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ABSTRACT Planned times for the throughput of production are key components to production planners
for determining delivery dates with customers, capacity planning, scheduling and order coordination.
While traditional estimation methods often rely on basic statistics and expert knowledge, data mining
respectively machine learning offers the potential to compute more precise predictions for order-specific
planned throughput times. Factors that lead to deviations from the plan are diverse and thus challenging to
consider in the various production planning tasks along the order fulfilment process. Intelligent throughput
time predictions promise a remedy. Yet, predictive models are often not designed to be practically applicable
due to a lack of consideration of the various characteristics of each stage of the order fulfilment process.
To address this gap, this paper takes a closer look at the prediction of throughput times for the various stages
of order fulfilment. Based on the Cross Industry Standard Process for Data Mining, the characteristics of the
individual steps to build a prediction model are elaborated with a focus and business and data understanding
and then examined in a case study. From that, practical implications are derived and guidance for practitioners
is given. A key finding is that predictions are less accurate in the early stages of order fulfillment. Prediction
quality naturally enhances over time, since more andmore order details are known. In conclusion, an iterative
prediction process with an evolving database ensures good prediction quality, especially in the late stages of
order fulfillment.

INDEX TERMS Production planning, machine learning, throughput time prediction, data analysis.

I. INTRODUCTION
On-time delivery of order-related products is a key success
factor for companies. Ensuring a high level of delivery relia-
bility remains a top priority for manufacturers and, along with
costs and quality, is among the most important prerequisites
for a successful standing in global competition [1], [2], [3],
[4].

Along the order fulfilment process, planned times for
the throughput are used for different means. While at the
beginning of the order fulfilment process, planned throughput
times are used to coordinate due dates, compute delivery
dates, or plan rough capacities. In short-term planning activ-
ities, planned throughput times are used to conduct fine
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resource and schedule planning [5], [6]. For determining
planned throughput times, there are various methods based
on statistics, general assumptions, or queuing theory [7], [8].
These are often based on mean value estimate or calculated
using only a few key figures, such as work content [8],
[9]. The application of Machine Learning (ML) leads to
more sophisticated predictions of throughput times [6], [10],
[11], [12]. Additionally, technical development can be greatly
simplified by several ML frameworks, including AutoKeras,
AutoSk-Learn and TPOT, which automate the development
process [13], [14], [15].

Along the order fulfilment process, Production Planning
and Control (PPC) manages the processes in the internal
supply chain. Different PPC tasks use planned values for
throughput time at different points in order processing to
meet different objectives, have specific constraints, and have
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access to varying information [5]. However, these aspects
are often not considered in predictions [6]. Therefore, this
paper examines the application of ML-based throughput time
predictions in different phases of order fulfilment to discover
differences between the phases and the resulting opportuni-
ties. In addition, we provide a practice-oriented discussion of
important elements in creating ML predictions.

To achieve this, the paper is structured as follows: First,
we present the theoretical foundations, followed by a dis-
cussion of the problem of how to embed throughput time
predictions in PPC (Section III). Based on the estab-
lished Cross Industry Standard Process for Data Mining
(CRISP-DM), critical elements for developing ML-based
throughput time predictions along order fulfilment are elab-
orated (Section IV). Finally, Section V provides a case study
to illustrate the resulting conclusions in terms of throughput
time predictions along the order fulfillment process. This
paper builds on a previously conducted systematic literature
analysis (see [6]).

II. THEORETICAL FOUNDATIONS
This section includes the basics of order fulfilment and
throughput time, PPC, and data-driven prediction approaches
using ML.

A. ORDER FULFILMENT AND THROUGHPUT TIME
The order fulfilment process describes the execution of
various activities to complete an order. In the context of
production, this usually includes the acquisition of (customer)
orders, purchasing secondary requirements, production, ship-
ping and post-delivery activities [16], [17]. The process varies
depending on the type of company and the order fulfilment
strategy. In customized production (or engineer-to-order),
order fulfilment includes product development and manu-
facturing engineering phases [18]. In make-to-order (m-t-o)
companies, these phases are not part of the order fulfilment
process. For the further course of this paper, the order fulfil-
ment process is defined as shown in Figure 1.

FIGURE 1. Order fulfilment process [17], [19].

The definition of these five phases outlines all key mile-
stones in the processing of an order in an customized

production (such as m-t-o). This includes the initiation of
a customer order and thus the starting point of a customer-
oriented production. It contains the order confirmation, which
typically triggers procurement processes as well as produc-
tion planning tasks. Once the secondary procurement or
allocation of requirements have been fulfilled or scheduled,
the order can be released for production. As soon as an order
has been completed, the product can be delivered [5], [20].

Throughput time (TTP) or lead time is defined as the time
that elapses between the release of an order (to production)
to its completion [21]. Equation 1 defines the calculation for
a production order k:

TTPOrderk = FO − RO (1)

where FO (in calendar days) denotes the time of finishing of
an order and RO (in calendar day) the time of order release.

