
Received 26 December 2023, accepted 3 January 2024, date of publication 11 January 2024, date of current version 22 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3352900

Off-Chip Memory Allocation for Neural
Processing Units
ANDREY KVOCHKO, EVGENII MALTSEV , ARTEM BALYSHEV, STANISLAV MALAKHOV, AND
ALEXANDER EFIMOV
Advanced System Software Laboratory, Samsung Research, 127018 Moscow, Russia

Corresponding author: Evgenii Maltsev (e.maltsev@samsung.com)

ABSTRACT Manymodern Systems-on-Chip (SoCs) are equipped with specializedMachine Learning (ML)
accelerators that use both on-chip and off-chip memory to execute neural networks. While on-chip memory
usually has a hard limit, off-chip memory is often considered large enough to hold the network’s inputs,
outputs, weights, and any intermediate results that may occur during model execution. This assumption
may not hold for edge devices, such as smartphones, which usually have a limit on the amount of memory
a process can use. In this study, we propose a novel approach for minimizing a neural network’s off-chip
memory usage by introducing a tile-aware allocator capable of reusing memory occupied by parts of a tensor
before the entire tensor expires. We describe the necessary conditions for such an off-chip memory allocation
approach and provide the results, showing that it can save up to 33% of the peak off-chip memory usage in
some common network architectures.

INDEX TERMS NPU, memory allocation, neural network runtime, tiling, strip-packing problem.

I. INTRODUCTION
In recent years, significant advances have been made
in Deep Learning in several areas. DL models have
achieved great accuracy in many computer vision tasks,
including image classification, semantic segmentation, super-
resolution, object recognition, and others [1], [2], [3], [4],
[5], as well as in other domains, such as Natural Language
Processing (NLP), Speech Recognition [6], [7], [8] and
natural language generation (NLG) [9], [10], [11]. The
improved accuracy of these models comes at the cost of an
increased number of parameters and size of the feature maps.
Therefore, reducing the amount of memory used to execute a
model has become increasingly important.

The commercialization of these DL models prompts many
companies to develop specialized AI hardware, whose main
purpose is to reduce inference latency or decrease energy
consumption. These accelerators are often referred to as
Neural Processing Units (NPUs). They can be installed on
edge devices (such as mobile devices, embedded solutions,
wearables, or IoT devices with microcontrollers) to locally

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Donato Marino .

execute the DL model. This edge-computing solution pre-
serves data privacy and provides real-time processing [12].
The benefits of a dedicated AI accelerator include reduction
of load on the CPU, GPU, and main memory, ensuring stable
performance, and speeding up inference.

Effective memory management is crucial for edge devices
because of their resource-constrained environments. These
devices often have weaker CPUs and are equipped with
flash memory more than RAM, making them incapable
of efficiently processing neural networks. Addressing the
task of reducing memory consumption can enhance the
device’s smart functionality by enabling the execution of
more complex neural networks or NN ensembles on the
device. Moreover, it can decrease the size and cost of the
target product by reducing the memory requirements. Even
high-end mobile devices have system-level mechanisms to
manage memory usage, which can lead to the termination
of apps that exceed memory limits, thereby affecting the
complexity and performance of deployable NN models.

Reduction of the main memory load is possible because
most accelerators are equipped with fast on-chip memory,
which is exclusively used for computations, while the main
memory only stores inputs and outputs of neural network

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 9931

https://orcid.org/0000-0003-2846-9049
https://orcid.org/0009-0007-6936-7096
https://orcid.org/0000-0001-8336-9150


A. Kvochko et al.: Off-Chip Memory Allocation for Neural Processing Units

layers. Unfortunately, in many cases, on-chip memory is not
large enough to fit an entire feature map, meaning that only a
part of the feature map can be loaded and processed at a time,
while the bulk of the data remains in the external or off-chip
memory.

To achieve this, feature maps must be divided into smaller
pieces, often referred to as slices, views, or tiles. Tiles are
loaded from external into the on-chip memory, processed
by the NPU, and the result is stored back into the external
memory to free the on-chip memory for the next tile.
To avoid overwriting the input feature map data in external
memory, the existing DL compilers allocate a separate
external memory region for the output feature map and retain
the entire input in memory until it is fully processed by the
NPU.

