2022.

[17] I. Giechaskiel, S. Tian, and J. Szefer, ‘‘Cross-VM covert- and side-channel
attacks in cloud FPGAs,’’ ACM Trans. Reconfigurable Technol. Syst.,
vol. 16, no. 1, pp. 1–29, Dec. 2022.

[18] J. Krautter, D. R. E. Gnad, and M. B. Tahoori, ‘‘FPGAhammer: Remote
voltage fault attacks on shared FPGAs, suitable for DFA on AES,’’ IACR
Trans. Cryptograph. Hardw. Embedded Syst., pp. 44–68, Aug. 2018.

[19] A. S. Rakin, Y. Luo, X. Xu, and D. Fan, ‘‘Deep-Dup: An adversarial weight
duplication attack framework to crush deep neural network in multi-tenant
FPGA,’’ in Proc. 30th USENIX Secur. Symp., Aug. 2021, pp. 1919–1936.

[20] S. M. Trimberger and J. J. Moore, ‘‘FPGA security: Motivations, features,
and applications,’’ Proc. IEEE, vol. 102, no. 8, pp. 1248–1265, Aug. 2014.

[21] F. Turan and I. Verbauwhede, ‘‘Trust in FPGA-accelerated cloud
computing,’’ ACM Comput. Surveys, vol. 53, no. 6, pp. 1–28, Dec. 2020.

[22] D. G. Mahmoud, W. Hu, and M. Stojilovic, ‘‘X-attack: Remote activation
of satisfiability don’t-care hardware trojans on shared FPGAs,’’ in Proc.
30th Int. Conf. Field-Programmable Log. Appl. (FPL), Aug. 2020,
pp. 185–192.

[23] D. R. E. Gnad, F. Oboril, and M. B. Tahoori, ‘‘Voltage drop-based fault
attacks on FPGAs using valid bitstreams,’’ in Proc. 27th Int. Conf. Field
Program. Log. Appl. (FPL), Ghent, Belgium, Sep. 2017, pp. 1–7.

[24] W. Hu, L. Zhang, A. Ardeshiricham, J. Blackstone, B. Hou, Y. Tai, and
R. Kastner, ‘‘Why you should care about don’t cares: Exploiting internal
don’t care conditions for hardware trojans,’’ in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design (ICCAD), Irvine, CA, USA, Nov. 2017,
pp. 707–713.

[25] O. Glamocanin, D. G. Mahmoud, F. Regazzoni, and M. Stojilovic,
‘‘Shared FPGAs and the holy grail: Protections against side-channel and
fault attacks,’’ in Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE),
Grenoble, France, Feb. 2021, pp. 1645–1650.

[26] T. M. La, K. Matas, N. Grunchevski, K. D. Pham, and D. Koch,
‘‘FPGADefender: Malicious self-oscillator scanning for Xilinx UltraScale
+ FPGAs,’’ ACM Trans. Reconfigurable Technol. Syst., vol. 13, no. 3,
pp. 1–31, Sep. 2020.

[27] O. Glamocanin, L. Coulon, F. Regazzoni, and M. Stojilovic, ‘‘Are cloud
FPGAs really vulnerable to power analysis attacks?’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Grenoble, France, Mar. 2020,
pp. 1007–1010.

[28] H. Zhu, X. Guo, Y. Jin, and X. Zhang, ‘‘PowerScout: A security-oriented
power delivery network modeling framework for cross-domain side-
channel analysis,’’ in Proc. Asian Hardw. Oriented Secur. Trust Symp.
(AsianHOST), Dec. 2020, pp. 1–6.

[29] (Oct. 2020). Intel Programmable Acceleration Card (PAC) With
Intel Arria 10 GX FPGA Data Sheet. Intel. [Online]. Available:
https://www.intel.com/content/www/us/en/docs/programmable/683226/
current/introduction-rush-creek.html

[30] (2020). Zynq UltraScale+ Device Technical Reference Manual. Xil-
inx. [Online]. Available: https://docs.xilinx.com/v/u/en-US/ug1085-zynq-
ultrascale-trm

[31] M. Tehranipoor and F. Koushanfar, ‘‘A survey of hardware Trojan
taxonomy and detection,’’ IEEE Des. Test Comput., vol. 27, no. 1,
pp. 10–25, Jan. 2010.

[32] M. Tunstall, D. Mukhopadhyay, and S. Ali, ‘‘Differential fault analysis
of the advanced encryption standard using a single fault,’’ in Proc. Inf.
Secur. Theory Pract. Secur. Privacy Mobile Devices Wireless Commun.,
Heraklion, Greece, Jun. 2011, pp. 224–233.