A distinction can be made with regard to the level of detail:
Operation throughput times (TTPOperation) describe the time
span of a sub-processes of an order (e.g. turning shop, milling
center, etc.). Thus, the sum of operation throughput times
equals the order throughput time [3]:

TTPOrderk =

∑N

i=1
TTPOperationk,i (2)

where i corresponds to one step of N necessary productions
process steps to fulfil the order k. Operation throughput
times can be decomposed in processing (TOP) as well
inter-operation time (TIO) for an operation [3]:

TTPOperationk,i = TIOk,i + TOPk,i (3)

In contrast to TTPOrderk , delivery time (TD) describes the
time between order confirmation and shipment and includes
administration time (TA), procurement time (TP), shipping
time (TS) and time buffers (TB) [21]:

DTk = TTPOrderk + TPk + TAk + TSk + TBk (4)

B. PRODUCTION PLANNING AND CONTROL
PPC manages the order fulfilment process. PPC finds itself
in a field of tension between competing logistical targets [5].
Central targets comprise a low work in progress (WIP),
a high schedule compliance, short throughput times, and a
high capacity utilization [3]. A central purpose of produc-
tion planning is to schedule the production program (short
and long term) and plan all activities assigned with the
manufacturing process such as procurement, capacity plan-
ning, supplier coordination etc.) [22]. Production controls
primarily responsible for ensuring that all production plans
are successfully implemented even in the event of disrup-
tions [21]. In the context of computation and utilization of
planned TTP, we focus on four relevant tasks within PPC:
Order classification, throughput scheduling, capacity plan-
ning and order coordination (cf. [5], [6]). Scheduling and
capacity planning are treated jointly in this context, since they
usually overlap (in the coming only referred to as throughput
scheduling) [9]:
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• Order clarification: Determination of due dates based
on the delivery dates requested by the customer. This
requires calculating (rough) planned TTP at order level,
checking available capacities and, if necessary, setting
time buffers.

• Throughput scheduling and capacity planning: Determi-
nation of start and end times of orders and the individual
sub-processes by allocating operations to resources in a
given time period [23]. This requires the determination
of detailed planned TTP at the order and operation level.
The scheduling can be done e.g. by forward or backward
scheduling [9].

• Order coordination: Comparison of the current progress
of individual production orders with the plan. This task
requires determining remaining TTP to notify customers
in terms of any delays.

Within production configuration as described in [4], the tasks
defined in the context of computation and utilization of
planned TTP can be assigned to the tactical or operational
level.

Numerous approaches exist for the calculation of planned
TTP. For example, according to Wiendahl [9], common static
methods for calculating planned TTP at order level are based
on past mean values (see Equation (5) or (6)) or multiples of
the processing time (see (7)).

TTPOrder,plank = TTPOrdermean (5)

TTPOrder,plank =
∑N

i=1 TTP
Operation
i,mean (6)

TTPOrder,plank =
∑N

i=1 b·TOPi (7)

These calculations can be performed by clustering the mean
values by product groups or globally [9]. In addition to static
methods, there are dynamic approaches to determine planned
TTP at order level. An exemplary dynamic approach is based
on exponential smoothing, such as shown in [24]:

TTPOrder,planm,t =α·TTPOrder,LOm,t +(1 − α) ·TTPOrder,planm,t−1 (8)

where the calculation of planned TTP is performed for a
time period t and a product group m. By subtracting the
last observed value of the TTP (TTPOrder,LO) with the TTP
of the past time period, dynamic effects shall be taken into
account. The coefficient α describes the smoothing parameter
(cf. [24]).

C. MACHINE LEARNING FOR DATA-DRIVEN
THROUGHPUT TIME PREDICTION
In contrast to traditional TTP calculation methods (static
or dynamic), ML enables production planners to consider
numerous influencing factors when calculating planned TTP.

ML is a branch of artificial intelligence applications
that employs statistical/ computational methods to provide
data-based solutions for specific issues, and is increasingly
being used in manufacturing [25], [26], [27], [28]. ML uses
these methods to learn from past experiences expressed
in data and performs different tasks such as classification,

regression, ranking or clustering [26]. It can be divided into
different scenarios based on the training data available to the
user and objective; the most common are: supervised learn-
ing, unsupervised learning and reinforcement learning [26].
Supervised learning uses labelled data and performs predic-
tions for unseen data. Mainly, this involves regression and
classification tasks [26].
Unsupervised learning is based on unlabeled data, two

possible applications are clustering and dimensionality
reduction. Since there are no labelled examples, it is difficult
to quantify the performance of such models [26]. Appli-
cations in the production context comprise e.g. predictive
maintenance [29].
Reinforcement learning combines training and testing

phases by immediately rewarding every action so that it is
possible to interact with and sometimes influence the environ-
ment. The goal is to maximize the reward through a series of
actions and iterations with the environment [26]. A potential
field of application is production control [30]. Predicting
TTP is usually a regression task in the context of supervised
learning [6].
The process for creating (supervised) ML models can be

described as shown in Figure 2:

FIGURE 2. Principle depiction of a learning process (supervised) [26].

In the beginning, a labelled data set containing the target
of a prediction is needed. In our case of TTP prediction,
these are the (nominal) values for TTP of different production
orders.

Furthermore, we need features, a set of attributes that
represent the independent variables of the model. Feature
engineering, the process of creating and enriching raw
data into attributes that have a positive impact on predic-
tion performance, is one of the most time-consuming and
at the same time most essential tasks in the creation of
an ML application [31], [32]. Suitable features can lead
the learning algorithm effectively, while uninformative fea-
tures can be misleading. The choice of features is largely
up to the user and reflects their prior knowledge of the
issue [26].
The selected features are subsequently used to train a learn-

ing algorithm (A), using the training sample by adjusting its
free parameters (hyperparameters, 2). For example, learning
algorithms are linear regressions, support-vector regression,
or regression trees [26].