FIGURE 1. Memory layout of tiles of a 128 × 128 tensor in row-major
format: a) tile size is 128 × 32 b) tile size is 128 × 64 c) tile size is 64 × 128.

This design decision is made in part because the tile
of a tensor, in general, can not be presumed to occupy
a contiguous memory region because it is a slice of a
multidimensional tensor stored in a linear memory space.
Consider a tensorwith 128×128 elements allocated in the off-
chip memory in row-major order. Fig. 1 shows the memory
regions occupied by tiles of sizes 128 × 32, 128 × 64 and
64 × 128. Because of this non-contiguous nature of tensor
tiles, freeing memory occupied by a tile earlier than the entire
feature map is processed would result in a highly fragmented
memory space, and it is presumed that it would yield little
opportunity for memory consumption optimization.

The tasks of finding the optimal tiling strategy and allo-
cating memory for tensors are performed by Deep Learning
compilers such as Glow [13], TVM [14], ngraph [15],
DBLP [16] or DLVM [17]. This paper proposes compiler
optimization for NPUs with the main goal of reducing the
required amount of external memory occupied by large
intermediate feature maps. This is achieved by reusing the
memory occupied by a tile of the input tensor as soon as the
tile is processed, and there are no more usages of its data.
In many cases, memory space is fragmented after freeing
a single tile. Our method benefits from the fact that this
fragmentation can demonstrate patterns in which different
tiles can often occupy free non-contiguous memory regions
without any overlap with the remaining tiles of the original
tensor.

We propose a method of allocating tensors in external
memory that considers both the difference in the lifetimes of
a tensor and its tiles and the non-continuity of the memory
occupied by tiles.We demonstrate that ourmemory allocation

algorithm can be effectively applied to reduce the amount of
external memory used by a neural network model.

In Section II, we describe the problem in detail and
present several previously proposed solutions. We present
our Tile-Aware Allocator (TAA) design in Section III, and
in Section IV we show that this approach can significantly
reduce peak off-chip memory usage in many popular NN
models, and compare external memory demand with the
Shared Objects algorithm described in [18].

II. PROBLEM STATEMENT AND RELATED WORK
Allocating tensor data is a common task for many deep neural
network (DNN) compilers. There are two main approaches to
memory allocation: dynamic and static approaches. Dynamic
allocation involves a runtime environment that allocates
memory during a program execution. In contrast, static mem-
ory allocation reserves memory regions for tensors and data
structures at the compile time before the program runs. Deep
Learning compilers typically implement a memory manager
that conducts a memory planning pass for static allocation to
a pre-allocated memory buffer holding intermediate tensors
and applies optimizations. This paper discusses an algorithm
for memory management in a Deep Learning compiler that
facilitates static memory allocation.

The task of allocating tensor data resembles a strip-packing
problem. This problem involves a memory region with a
specified width and infinite height along with a set of items
(tensors) characterized by their size and lifetime. In this
context, the width of the memory region corresponds to time,
whereas its height represents a memory offset. The lifetime
of a tensor is typically determined by the interval between its
first and last use in a graph walk. The problem is to find the
lower-left corner of each item such that no overlap between
items occurs and the height of the packing is minimal.

A. PRIOR WORK
The strip-packing problem is known to be NP-hard, therefore,
researchers have attempted to find heuristics to approximate
the optimal solution [19], [20], [21], [22].

In general, DNNCompilers split the strip-packing problem
into memory allocators and schedulers. Memory allocators
focus on finding item offsets that produce optimal packing,
and keep the tensor lifetime fixed. Schedulers vary only
tensor lifetime. Both can be modified to produce more
optimal packing. Pisarchyk and Lee [18] proposed amemory-
optimizing allocator based on a linear scan algorithm,
Barenboim et al. [23] used graph coloring, and Ahn et al. [16]
implemented a memory-aware scheduler.