[33] P. Dusart, G. Letourneux, and O. Vivolo, ‘‘Differential fault analysis
on AES,’’ in Proc. Appl. Cryptography Netw. Secur., Kunming, China,
Oct. 2003, pp. 293–306.

[34] L. Zussa, J.-M. Dutertre, J. Clédière, B. Robisson, and A. Tria,
‘‘Investigation of timing constraints violation as a fault injection means,’’
in Proc. 27th Conf. Design Circuits Integr. Syst. (DCIS), Avignon, France,
Nov. 2012, pp. 1–6.

[35] T. La, K. D. Pham, J. Powell, and D. Koch, ‘‘Denial-of-service on
FPGA-based cloud infrastructures—Attack and defense,’’ IACR Trans.
Cryptograph. Hardw. Embedded Syst., vol. 2021, no. 3, pp. 441–464,
Jul. 2021.

[36] G. K. Yeap, Practical Low Power Digital VLSI Design. Berlin, Germany:
Springer, Dec. 2012.

[37] O. Glamoćanin, A. Kostic, S. Kostic, and M. Stojilovic, ‘‘Active wire
fences for multitenant FPGAs,’’ in Proc. 26th Int. Symp. Design Diag.
Electron. Circuits Syst. (DDECS), May 2023, pp. 13–20.

[38] G. Provelengios, D. Holcomb, and R. Tessier, ‘‘Power wasting circuits for
cloud FPGA attacks,’’ in Proc. 30th Int. Conf. Field-Programmable Log.
Appl. (FPL), Gothenburg, Sweden, Aug. 2020, pp. 231–235.

[39] K. Matas, T. M. La, K. D. Pham, and D. Koch, ‘‘Power-hammering
through glitch amplification—Attacks and mitigation,’’ in Proc. IEEE 28th
Annu. Int. Symp. Field-Programmable Custom Comput. Mach. (FCCM),
Fayetteville, AR, USA, May 2020, pp. 65–69.

[40] M. M. Alam, S. Tajik, F. Ganji, M. Tehranipoor, and D. Forte, ‘‘RAM-
jam: Remote temperature and voltage fault attack on FPGAs usingmemory
collisions,’’ in Proc. Workshop Fault Diagnosis Tolerance Cryptography
(FDTC), Atlanta, GA, USA, Aug. 2019, pp. 48–55.

[41] D. Mahmoud andM. Stojilovic, ‘‘Timing violation induced faults in multi-
tenant FPGAs,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Florence, Italy, Mar. 2019, pp. 1745–1750.

[42] D. G. Mahmoud, S. Hussein, V. Lenders, and M. Stojilovic, ‘‘FPGA-to-
CPU undervolting attacks,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Mar. 2022, pp. 999–1004.

[43] N. Fern, S. Kulkarni, and K. T. Cheng, ‘‘Hardware trojans hidden in
RTL don’t cares—Automated insertion and prevention methodologies,’’ in
Proc. IEEE Int. Test Conf. (ITC), Anaheim, CA, USA, Oct. 2015, pp. 1–8.

[44] A. Tang, S. Sethumadhavan, and S. Stolfo, ‘‘CLKSCREW: Exposing the
perils of security-oblivious energy management,’’ in Proc. 26th Usenix
Secur. Symp., Vancouver, BC, Aug. 2017, pp. 1057–1074.

[45] S. Yazdanshenas and V. Betz, ‘‘The costs of confidentiality in virtualized
FPGAs,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 10,
pp. 2272–2283, Oct. 2019.

[46] C. Wolf. Yosys Open SYnthesis Suite. Accessed: May 10, 2023. [Online].
Available: www.clifford.at/yosys/

[47] (2020). Development and Education Boards. Intel. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/articles/technical/
fpga-academic-boards.html

[48] H. Hsing. Tiny AES. Accessed: Jul. 10, 2023. [Online]. Available:
https://opencores.org/projects/tiny_aes

[49] P. Alfke. (Jul. 1996). Efficient Shift Registers, LFSR Counters, and
Long Pseudo-Random Sequence Generators. [Online]. Available:
https://docs.xilinx.com/v/u/en-US/xapp052

[50] (Oct. 2018). Deep Dive Into Alibaba Cloud F3 FPGA as a Service
Instances. [Online]. Available: https://www.alibabacloud.com/blog/deep-
dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057

[51] (Jun. 2021). AWS Announces a New Shell for F1 Instances With Increased
FPGA Resources and Data Transfer Speeds. [Online]. Available:
https://aws.amazon.com/about-aws/whats-new/2021/06/aws-announces-
a-new-shell-for-f1-instances-with-increased-fpga-resources-and-data-
transfer-speeds/