Using the validation data, the set of hyperparameters
with the best results is selected (2o). Finally, the perfor-
mance of the learning algorithm is evaluated using the test
sample [26]. Relating to regression tasks, common metrics
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for the evaluation are the mean absolute error (MAE), the
mean square error (MSE) or the root mean squared error
(RMSE) [33].

In our context, the error describes the deviation of the pre-
diction (marked with the superscript ‘‘pred’’) from its actual
value (marked superscript ‘‘actual’’) which can be denoted as
follows [33]:

ei = TTPactuali − TTPpredi (9)

The MAE and MSE can be calculated as follows [33]:

MSE =
1
N

∑N

i=1
e2i (10)

MAE =
1
N

∑N

i=1
|ei| (11)

Increasingly, automated approaches are used to create ML
models. This topic is titled as ‘‘AutoML’’, see e.g. [14], [15],
[34]). These automate the selection of a suitable algorithm,
(e.g. whether to take a linear regression or a regression tree)
and take over the hyperparameter setting (see e.g. [15]). The
user is therefore left with selecting a business case, the input
data and the evaluation as well as application. We discuss
these steps in greater detail in Section IV relating to the
CRISP-DM.

In the current state of research, there are many different
approaches to the prediction of throughput times. A system-
atization and literature review can be found in [6] or [12].
As mentioned in the introduction, often, not enough attention
is paid to the different phases of order fulfilment and the
purpose of prediction, as they are different for each step and
the available information changes drastically. This problem
is addressed in the following section.

III. ON THE PROBLEM OF EMBEDDING THROUGHPUT
TIME PREDICTION IN ORDER FULFILMENT
Planned values for the TTP of production orders are used in
several phases along the order fulfilment process. As already
elaborated, we consider three PPC tasks where planned TTP
are deployed: order clarification, throughput scheduling and
order coordination [6]. The use of TTP for these tasks differs
in terms of objective, purpose and available information (cf.
[5], [17]). In view of this, Figure 3 differentiates the three PPC
tasks under consideration, the corresponding order fulfilment
phases and the associated prediction targets.

In order clarification, a company needs to define a
TTP (hereafter denoted as rough TTP) to communicate
a delivery date to the customer based on the customer’s
requirements. At the same time, this defined rough TTP
(TTPOrder,rough−plan) must be feasible for production. Here,
a conflict arises in terms of short delivery times that the
customer usually wants as well as the ability to meet short
delivery times and deliver on time [5], [35]. The result of this
task is a target date.

Once the target date has been set and the order has
been confirmed, throughput scheduling needs to schedule
the order and its operations in such a way that the target

FIGURE 3. Phases of order fulfilment, PPC tasks and prediction targets
based on [6].

date is met. To schedule orders and their operations opti-
mally, the planned TTP for the operations are required in
addition to the planned TTP for the entire order [5], [35].
The objective is to plan the throughput in the most effi-
cient way, taking into account the logistical objectives. The
objective of this task is to ensure that TTP and WIP are
low whilst capacity utilization and schedule compliance are
maintained high [3]. Estimated planned start and finish dates
for the production order (TTPOrder,detail−plan) and its opera-
tions (TTPOperation,detail−plan) describe the results of this task.
A safety time buffer is usually included to consider schedule
deviations [5], [35].
Order coordination takes over the task of coordinating

the orders after release. The objective is to compare the
progress of the orders with the planned schedule and to
inform the customer in the event of delays [5], [35]. For
this purpose, delivery time deviations and remaining TTP
(TTPOrder,remain−plan) may have to be calculated.
In order to make the best possible prediction, it is vital

to pay close attention to the PPC task in question. Since
the objective differs in each task, the requirements for the
calculated planned TTP as described above will differ. Fur-
thermore, during the course of order fulfilment process, the
information that can be used at each phase is very different
and increases as time goes on (cf. [6]). This information
growth provides the potential for better predictions. A good
example for this provides the WIP.

WIP, as a measure of the amount of jobs currently in
production, usually measured in (working) hours or number
of jobs, has a significant impact on the TTP according to
Little’s Law (see e.g. [3], [36]). Usually, information about
the current system load, e.g. in the form of WIP, is not
available at the beginning of the order clarification (at most in
the form of estimates or planned values). If this indicator is
to be meaningfully included in a prediction, the prediction
has to be as close to the release (close before or after),
so that the WIP is actually known. As pointed out in [6] most
approaches investigated use the WIP as a key figure for the
prediction.

In a nutshell, TTP predictions can be used in different
means along the order fulfilment process in different PPC
tasks. At each point in time, different information is available
to make predictions. Existing approaches tend to focus on a
single point in time and do not systematically compare the
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different stages of the order fulfilment process taking into
account the information available. Therefore, the following
section presents a procedure for predicting TTP based on the
CRISP-DM process, which considers these issues and other
critical aspects.