Other methods for memory usage reduction exist. General-
purpose deep learning frameworks such as Caffe [24],
PyTorch [25], and MXNet [26] incorporate several static
memory reduction techniques. Common optimization meth-
ods, such as operation fusion, in-place operations, and
memory sharing, can be adapted for deep learning compilers
that target edge devices. For instance, operation fusion
combines activation functions with the preceding operation

9932 VOLUME 12, 2024



A. Kvochko et al.: Off-Chip Memory Allocation for Neural Processing Units

(e.g., convolution), optimizing both the performance and
memory transfer between the host device and the accel-
erator. In-place operations store output values directly in
the memory assigned to an input value. Memory sharing
optimization repurposes the memory of intermediate results
that are no longer required for further computation. Similar
optimizations are discussed in [27], whereas [28] delves into
memory optimization techniques aimed at reducing memory
consumption and enhancing computational effectiveness by
minimizing additional memory transformations for memory-
bound operations. Operations such as depthwise convolution
can introduce additional performance overhead.

In [29], the authors optimized the on-chip memory using a
SchedulingMethod with operation fusion and memory reuse.
Additionally, frameworks such as the Glow Compiler [13]
implement buffer sharing optimizations that attempt to reuse
an instruction input‘s buffer for its output. Minakova and
Stefanov [30] and Artemev and Roeder [31] employed the
Cyclo-Static Dataflow model and MapReduce techniques,
leveraging CNN properties to process model input in parts,
thus reducing the size of intermediate tensors. General-
purpose deep learning frameworks, such as those in [25]
and [32], are designed for both training and inference of
neural networks. In this study, we focus on the inference-only
work mode. Consequently, certain memory optimizations
are inapplicable, such as in-place operations [27] which are
utilized during the training mode and require data from the
forward pass to be retained for the backward pass.

B. CHALLENGES
Freeing memory occupied by a tile introduces memory
fragmentation because tiles occupy non-contiguous regions
of memory. To place a different tile into this non-contiguous
memory space, we need to be sure that the new tile does
not intersect any other live memory region between the free
memory fragments.

Let us consider tile t that spans si(t) elements in i-th
dimension of tensor T , starting with element oi(t), i ∈
[0, rank(T )). The memory distance between two consecutive
elements of t in dimension i is denoted as stridei(t). The
memory address of a tile element at index x is given by

addr(x, t,T ) = addr(T )+
rank(T )∑
i=0

(xi + oi(t)) · stridei(t)

= addr(T )+ off (t,T )+
rank(T )∑
i=0

xi · stridei(t),

0 ≤ xi < si(t) for i ∈ [0, rank(T )), and

off (t,T ) =
rank(T )∑
i=0

oi(t) · stridei(t) (1)

The two tiles t and t̂ of tensors T and T̂ overlap if they
share the same memory address for some elements x and x̂
respectively:

addr(x, t,T ) = addr(x̂, t̂, T̂ )

Alternatively, they overlap if the following equation has a
solution for some x and x̂

rank(T )∑
i=0

xi · stridei(t)−
rank(T̂ )∑
j=0

x̂j · stridej(t̂)

= addr(T̂ )+ off (t̂, T̂ )− addr(T )− off (t,T ) (2)

where 0 ≤ xi < si(t) for i ∈ [0, rank(T )) and 0 ≤ x̂j <

sj(t̂) for j ∈ [0, rank(T̂ )).
This linear Diophantine equation with bounded variables

can be solved in polynomial time [33], [34]. In a naive
approach, this equation needs to be solved n · m times to
determine whether a single tile of a tensor conflicts with any
other tile, where n is the number of tensors in a model, and m
is the number of tiles in a tensor. Considering that there are
m tiles in a tensor, to determine if a tensor can be placed at a
given offset, this equation must be solved n ·m2 times. To find
a suitable offset, additional S attempts are required, where S
is proportional to the size of the on-chip memory in bytes.
Overall, the complexity of this approach is O(S · n2 · m2) for
allocating all the tensors.

This naive approach is prohibitively expensive in terms of
computational cost. Therefore, this study focuses on twomain
questions.

1) How to efficiently check if two tiles of a tensor
intersect?

2) How to adjust the desired memory location for the
current tensor when a conflict exists?

C. DEFINITIONS
• First, a tile is defined as a fragment of a tensor. Each
tensor is associated with a set of tiles.

• We define tile lifetime as the time interval between the
first and last use of the tile.