[52] Open Programmable Acceleration Engine—Documentation. Intel.
Accessed: Jul. 15, 2023. [Online]. Available: https://opae.github.io/

[53] (Jul. 2020). Accelerator Functional Unit Developer’s Guide for
Intel FPGA Programmable Acceleration Card. [Online]. Available:
https://www.intel.com/content/www/us/en/docs/programmable/683129/1-
2-and-2-0-1/about-this-document.html

VOLUME 12, 2024 9009



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

[54] (Apr. 2019). Intel Acceleration Stack for Intel Xeon CPUWith FPGAs Core
Cache Interface (CCI-P) Reference Manual. Intel. [Online]. Available:
https://www.intel.com/content/www/us/en/docs/programmable/683193/
current/about-this-document.html

[55] OPAE SDK Source Code Repository. Open FPGAStack. Accessed: Jul. 15,
2023. [Online]. Available: https://github.com/OFS/opae-sdk/tree/master

[56] C. Drewes, O. Weng, K. Ryan, B. Hunter, C. McCarty, R. Kastner, and
D. Richmond, ‘‘Turn on, tune in, listen up: Maximizing side-channel
recovery in time-to-digital converters,’’ in Proc. ACM/SIGDA Int. Symp.
Field Program. Gate Arrays, Monterey, CA, USA, Feb. 2023, pp. 22–111.

[57] G. Provelengios, D. Holcomb, and R. Tessier, ‘‘Characterizing power
distribution attacks in multi-user FPGA environments,’’ in Proc. 29th Int.
Conf. Field Program. Log. Appl. (FPL), Barcelona, Spain, Sep. 2019,
pp. 194–201.

[58] M. Gobulukoglu, C. Drewes, W. Hunter, R. Kastner, and D. Richmond,
‘‘Classifying computations on multi-tenant FPGAs,’’ in Proc. 58th
ACM/IEEE Design Autom. Conf. (DAC), San Francisco, CA, USA,
Dec. 2021, pp. 1261–1266.

[59] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor,
‘‘Hardware trojans: Lessons learned after one decade of research,’’ ACM
Trans. Design Autom. Electron. Syst., vol. 22, no. 1, pp. 1–23, May 2016.

[60] A. Nahiyan, K. Xiao, K. Yang, Y. Jin, D. Forte, and M. Tehranipoor,
‘‘AVFSM: A framework for identifying and mitigating vulnerabilities in
FSMs,’’ in Proc. 53rd ACM/EDAC/IEEE Design Autom. Conf. (DAC),
Austin, TX, USA, Jun. 2016, pp. 1–6.

[61] C. Krieg, C. Wolf, A. Jantsch, and T. Zseby, ‘‘Toggle MUX:
How X-optimism can lead to malicious hardware,’’ in Proc. 54th
ACM/EDAC/IEEE Design Autom. Conf. (DAC), Austin, TX, USA,
Jun. 2017, pp. 1–6.

[62] W. Hu, Y. Ma, X. Wang, and X. Wang, ‘‘Leveraging unspecified
functionality in obfuscated hardware for trojan and fault attacks,’’ in
Proc. Asian Hardw. Oriented Secur. Trust Symp. (AsianHOST), China,
Dec. 2019, pp. 1–6.

[63] S. Zeitouni, J. Vliegen, T. Frassetto, D. Koch, A.-R. Sadeghi, and
N. Mentens, ‘‘Trusted configuration in cloud FPGAs,’’ in Proc. IEEE 29th
Annu. Int. Symp. Field-Programmable Custom Comput. Mach. (FCCM),
May 2021, pp. 233–241.

[64] F. Schellenberg, D. R. E. Gnad, A. Moradi, and M. B. Tahoori, ‘‘An inside
job: Remote power analysis attacks on FPGAs,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Dresden, Germany, Mar. 2018,
pp. 1111–1116.

[65] M. Zhao and G. E. Suh, ‘‘FPGA-based remote power side-channel
attacks,’’ in Proc. IEEE Symp. Secur. Privacy (SP), San Francisco, CA,
USA, May 2018, pp. 229–244.

[66] S. Moini, S. Tian, D. Holcomb, J. Szefer, and R. Tessier, ‘‘Power side-
channel attacks on BNN accelerators in remote FPGAs,’’ IEEE J. Emerg.
Sel. Topics Circuits Syst., vol. 11, no. 2, pp. 357–370, Jun. 2021.