IV. PREDICTING THROUGHPUT TIMES ALONG ORDER
FULFILMENT
The CRISP-DM (see Figure 4) is model for data mining
applications. The CRISP-DM comprises six steps: Busi-
ness Understanding, Data Understanding, Data Preparation,
Modelling, Evaluation and Deployment [37]. There are alter-
native approaches as described in [38] or [39] that adapt the
CRISP-DM relating to the use of ML, that we also consider
in the following. The delimitation of ML and DM as sub-
domains of artificial intelligence is done in [25] and is not
the subject of this paper. For example, the process model
discussed in [38] provides an extra phase for monitoring and
maintenance in addition to the deployment phase (which we
do not consider) and combines phases of Business & Data
Understanding. This adjustment is suitable for our purposes,
so we will also follow it.

FIGURE 4. CRISP-DM [37].

In the following, we describe the relevant contents and
tasks of the individual steps with regard to our field of
application, the prediction of TTP, considering the CRISP-
DM [37] as well as the extension by Studer et al. [38].

A. BUSINESS & DATA UNDERSTANDING (STEP I AND II)
This phase includes the definition of the scope as well as
setting success criteria (A.1), data collection (A.2), data
exploration and assessment of initial situation (A.3) and data
quality verification(A.4) [37], [38].

1) SCOPE AND SUCCESS CRITERIA
The first step in defining the scope is to select the phasewithin
the order fulfilment process to which the TTP prediction will
be applied through the corresponding PPC task andwhat busi-
ness units will be involved. Understanding the requirements
and needs of the business unit is crucial for the ML appli-
cation to be accepted [38]. While order clarification is often
handled by key account management or sales, throughput
scheduling is the responsibility of production planners.

Scope definition, often the key step in creating a prediction
(cf. [40]), involves defining the specific area of production to
be covered by the TTP prediction. Therefore, it is necessary
to look at the associated material and process flow. It is
also necessary to define the objectives (such as improvement
of plan stability) to be achieved and the criteria by which
the use of ML can be considered a success. In general,
a distinction can be made between business and ML suc-
cess criteria [38].In this context, the metrics MAE or MSE
described in Section II-C, can be applied. For example, a spe-
cific value for the prediction’sMAE can be defined as a target.
It is also possible to measure against currently used planning
values. Conducting feasibility checks before starting an ML
project is also crucial to minimize the risk of premature
failure due to unrealistic objectives etc. [38]. The general
availability of datasets should be also assessed. In addition,
the applicability of the ML technology should be examined,
e.g. through proof of concept or literature reviews [38]. It may
also be necessary to consider legal restrictions [37] (e.g. when
dealing with personal data).

2) DATA COLLECTION
Data collection is an essential part of carrying out an ML
project and should not be confused with feature selection (cf.
[32]), where the data used for modelling are selected. At this
stage, the aim is to gather a sufficient amount of generally
relevant data from various sources [38].

As ML tries to find patterns between the relationships
between our input features and our target variable (TTP),
we need to collect data that we assume has an influence/
relationship in or on TTP. Irrelevant information can affect the
predictive performance of many models negatively. Domain-
specific knowledge helps to separate potentially meaningful
information from irrelevant information [41]. A first guide
to collect initial data is provided by the TTP driver tree
by [42] and [43]. The TTP driver tree contains the main
factors that generally affect TTP and their deviation from plan
(cf. Figure 5).

These include physical factors such as the production struc-
ture and planning factors that influence the throughput itself
and its deviation from the plan.

In addition, it is necessary to take into account whether
the data collected is available at the time of the prediction.
Table 1 shows which information would be available at which
phases of order fulfilment and the associated PPS tasks.
Please note that this is difficult to generalize and is domain
specific. Parentheses indicate that availability cannot be given
in general terms as it may depend, for example, on the type
of order fulfillment. For example, in the case of engineer to
order, the number of process steps within order clarification
may not be known.

However, certain information is only physically available
at a certain point in time (e.g. an unpunctual start can only be
known after the order has been released). Nevertheless, other
information, such as lot size, could potentially be determined
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FIGURE 5. Drivers influencing order throughput time (based on [42], [43]).

during order clarification. Typically, however, this informa-
tion is only available at the scheduling stage, i.e. after the
order has been clarified.

It can be stated that the amount of available data is
increasing along the order fulfilment process and orders are
becoming more predictable. In other words, there is less data
available at the beginning of the order fulfilment process than
at later phases.

3) DATA EXPLORATION AND ASSESSMENT OF INITIAL
SITUATION
This task takes a deeper look at the issue at hand by ana-
lyzing the data collected. Univariate analyses (i.e. of the
target variable TTP) and bivariate analyses of the relationship
between the TTP and the other attributes should be carried
out [37]. With regard to univariate analysis, one could look

TABLE 1. Principle availability of features in different PPC tasks.

at the distribution of TTP and the current target achievement
by comparing it to the current planned values. For bivariate
analysis, correlations and relationships between TTP and
other features could be calculated, for example, using scatter
matrix plots and non-graphical correlation analyses. For this
task in general, it may be appropriate to follow the procedures
of explorative data analysis (cf. [44]).

Especially, it is worthwhile to take a closer look at the
key influences described in Figure 5. In addition, production
areas or systems that substantially determine TTP (such as
bottlenecks) should be investigated.

The initial data exploration also allows us to assess the
baseline situation in terms of plan stability and accuracy of
the planned TTP. Here it might be interesting to circle back
and reassess and evaluate the success criteria.