• The tensor lifetime is the interval between the first and
last uses of a tensor as a whole. For large tensors that
cannot fit entirely into the limited on-chip memory, the
tensor lifetime spans the time fromwhen it is constructed
from the output tiles of the previous layer to when it
is first divided into input tiles for the next layer. Often,
this means that the tensor lifetime is effectively reduced
to zero: no operation can use the entire tensor without
dividing it into smaller parts.

• We define a ‘‘peer’’ as an item (a tile or tensor) whose
lifetime intersects with the lifetime of a given item.

• Next, we place constraints on the memory addresses
where a tensor can be allocated. The tiles offsets relative
to the start of the tensor are fixed. The memory address
of the tensor is considered invalid if any of the tiles
overlap with another allocated item or its tile.

III. MEMORY ALLOCATION ALGORITHM
In this study, we propose a tile-aware memory allocator
(TAA) that utilizes the difference between the lifetimes of
the entire tensor and its individual tiles to reduce the off-chip
memory footprint. Our approach efficiently handles a large

VOLUME 12, 2024 9933



A. Kvochko et al.: Off-Chip Memory Allocation for Neural Processing Units

FIGURE 2. Example of the tensors allocation in time and memory.
a) Allocation of one tensor; b) Fitting the output of an arbitrary neural
network layer into the unoccupied space; c) Resolving a collision.

number of tiles resulting from processing tensors on a chip
with limited on-board memory. The main idea is to reuse the
memory occupied by a tile immediately after its last use, but
before the last use of the entire tensor.

The main contributions of this paper are as follows.
• We define the conditions under which two tensors with
intersecting lifetimes can share memory and reduce the
off-chip memory consumption.

• These conditions are used in the proposed memory
allocation algorithm, which solves a modified version of
the strip-packing problem. The algorithm considers both
the tensor and tile lifetimes.

• Testing the implemented algorithm with widely-used
neural network models shows that our memory alloca-
tion approach reduces external memory usage by up to
33%. The results are presented in IV.

An example of tensor allocation, in terms of time and
memory, is shown in Fig. 2. Let us assume that we have
an intermediate tensor, as shown in Fig. (2a). The tensor is
constructed from the six output tiles of the previous neural
network layer (indicated by the pink-colored zones) and
is divided into six tiles for the next layer (shown in light
blue). Each tile consists of four chunks. The peak memory
consumption for the tensor is marked by a dark blue zone and
has a shorter lifetime than its individual tiles.

Owing the variations in tile lifetimes and their processing
order, we can attempt to fit the output of an arbitrary neural
network layer into the unoccupied space within the same
time interval. An example of such a space utilization by an
arbitrary tensor is shown in Fig. 2b. The initial tensor is
indicated by a dark blue color, whereas the output tensor is
marked in dark green.

The main task of the memory allocator is to find a suitable
location in the memory for the next tensor, given the currently
allocated items, such that none of its tiles intersect in both

Algorithm 1 TensorAllocate

1 overlap← -1
2 addr← start of first memory region of sufficient size
3 while overlap ̸= 0 do
4 overlap← 0
5 foreach tile of T do
6 foreach allocated peer of T do
7 if lifetimes of tile and peer do not overlap

then
8 continue
9 end
10 overlap← CollisionSize (tile, addr,

peer, address of peer’s tensor)
11 if overlap ̸= 0 then
12 break
13 end
14 end
15 if overlap ̸= 0 then
16 break
17 end
18 end
19 addr← first memory region of sufficient size,

starting with addr + overlap
20 end

time and memory with another item. By iteratively applying
this process to each tensor, a memory allocation scheme for
the entire model is found. While the starting memory address
for a tensor can be selected based on these constraints alone,
the starting address for a tile is fixed at a specific offset
relative to the beginning of the tensor.

Our strategy is to first find a suitable place for tensor T
itself and then check that neither of its tiles conflicts with
the already allocated items. If they do, we adjust the starting
address of T according to the size of the overlapping region
of the two intersecting chunks.

In case of a conflict, such as when the tensor being
allocated intersects in time and space with another tensor
(e.g., indicated by the red zone in Fig. 2c), which has been
allocated in the availablememory space between the live tiles,
we shift the tensor address by the size of the overlap region.
This process will eventually yield the configuration presented
in Fig. 2c, where the green tensor is shifted relative to the
zero-memory offset.