[67] Y. Zhang, R. Yasaei, H. Chen, Z. Li, and M. A. A. Faruque, ‘‘Stealing
neural network structure through remote FPGA side-channel analysis,’’
IEEE Trans. Inf. Forensics Security, vol. 16, pp. 4377–4388, 2021.

[68] C. Ramesh, S. B. Patil, S. N. Dhanuskodi, G. Provelengios, S. Pillement,
D. Holcomb, and R. Tessier, ‘‘FPGA side channel attacks without physical
access,’’ in Proc. IEEE 26th Annu. Int. Symp. Field-Programmable Custom
Comput. Mach. (FCCM), Boulder, CO, USA, Apr. 2018, pp. 45–52.

[69] I. Giechaskiel, K. B. Rasmussen, and K. Eguro, ‘‘Leaky wires: Information
leakage and covert communication between FPGA long wires,’’ in Proc.
13th ACM ASIA Conf. Inf., Comput. Commun. Secur. (ASIACCS), Incheon,
Republic of Korea, Jun. 2018, pp. 15–27.

[70] S. Bhasin and F. Regazzoni, ‘‘A survey on hardware trojan detection
techniques,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2015,
pp. 2021–2024.

[71] R. Dai and T. Yavuz, ‘‘A symbolic approach to detecting hardware Trojans
triggered by don’t care transitions,’’ ACM Trans. Des. Autom. Electron.
Syst., vol. 28, no. 2, pp. 1–31, Dec. 2022.

[72] L. Wu, X. Li, J. Zhu, J. Zheng, andW. Hu, ‘‘Identifying specious LUTs for
satisfiability don’t care trojan detection,’’ in Proc. IEEE 34th Int. System-
Chip Conf. (SOCC), Las Vegas, NV, USA, Sep. 2021, pp. 170–175.

[73] W. Hu, A. Ardeshiricham, L. Wu, and R. Kastner, Integrating Information
Flow Tracking Into High-Level Synthesis Design Flow. Berlin, Germany:
Springer, 2022, pp. 365–387.

[74] I. Ahmed, L. L. Shen, and V. Betz, ‘‘Optimizing FPGA logic circuitry for
variable voltage supplies,’’ IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 28, no. 4, pp. 890–903, Apr. 2020.

[75] J. Krautter, D. R. E. Gnad, and M. B. Tahoori, ‘‘Mitigating electrical-level
attacks towards secure multi-tenant FPGAs in the cloud,’’ ACM Trans.
Reconfigurable Technol. Syst., vol. 12, no. 3, pp. 1–26, Aug. 2019.

[76] L. Zussa, A. Dehbaoui, K. Tobich, J.-M. Dutertre, P. Maurine,
L. Guillaume-Sage, J. Clediere, and A. Tria, ‘‘Efficiency of a glitch
detector against electromagnetic fault injection,’’ in Proc. Design, Autom.
Test Eur. Conf. Exhib. (DATE), Dresden, Germany, Mar. 2014, pp. 1–6.

[77] Z. Ghaderi, M. Ebrahimi, Z. Navabi, E. Bozorgzadeh, and N. Bagherzadeh,
‘‘SENSIBle: A highly scalable SENsor DeSIgn for path-based age
monitoring in FPGAs,’’ IEEE Trans. Comput., vol. 66, no. 5, pp. 919–926,
May 2017.

[78] A. Amouri and M. Tahoori, ‘‘A low-cost sensor for aging and late
transitions detection in modern FPGAs,’’ in Proc. 21st Int. Conf. Field
Program. Log. Appl., Chania, Greece, Sep. 2011, pp. 329–335.

[79] E. Stott, J. M. Levine, P. Y. K. Cheung, and N. Kapre, ‘‘Timing fault
detection in FPGA-based circuits,’’ in Proc. IEEE 22nd Annu. Int.
Symp. Field-Programmable Custom Comput. Mach., Boston, MA, USA,
May 2014, pp. 96–99.

[80] D. Ernst, N. Sung Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, ‘‘Razor: A low-power
pipeline based on circuit-level timing speculation,’’ in Proc. 22nd Digit.
Avionics Syst. Conf., San Diego, CA, USA, 2003, pp. 7–18.

[81] L. L. Shen, I. Ahmed, and V. Betz, ‘‘Fast voltage transients on FPGAs:
Impact and mitigation strategies,’’ in Proc. IEEE 27th Annu. Int. Symp.
Field-Programmable Custom Comput. Mach. (FCCM), San Diego, CA,
USA, Apr. 2019, pp. 271–279.