4) DATA QUALITY VERIFICATION
The purpose of this task is to determinewhether the objectives
and success criteria can be achieved with the given set of
data. It is based on the previous exploratory data analysis
and should include a general description of the data (infor-
mation on format, units, etc.). A lack of data could trigger
step A.2. [38]. Other issues to be considered are whether
the data is complete, certain errors are common or there are
large numbers of missing values [37]. This step also contains,
according to [38], the definition of data requirements as for
example expected feature values, format or maximum of
missing values. To reduce the risk of bias, process experts
should be consulted. In a final verification step, it must be
decided whether the data meet the requirements and whether
the ML application is feasible [38].
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B. DATA PREPARATION (STEP III)
This phase includes feature engineering (B.1), feature selec-
tion(B.2) and cleaning (B.3) [37], [38]. Sincewe useAutoML
for modelling, there is partially no need for (technical) data
pre-processing steps including formatting, normalization or
data transformation. The extent of needed pre-processing
depends on the chosen framework. This also applies to feature
selection.

1) FEATURE ENGINEERING
Feature engineering refers to the task of transforming and
pre-processing raw data into features that are suitable for ML
and enable a good output [32]. Feature engineering is difficult
to generalize because features can often only be defined in
the context of the model and the data, and data and models
are very diverse across different cases [32].
In the following, we distinguish between two forms of

feature engineering: the context-specific engineering of fea-
tures, which hopefully has a positive impact on the output,
and the rather technical, generalized construction of features,
which is often done automatically by different frameworks or
AutoML (cf. [14], [15]).

Context-specific (and domain-specific) engineering
describes the evaluation of parameters such as WIP (see
Figure 5), specific production characteristics (bottlenecks)
or company-specific phenomena that need to be taken into
account and are not available in the raw data in a suitable
form. This may have already happened or been uncovered
during the previous exploratory analysis.

The generalized construction of features can be done by
standardized frameworks (like scikit learn [45]), or directly
by AutoML application. This comprises formatting steps
such as transforming categorical features but also feature
construction such as the generation of polynomial values.
Figure 6 shows a typical AutoML process using the example
of Tree-based Pipeline Optimization Tool (TPOT) [15].

FIGURE 6. AutoML pipeline (based on TPOT-Framework [15]).

As shown in Figure 6, the process of feature construction
and pre-processing is automated by TPOT. Users are required
to pass a clean (and at best enriched with context or domain-
specific features) dataset to the framework.

2) FEATURE SELECTION
Feature selection describes the tasks of the selection of a
subset of features that lead to the best prediction result [31].

There are various methods for this, such as filters, wrappers
and embeddedmethods. Filters are based on a relevance index
using correlation coefficients, while wrappers use a learning
algorithm to select the best subset of features. Both methods
use search strategies to find the best solution. Embedded
methods are a class characterized by their capability to
include the generation of optimal feature subsets in the learn-
ing algorithm itself [31]. As can be seen in Figure 6, this is a
task automated by AutoML.

3) DATA CLEANING
This step of data preparation aims to improve the quality
of the dataset. This includes matters such as the selection
of clean subsets of the data, handling noise, or dealing with
special and/ missing values [37], [38].
Especially the handling of outliers should also be con-

sidered. Outliers are data points that are different from the
norm, also known as abnormalities or deviants. Outliers
can be detected using (simple) statistics such as the Tukey
Fence [46], outlier algorithms (e.g. density-based) or using
expert respectively domain knowledge [47]. Only a combi-
nation of these techniques and interaction with end users will
produce good results [47].
In order to apply these findings to TTP predictions, it is

necessary to identify which orders in principle show abnor-
mal behaviour and should be excluded from the data set.
The classification in Figure 7 shows an example of how this
can be implemented. The aim is to remove orders that result
from data errors or unclear demand (Type D) and are not
representative in terms of the throughput behavior of an area
or work system.

FIGURE 7. TTP distribution of a work system (based on [48]).

As the example in Figure 8 shows, it would be advisable
to remove orders with a TTP of more than 30 days, which
represent about 5 % of all orders. However, the removal of
outliers remains very context-specific.

C. MODELLING (STEP IV)
Usually, these steps include the task of selecting a model,
generating a test design as well as building and assessing
the model (cf. [37]). As we suggest the use of AutoML
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frameworks for the prediction of TTP, the extent of these steps
is noticeably reduced. Instead of choosing a ML technique or
selecting a specific model [37], [38], we choose a AutoML
framework that automates the selection process (cf. Figure 6).
The following steps are similar to the modelling step without
AutoML and include setting up a test design (splitting test,
training and/or validation data) and monitoring the training
results.

D. EVALUATION (STEP V)
The evaluation includes an overall assessment of the results
(D.1), an analysis of the explainability (D.2) of the results and
a comparison with previously defined success criteria (D.3)
[37], [38].

1) ASSESSMENT OF THE RESULTS
At first, the evaluation of the results includes the evaluation of
the MLmodel’s performance. To investigate the performance
of the ML model, different metrics such as MAE or MSE
(see Section II-C ) can be used. Further, the robustness of the
model needs to be determined. For this purpose, it is possible
to add perturbing inputs to the model to test the generalization
ability. There are also robustness validation methods that use
cross-validation [38]. Regarding the prediction of TTP, the
MAE has the same dimension as the measured variable, i.e.
typically days. Thus, it indicates the absolute deviation aver-
aged over the calculated test sample. Therefore, a MAE of
zero indicates an (quite unlikely) always accurate prediction.
Higher values indicate a greater deviation between predicted
and actual values.