The conditions for reusing occupied tile memory in the
allocation algorithm are as follows.
• The tensors are divided into tiles and processed in parts.
The order of tile processing is fixed.

• The lifetimes of tensors can intersect.
• The lifetimes of individual tiles should not intersect.

A. TENSORS ALLOCATION
First part of allocation alorithm starts with tensor sorting. All
tensors are sorted according to one of the three heuristics.

9934 VOLUME 12, 2024



A. Kvochko et al.: Off-Chip Memory Allocation for Neural Processing Units

• First allocate items that take up the most amount of
memory.

• Allocate items with longest lifetime first.
• Sort items by decreasing number of peers.
For each tensor T in the sorted list, we use a linear scan

among the allocated tensor peers to find the first unoccupied
region of memory of sufficient size to fit T .
Tensor peers are identified as tiles of other allocated tensors

whose lifetimes overlap with those of any tile of the given
tensor.

The task of finding peers is essentially the task of, given an
interval I , finding intervals overlapping with I . The solution
to this problem is trivial using an augmented Binary Search
Tree, with minimal start point and maximal end point of a
subtree recorded at every tree node. The insertion and query
complexity of this tree isO(log(n)), and the space complexity
is O(n).

Algorithm 1 solves the problem of determining a suitable
starting address for a tensor. We employ a linear scan starting
at a given memory offset to find a candidate location for a
tensor and then check if any of its tiles intersect with any
allocated peer items using Algorithm 2.

B. FINDING TILE INTERSECTIONS
Once a suitable memory region has been found, we check
whether no tiles of T intersect with any other allocated peer
tile.We note that while existing SMT solvers, such as Z3 [35],
can solve problems such as Equation 2, our task is less general
than the problems these solvers were designed for.
• The first simplification is that by designing, the number
of contiguous regions in a tile is small. Selecting a
tiling strategy that minimizes tile fragmentation is not
only beneficial for the TAA algorithm but also reduces
memory transfer delays owing to fewer transfer requests,
as shown by Sousa et al. [36].

• The second simplification is that the boundary condi-
tions on the variables in Equation 2 are determined by
tensor sizes, which always have a lower limit of zero and
a relatively small upper limit determined by the size of
a model that can fit into the device memory.

Given these limitations, using a general-purpose SMT
solver is not the most efficient solution because of the large
number of tiles that can occur in a neural network and the
prohibitively large number of equations to solve for a full
allocation pass. Therefore, we employed a different approach.

In the preparation step, for each tile, we find all contiguous
chunks of memory using Algorithm 3. This algorithm returns
the offsets and sizes of each contiguous memory chunk of a
tile. The complexity of this algorithm isO(n), where n denotes
the number of chunks.

Given the offsets and sizes of each chunk of every tile,
Algorithm 2 checks whether two tiles of a tensor intersect and
returns the size of the first overlapping region found. It relies
on the fact that Algorithm 3 returns the chunks in the order
of increasing offsets and uses a linear scan across the chunks
of the two tiles to find the first intersection. Note that calls to

Algorithm 2 CollisionSize

Input: t1, t2, t1base, t2base /* t1 and t2 are
tiles to check; t1base and t2base
are addresses of the tiles’
tensors */

Result: Size of the overlapping region
1 if t1 lies completely to the left of t2 then return 0
2 if t1 lies completely to the right of t2 then return 0
3 t1idx← 0
4 t2idx← 0
5 o1, s1← RenderChunks(shape(t1), strides(t1), 0,

0)
6 o2, s2← RenderChunks(shape(t2), strides(t2), 0,

0)
7 while t1idx < len(s1) and t2idx < len(s2) do

// for definition of off (), refer
to Equation 1

8 t1start← off(t1) + t1base + o1[t1idx]
9 t1end← t1start + s1[t1idx]

10 t2start← off(t2) + t2base + o2[t2idx]
11 t2end← t2start + s2[t2idx]
12 if t1end ≤ t2start then
13 t1idx← t1idx + 1
14 continue
15 end
16 if t2end ≤ t1start then
17 t2idx← t2idx + 1
18 continue
19 end
20 return t1end - t2start
21 end
22 return 0

the RenderChunks algorithm simply retrieve a memoized
value in the preparation step. The complexity of Algorithm 2
is linear in terms of the number of chunks.