[82] S. S. Mirzargar, G. Renault, A. Guerrieri, andM. Stojilovic, ‘‘Nonintrusive
and adaptive monitoring for locating voltage attacks in virtualized
FPGAs,’’ in Proc. Int. Conf. Field-Programmable Technol. (ICFPT), Maui,
HI, USA, Dec. 2020, pp. 288–289.

[83] H. Nassar, H. AlZughbi, D. R. E. Gnad, L. Bauer, M. B. Tahoori, and
J. Henkel, ‘‘LoopBreaker: Disabling interconnects to mitigate voltage-
based attacks in multi-tenant FPGAs,’’ in Proc. IEEE/ACM Int. Conf.
Comput. Aided Design (ICCAD), Munich, Germany, Nov. 2021, pp. 1–9.

DINA G. MAHMOUD (Member, IEEE) received
the B.Sc. degree in electronics and communica-
tions engineering, with a minor in mathematics
from The American University in Cairo, Egypt,
in 2019. She is currently pursuing the Ph.D. degree
in computer and communication sciences with
EPFL, Lausanne, Switzerland. She is the first
recipient of the Cyber-Defence (CYD) Campus
Doctoral Fellowship and a recipient of the Google
Generation Scholarship. Her research interests

include the hardware security of FPGA-CPU heterogeneous systems.

BEATRICE SHOKRY received the B.Sc. degree in
electronics and communications engineering with
a minor in computer science from The American
University in Cairo, Egypt. She is currently
pursuing the Ph.D. degree with EPFL, Lausanne.
She has been an undergraduate ResearchAssistant.
She was also a Summer@EPFL Intern, in 2022.
Her research interests include hardware security,
fault tolerance, and FPGAs.

9010 VOLUME 12, 2024



D. G. Mahmoud et al.: X-Attack 2.0: The Risk of Power Wasters and Satisfiability Don’t-Care Hardware Trojans

VINCENT LENDERS (Member, IEEE) received
the M.Sc. and Ph.D. degrees in electrical engi-
neering and information technology from ETH
Zürich, in 2001 and 2006, respectively. After the
Ph.D. degree, he was a Postdoctoral Researcher
with Princeton University. In 2008, he joined
armasuisse, where he is currently the Director of
the Cyber-Defense Campus. His research interests
include the intersection between cyber security,
data science, networking, and crowdsourcing.

Over the past 15 years, he has published over 150 scientific publications
in these areas and he has contributed to the development of various cyber
security and information systems which have been adopted by the Swiss
Federal Department of Defense. He is also the Co-Founder and a member
of the Board of the OpenSky Network and Electrosense Associations.

WEI HU (Member, IEEE) received the B.S., M.S.,
and Ph.D. degrees from Northwestern Polytechni-
cal University (NPU), Xi’an, China, in 2005, 2008,
and 2012, respectively. He is currently a Professor
with the School of Cybersecurity, NPU. He has
published over 70 papers in peer-reviewed journals
and conferences, two books, and six patents.
His research interests include hardware security,
cryptography, formal security verification, logic
and high-level synthesis, formal methods, and

reconfigurable computing. He serves as a Guest Associate Editor for
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS

AND SYSTEMS. He has been an Organizing Committee Member of IEEE
International Symposium on Hardware Oriented Security and Trust and
Asian Hardware Oriented Security and Trust Symposium, since 2017.
He was the Technical Program Co-Chair of 2019 Asian Hardware Oriented
Security and Trust Symposium (AsianHOST), the General Co-Chair
of 2023AsianHOST, and a Technical ProgramCommitteeMember of ICCD,
ASAP, and CFTC.

MIRJANA STOJILOVIĆ (Senior Member, IEEE)
received the Dipl.-Ing. and Ph.D. degrees from
the School of Electrical Engineering, University
of Belgrade, Belgrade, Serbia, in 2006 and 2013,
respectively. Since 2016, she has been with the
School of Computer and Communication Sci-
ences, EPFL, Lausanne, Switzerland. Her research
interests include electronic design automation,
reconfigurable computing, and hardware security.
She is a Principal Investigator with the Swiss

National Science Foundation (SNSF)-funded project Secure FPGAs in the
Cloud. She serves on the technical program committees of the International
Symposium on Field-Programmable Gate Arrays (FPGA), International
Symposium on Field-Programmable CustomComputingMachines (FCCM),
International Conference on Field-Programmable Logic and Applications
(FPL), and Design, Automation and Test in Europe (DATE) Conference.
She is an Associate Editor of the ACM Transactions on Reconfig-
urable Technology and Systems (TRETS) and IEEE EMBEDDED SYSTEMS

LETTERS (ESL).

VOLUME 12, 2024 9011