2) ANALYSIS OF THE EXPLAINABILITY
Explainability of ML-models helps to understand results and
gain trust [49]. It also provides further insights to improve
model performance. According to [38], it is best practice to
observe how the individual features of a model influence the
outcome and to check whether it is plausible or not.

There are a variety of different approaches that support
the understanding of the results of ML applications, referred
to as Explainable AI (XAI) (cf. [50], [51]). XAI can be
divided into agnostic and model-specific approaches [52].
While model-specific frameworks are only suitable for spe-
cific model types, agnostic models can be applied to different
model types. Generally, XAI helps to explain local phenom-
ena or determine the influence of certain features on the
result [52]. A common element of these approaches is that the
analyses are visual and easy to understand [52], [53]. A well-
known approach is SHAP (SHapley Additive exPlanations)
[53], [54]. It is based on the interpretation of Shapley val-
ues, a technique from cooperative game theory. To calculate
SHAP values, subsets are formed from the total quantity of all
features. Then, for each subset, the model output is calculated
once with the feature in question and once without [54],
[55]. Applying this to the TTP prediction, the influence of
each feature on the final outcome of the prediction can be

viewed. This allows to check whether the previously assumed
influences can be generalized by the model, whether there
are systematic errors or whether the model has uncovered
previously unknown correlations.

3) COMPARISON OF SUCCESS CRITERIA AND NEXT STEPS
Finally, model and domain experts assess the usability of the
model. In order to determine success, a comparison with the
previously defined success criteria in terms of the ML model
and the underlying business process is required. If the criteria
are not met, it is necessary to go back to earlier phases of the
CRISP-DM [38].

E. INTERIM CONCLUSION
In this section, along the different steps of the CRISP-DM,
we have elaborated upon general matters that need to be
considered when making TTP predictions.

Given that the prediction of TTP is not a new issue, it is
important to note that little attention has yet been paid to
the order fulfilment phase and related PPC tasks. In this
context, particular attention should be paid to the definition
of the scope and the available data. We also discuss how to
select data based on driver trees, the benefits of AutoML, and
provide guidance on how to remove outliers. Our procedures
allow both theorists and practitioners to follow guidelines for
constructing adequate TTP predictions.

V. CASE STUDY
To illustrate the use of TTP predictions along the order fulfil-
ment process and highlight differences between the necessary
PPC tasks, a case study is presented below. The investigated
company, with approximately 300 employees, manufactures
printed circuit boards of varying complexity. Products are
made-to-order and according to customer specifications. The
company’s philosophy is to compete through high logistical
performance in terms of high schedule compliance and short
TTP. The case study’s presentation follows the course of the
CRISP-DM.

A. BUSINESS & DATA UNDERSTANDING
1) SCOPE AND SUCCESS CRITERIA
We intend to predict the planning values for TTP for each
relevant task within PPC, i.e.: TTPOrder,rough−plan in the con-
text of order clarification, TTPOrder,detail−plan for throughput
scheduling and TTPOrder,remain−plan for order coordination.
The predicted share of time is the same each case, i.e. the
time from release to completion (cf. formula 1). However,
the time perspective and the target of the prediction change.
While in order clarification, the TTP must be determined in
order to calculate a delivery date, in throughput scheduling,
the TTP defines the detailed start and finish of an order and
its associated operations. In the context of order coordination,
the remaining TTP of an order is used to communicate delays
to the customer. We define the point in time for the prediction
of the remaining TTP directly after order release. Thereby,
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it easier to compare results as if predicting the remaining TTP
at a particular process step.

We do not consider a specific production subarea but the
entire manufacturing process. The overall objective is to cal-
culate more accurate planned TTP specified for the relevant
PPC tasks.

2) DATA COLLECTION
The job shop production process contains 33 workstations,
including order release, packing & shipping. During coating,
a bottleneck can be observed. Available data comprises mas-
ter data such as work schedules (e.g., operation processing
and setup times) and material specifications. In addition,
planning data is provided that includes a target end date of
an order as well as the currently used planned TTP. Further,
each order is assigned to a priority tag, that characterizes an
express or less important order. Also, production feedback
data is available, which includes actual start and end times of
orders as well as individual operations. The time specifica-
tions are given in shop calendar days [SCD], that comprise
only business working days. As an initial assumption, the
following features were considered relevant:

• Actual Order TTP (the target variable) [SCD]
• Product group [-]
• No. of process steps [-]
• Target end date [SCD]
• Planned Order TTP [SCD]
• Lot size [-]
• Processing times [hours]
• Priority [-]
• Release date [SCD]
• Input schedule deviation (Deviation from planned
release) (Input schedule deviation) [SCD]

The data collected covers a period of 220 SCD and includes
3004 production orders. More features are constructed in
Section B.

3) DATA EXPLORATION AND ASSESSMENT OF INITIAL
SITUATION
Essentially, three aspects will be analyzed in this section: the
current situation regarding the achievement of the set planned
TTP, a univariate analysis of the target variable (Order TTP)
and a bivariate analysis to examine the relationship of the
overall data with our target variable.

The average planned TTP is 15,2 SCD, with a minimum
of 1 and a maximum of 26 SCD. The standard deviation
is 6,2 SCD. The average value for the actual Order TTP is
18,1 SCD and thus approx. 3 SCD higher than the planned
TTP. The standard deviation is 14,4 SCD (also quite higher
than the planned TTP). The MAE of the used planned TTP is
7,4 SCD while the MSE is 184,0 SCD.