C. STEP-BY-STEP EXAMPLES
1) ALGORITHM RENDERCHUNKS
In this section, we provide a step-by-step example of the
RenderChunks algorithm for rendering contiguous chunks
of a 4×64×128 tile of a 4×128×128 tensor in CHW format.
In this example, the tile consists of four contiguous chunks of
equal size with each chunk representing the top half of the
tensor.

We start with dsizes=[4, 64, 128] and dstrides=
[16384, 128, 1].

The initial offset and axis are set to 0, and the element
size is 1 byte.

The check for contiguity in line 3 fails, because axis 0 is
not contiguous. The criterion for contiguity can be defined as
the product of all the dimension sizes starting at the current
axis+1 and ending at the rank of the tensor equal to the stride
of the current dimension.

VOLUME 12, 2024 9935



A. Kvochko et al.: Off-Chip Memory Allocation for Neural Processing Units

Algorithm 3 RenderChunks
Input: dsizes[N ], dstrides[N ], offset , axis, esize

// dsizes and dstrides are sizes
and strides of each tile
dimension; esize is tensor
element size in bytes

Result: Chunk offsets offsets[M ], chunk sizes
sizes[M ]

1 offsets← ∅
2 sizes← ∅
3 if dimension axis and further are contiguous then
4 offsets← offsets ∪ {offset}
5 sizes← sizes ∪ {dsize[axis] · dstrides[axis]}
6 return offsets, sizes
7 end
8 forall i ∈ [0, dsizes[axis]] do
9 if axis=len(dsizes) - 1 then
10 offsets← offsets ∪ {offset}
11 sizes← sizes ∪ {esize}
12 else
13 noffsets, nsizes← RenderChunks(dsizes,

dstrides, offset, axis + 1)
14 if dimension axis+ 1 is contiguous and

noffsets[0] = offsets[−1]+ sizes[−1] then
15 sizes[−1]← sizes[−1]+ nsizes[0]
16 else
17 sizes← sizes ∪ nsizes
18 offsets← offsets ∪ noffsets
19 end
20 end
21 offset ← offset + dstrides[axis]
22 end
23 return offsets, sizes

For axis 0, this product is equal to 64 * 128 = 8192,
which is different from the stride of this dimension (16384).

Entering the loop in line 8, axis 0 is not the last axis,
so wemove on to line 13, where we perform a recursive call to
RenderChunks with the axis increased to 1. In this case,
axis 1 is contiguous (the size of the next dimension is equal
to 128, as is the stride of dimension 1), so RenderChunks
returns [0] for offsets and [8192] for sizes.

The following condition in line 14 checks whether the
next dimension is contiguous and the returned memory chunk
starts immediately after the last rendered chunk ends; if so,
merges the two chunks. Otherwise, the returned chunk is
appended to the result.

In line 21, we set the offset to 16384 and continue
through loop three more times, ultimately returning the
sizes and offsets of the contiguous memory chunks:
[8192, 8192, 8192, 8192] and [0, 16384, 32768, 49152].

2) ALGORITHM COLLISIONSIZE
In this section, the execution of the CollisionSize
algorithm is described. Consider a tensor of size 4×128×128

allocated at memory offset 0 and its tile t1 of size 4 ×
64 × 128 at offset 0 in each dimension. Consider another
tensor of the same size (4× 128× 128) allocated at memory
offset 128, and its tile t2 of size 4 × 64 × 128 at offset
0. The CollisionSize algorithm returns the size of the
overlapping memory region for the two tiles.