A correlation analysis is performed to examine the devia-
tion of actual and planned TTP in more detail, also referred to
as the relative schedule deviation (cf. [2]). We use the Spear-
man correlation coefficient (rs) and search for attributes with

a strong influence. The limit that differentiate an influence to
be considered as strong varies depending on the discipline,
but in the following, it is considered to be 0,5 or higher
(cf. [56]). Only one feature that has an impact of 0,5 or
higher could be identified: the deviation from the planned
release date, also referred to as input schedule deviation (rs =

− 0,77). Thus, a strong relation between a delayed release and
the deviation of actual and planned TTP can be suspected.

Figure 8 visualizes this relationship. Obviously, orders
with a high input delay are accelerated and completed faster
than planned, and orders with a too-early input are completed
later. This indicates a deadline-oriented fulfilment of the
orders (cf. [57]).

FIGURE 8. Correlation of input and schedule deviation clustered by
product groups.

Further on, a univariate analysis of our target variable, the
actual Order TTP is advisable. The distribution can be seen in
the figure 9. The minimum TTP is 1 day while the maximum
observed TTP in the data set is 202 SCD. It can be speculated
that this could be a data error.

FIGURE 9. Distribution of Order TTP clustered with product groups.

To understand the relationship of the target variable to
the other features, we use a scatter matrix plot. To keep it
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FIGURE 10. Scatter matrix plot.

compact, we have used only two other features that generally
could have a high influence on actual Order TTP (cf. [42],
namely lot size and number of process steps).

While there is a strong correlation between Order TTP
and the number of process steps (rs = 0,56), there is no
clear correlation between lot size and Order TTP (rs = 0,24).
Further features with a strong influence are the processing
time (rs = 0,57) and the input schedule deviation (rs = -0,60).
The latter confirms the relationship suspected earlier.

4) DATA QUALITY VERIFICATION
We consider the data quality to be sufficient to fulfil the task.

B. DATA PREPARATION AND MODELLING
We use AutoML as our prediction tool. As Framework TPOT
is applied (cf. [15]), which automates the data prepara-
tion (pre-processing, feature construction & selection) and
modelling as illustrated in Figure 6. As described before,
we distinguish between two forms of feature engineering: the
context-specific engineering of features, and the more techni-
cal, generalized construction of features, done automatically
by TPOT.

After TPOT has selected suitablemodels for the prediction,
we apply a similar model type as a benchmark to compare the
results.

1) FEATURE ENGINEERING
In addition to Step A.2, we compute two additional features
before cleaning that are not included in the raw data. These
are two parameters for WIP. The WIP is an essential parame-
ter influencing the throughput in production. The calculation

follows the formula below [3]:

WIPt =

∫ T=t

T=t0
IN (T) dT−

∫ T=t

T=t0
OUT (T) dT (12)

where t denotes the current time, t0 the start time and IN or
OUT the input/output of the system, which can be expressed
in working hours or the number of jobs. We calculate values
for theWIP at a time t, which is the time of prediction and thus
reflects the current system load, for the whole production area
(denoted as WIPPA) as well as for the bottleneck (denoted as
WIPBN). In conclusion, the total number of available features
depending on the corresponding PPC task can be seen in
Table 2.

TABLE 2. Available features depending PPC tasks.

The last step of feature engineering contains the man-
ual transformation of categorical features using one-hot
encoding.

2) FEATURE SELECTION
TPOT automates the selection of the best subset of available
features.

3) DATA CLEANING
According to the classification of orders discussed earlier (see
Figure 7), we decide to exclude orders with an actual Order
TTP higher than 100 SCD. This means that we eliminate just
14 rows. Also, 1 row is eliminated due to a missing value
in the priority column. In total, the cleaned data set contains
2989 rows.

C. MODELLING
We create a training and a test dataset by splitting the data
in a ratio of 80/20. The training dataset is used to train and
optimize the applied models with TPOT, therefore, further
splitting into a validation dataset is not essential for our
application.
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We create in total three models for predicting
TTPOrder,rough−plan in the context of order clarifica-
tion, TTPOrder,detail−plan for throughput scheduling and
TTPOrder,remain−plan for order coordination. We have spec-
ified the scoring parameter to be the MAE. TPOT pro-
vides a wide range of information about the process
of creating the model. We limit ourselves in stating
which model was ultimately selected as the most suit-
able. For predicting TTPOrder,rough−plan, Gradient Boosting
Regressor was selected. For TTPOrder,detail−plan as well as
TTPOrder,remain−plan Extra Trees Regressor was selected.
As all models are tree-based, therefore we use LightGBM

(see [58]), a tree-based gradient boosting framework as the
benchmark for AutoML.

D. EVALUATION
1) ASSESSMENT OF THE RESULTS
The following table summarizes the results, showing the
prediction performance in line with the specified metrics for
the three models depending on the PPC tasks computed using
TPOT and LightGBM.

As shown in Table 3, each model is able to predict Order
TTP with a MAE of less than 6 SCD. It is noteworthy
how MAE and MSE improve as order fulfilment progresses.
This demonstrates the impact of the additional information
in the different PPC tasks. TPOT only slightly outperforms
LightGBM. However, it is important to state that we could
only select this model type based on the TPOT results, since
we saw that obviously tree-based algorithms might be suit-
able. The influence of TPOT’s built-in feature construction
and selection tools appears small. However, it should be noted
that our raw data set is not very extensive. For larger andmore
complex data sets, it is likely possible that the results will be
different.

TABLE 3. Metric results.

2) ANALYSIS OF THE EXPLAINABILITY
To analyze the explainability models applied, we use SHAP.
Because of the ease of use and the similarity of the results,
we do this based on the prediction results of the LightGBM
framework. Using the SHAP framework allows us to identify
the features that most influence the outcome. To do this,
we will first name the top 3 features for each model and then
take a closer look at the prediction within order coordination
(since this has access to the most information).

The mean absolute SHAP value shows us how much a
single feature influenced the prediction. For order clarifica-
tion, the feature number of process steps is by far the most
influential. Further, certain product groups also influence the
prediction. An interesting point to note here is that some
product groups had no impact.

In the case of throughput scheduling, the priority tag N
was the most important feature. Priority tag N indicates ‘‘not
important’’ orders. Thus, we assume the model was able to
process this type of input correctly. The number of process
steps is also a significant feature as well as the process time.
Both are to be expected according to the general influencing
factors (cf. Figure 5).

TABLE 4. Features sorted by (mean absolute) SHAP value.

For order coordination, the most important feature pro-
cessed is the input schedule deviation. Due to the fact that
late orders are accelerated (cf. Figure 8), we assume that
this feature is also adequately handled by the model. Based
on the information described above, we now know which
features have a strong influence on the model result, but we
do not yet know how this is expressed in detail (positive
or negative). To illustrate how certain features impact the
prediction outcome in detail, we can use local explanations.
Figure 11 shows a waterfall diagram depicting the influence
of each feature of a single observation in the test set.

FIGURE 11. Waterfall plot for visualizing the influence of certain features
on prediction outcome.

E[f(x)] corresponds to the expected value of our model
function, while f(x) denotes the prediction value for that
observation. Thus, the sum of the SHAP values corresponds
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to the difference between the expected value and the actual,
predicted value. With an expected value of the model func-
tion of approx. 17 SCD, the information that the order’s
input schedule deviation equals 13 SCD causes the prediction
results to be reduced by 5.67 SCD. The priority tag N =

0 indicates that this order is not an unimportant order (1would
indicate it as unimportant). This reduces the model result by
1.69 SCD. This confirms the above-mentioned assumption
that the priority tag N is correctly processed by the model.
The number of process steps in this example amounts to 16
(hence the order passes 16 workstations), which increases the
prediction result by 0.94 SCD.

In terms of analyzing the model’s the model’s explain-
ability, it becomes clear that only a few features have a
strong influence, while many other features have only a
small influence on the result. As described in this section,
from a domain and process perspective, these results are
plausible.

3) COMPARISON OF SUCCESS CRITERIA AND NEXT STEPS
Finally, the degree to which the prediction results are able to
produce a more accurate Order TTP in comparison with the
planned Order TTP is evaluated. As mentioned above, we use
the internally planned TTP for evaluation. Using formula 5,
we also computed two comparativemodels values for planned
TTP. They differ according to whether they are calculated
globally for all orders (1) or whether they are calculated
specifically for each product group (2).

TABLE 5. Metrics of planning data (compared to Order TTP) and
Comparison to ML results using TPOT.

It is evident that the planned values determined by ML are
significantly more accurate than the planned values used by
the company and those calculated for further comparison. The
additional information generated during the course of order
fulfilment considerably influences the prediction quality. Yet
even at the beginning of order fulfilment,ML can already help
to improve the estimation of planned Order TTP.

However, it is crucial to emphasize that the comparison
with ‘‘historical’’ planned values is lagging. In a real-world
environment, the value of actual order TTP (that we use
to calculate the above metrics) is the result of planning,

implementation, and execution. If we retrospectively just
apply other plan values, we neglect the fact that one is related
to the other. Consequently, the appropriateness of ML-based
planned values for the order TTP would need to be empir-
ically tested and then compared to prior planning accuracy.
But for a first assessment it is still helpful.

VI. CONCLUSION
In the course of this paper, the problem, or better said,
the potential, of looking more closely at the order fulfill-
ment phase when predicting TTP is discussed. Based on the
CRISP-DM, it is shown which aspects have to be considered
in the different PPC tasks. To support the development of ML
applications, different approaches, e.g. for data cleaning or
selection, are presented. A key aspect is the availability of
diverse information at different times along the order fulfil-
ment process. In a subsequent case study, we showed how
to predict TTP along order fulfillment using AutoML and
different ML models. Using XAI, we reviewed and validated
the models’ results. Our results support that ML can be used
to improve estimating accurate planned TTP. More accurate
predictions are possible by taking into account the different
specifics of the various phases of order fulfillment and the
peculiarities of each PPC task. Prediction quality improves
along the order fulfilment process.

The deployment of predicted TTP in PPC planning tasks
has been little explored until now (cf. [24]). Thus, further
research should focus more on the integration of ML-based
predictions into PPC, taking into account the different aspects
of different tasks, and addressing important logistics issues
such as lead-time syndrome. Moreover, it is crucial evalu-
ate the overall logistical improvements that can be achieved
throughML-based predictions, especially in terms of on-time
delivery. This clarification is important in order to determine
the concrete benefits for the companies.
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