We start with tiles t1 and t2, and set t1base to 0 and
t2base to 128. The checks in lines 1 and 2 fail because t1
lies neither completely to the left nor to the right of t2. This
can be verified by introducing the notion of tile span, which
is the distance between the first and last elements of the tile.
The span of t1 and t2 is 57344 bytes. We can see that

t2base+ offset(t2) < t1base+ offset(t1)+ span(t1),

implying that t1 does not lie completely to the left of t2, and

t1base+ offset(t1) < t2base+ offset(t2)+ span(t2),

implying that t1 does not lie completely to the right of t2.
Next, we initialize the indices for iterating through chunks

of t1 and t2 (t1idx and t2idx) to 0. We then use the
RenderChunks function to calculate the offsets and sizes
of the chunks for both tiles:

For t1, RenderChunks with the shape (4, 64, 128)
and strides (16384, 128, 1) results in offsets [0, 16384,
32768, 49152] and sizes [8192, 8192, 8192, 8192] bytes for
each of the four chunks. For t2, the calculation is similar.
Using these offsets and sizes, we enter the main loop of
the CollisionSize algorithm. The loop iterates over the
chunks of t1 and t2 to check for overlap.

We calculate the start and the end of the current chunk for
t1 (t1start and t1end): t1start = 0 + 0 + 0 = 0,
t1end= 0+ 8192= 8192. For t2: t2start= 0+ 128+
0 = 128, t2end = 128 + 8192 = 8320. Then, we check
if t1end (8192) is less than or equal to t2start (128),
or t2end (8320) is less than or equal to t1start (0).
Neither condition is true, therefore, we have an overlap. The
size of the overlapping region is t1end - t2start= 8192 -
128 = 8064 bytes.

3) ALGORITHM TENSORALLOCATE
In this section, we provide a line-by-line execution example
of the TensorAllocate algorithm. For the sake of
example, let us consider a neural network consisting of one
or several unary element-wise layers. The output size of such
a network is always equal to its input size. Let us assume that
input tensor I of size 4 × 128x128 is processed in four tiles
of size 4× 64x128, and is allocated at a memory offset of 0.
The lifetime of tile i1 is [0, 1], that of tile i2 is [0, 2], i3 is
[0, 3], and that of i4 is [0, 4]. The lifetime of tensor I is set
to [0, 0].

Tile i1 is loaded onto the DLA and processed, and the
result is returned to the off-chip memory. This result is the
first tile of the output tensor O, o1, for which we want
to find an offset and its lifetime is [2, 5]. We used the
TensorAllocate algorithm to find the offset of tensor O.

9936 VOLUME 12, 2024



A. Kvochko et al.: Off-Chip Memory Allocation for Neural Processing Units

The lifetime of tensor O is [5, 5], which does not overlap
with the lifetime of I. This implies that we can choose offset
0 as the first suitable address for tensor O. Therefore, we set
addr to 0. The algorithm enters the while loop in line 3. After
setting the overlap to zero in line 4, we enter the loop over
all tiles of O, starting with o1, and the loop over all tiles of
I, starting with i1 immediately after. The lifetime of o1 [2,
5] does not overlap with the lifetime of i1 [0, 1], therefore
we continue to i2. Tile i2 has an offset of 16384, which
means that it lies completely to the right ofo1, so even though
the lifetimes of o1 and i2 overlap, the CollisionSize
algorithm returns 0 for tile i2. The same argument applies
to tiles i3 and i4. The process is repeated for all tiles of O,
confirming that there is no overlap between tensors I and O,
and returns an offset of 0 for tensor O.

TABLE 1. Peak external memory usage by intermediate tensors.

TABLE 2. Phase duration of the intermediate tensors allocation.

IV. EXPERIMENTAL RESULTS
In this section, we present a comparison between the TAA
approach and the algorithms described in [18]. In [18], the
authors used sharedmemory buffers and attempted to allocate
sorted tensors to these shared buffers to minimize the peak
of memory consumption. Three main strategies were used
in this Shared Object algorithm: Greedy by Breadth, Greedy
by Size, Greedy by Size Improved. The Greedy by Breadth
strategy takes into account the total size of all peers for each
tensor. The Greedy by Size strategy sorts tensors based on
their memory size. The Greedy by Size Improved strategy
sorts tensors according to their memory sizes by splitting
them into levels. For each model, we used all three Shared
Objects approaches from [18] (Greedy by Breadth, Greedy
by Size, Greedy by Size Improved) and selected the one that
produces the packing with the least peak off-chip memory.

To evaluate the TAA allocator, we used five CNN image
classification models: Inception V3 [1], Inception V4 [37],
MobileNet V1 [5], MobileNetV2 [4], ResNet V2 101 [38],
SqueezeNet [39], MNASNet 1.3 [40] and FSRCNN [3].
In Table 1 we reported the peak memory usage by the
intermediate tensors, as well as the total time (Table 2) taken
by Algorithm 1. All models were quantized to eight bits
using the open-source neural network compiler ONE [41].
For model compilation, we used a single workstation with
an AMD Ryzen Threadripper 2950X 16-Core processor. The
results are presented in Tables 1 and 2.

In the remainder of this section, we analyzed the packing
produced by TAA for some of the models, identified peak
memory usage points, and showed in detail how TAA is able
to reduce the peak memory usage.

FIGURE 3. Model baseline packing and TAA peak memory graph for
different models.

In Fig. 3a (left) we plotted the packing produced by the
baseline Shared Objects algorithm for SqueezeNet (the peak
memory is marked by the purple dotted line and zoomed in
Fig. 3b).

Peak memory usage occured when tensors fire3/
concat (brown), fire4/squeeze/relu (blue), and
fire4/concat (orange) were allocated at the same time.

VOLUME 12, 2024 9937



A. Kvochko et al.: Off-Chip Memory Allocation for Neural Processing Units

Table 3 listed the lifetimes, shapes, and strides of the tensors.
Because of the intersecting lifetimes of these tensors, the
Shared Objects algorithm allocated a separate object for each
of them.

TABLE 3. Analysis of SqueezeNet peak memory usage.

The TAA assigned the same offset of zero to all of these
tensors. Fig. 3b (right) shows that, even though these tensors
have overlapping lifetimes, decomposing these lifetimes into
separate lifetimes for each tile makes it possible to allocate
these tensors at the same offset with no data corruption.

Our algorithm may be ineffective for several reasons.
When peak memory usage occurs owing to tensors with
incompatible tile shapes, tile intersections may occur at any
base tensor offset. An example of this is Inception V3,
whose packing and peak memory usage, as determined by
the TAA algorithm, are shown in Fig. 3c. Another reason
for the ineffectiveness of TAA could be that peak memory
usage occurs because of a single large feature map that
dominates the other intermediate tensors. This is the case with
MobileNet V2, whose input is much larger than of the other
tensors in the off-chip memory, as shown in Fig. 3d.

V. CONCLUSION
In this paper, we presented a novel approach to tensor
allocation that utilizes the restrictions of the Deep Learning
model execution environment with a limited amount of on-
chip memory. We evaluate this approach on various popular
model architectures and show that, by reducing the lifetime
of a tensor in external memory and considering tiles as
constraints on memory locations for this tensor, it is possible
to significantly reduce the peak external memory usage of
these models. We note that, while this approach increases the
model compilation time, this increase is not significant for the
models considered.

REFERENCES
[1] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking

the inception architecture for computer vision,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818–2826.

[2] M. Tan and Q. Le, ‘‘EfficientNet: Rethinking model scaling for convolu-
tional neural networks,’’ in Proc. 36th Int. Conf. Mach. Learn., vol. 97,
K. Chaudhuri and R. Salakhutdinov, Eds., Jun. 2019, pp. 6105–6114.

[3] C. Dong, C. C. Loy, and X. Tang, ‘‘Accelerating the super-resolution
convolutional neural network,’’ in Proc. ECCV, 2016, pp. 391–407.

[4] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[5] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ 2017, arXiv:1704.04861.

[6] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu,W. Han, S. Wang,
Z. Zhang, Y. Wu, and R. Pang, ‘‘Conformer: Convolution-augmented
transformer for speech recognition,’’ 2020, arXiv:2005.08100.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[8] T. B. Brown et al., ‘‘Language models are few-shot learners,’’ 2020,
arXiv:2005.14165.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ 2017,
arXiv:1706.03762.

[10] N. Fatima, A. S. Imran, Z. Kastrati, S. M. Daudpota, and A. Soomro,
‘‘A systematic literature review on text generation using deep neural
network models,’’ IEEE Access, vol. 10, pp. 53490–53503, 2022, doi:
10.1109/ACCESS.2022.3174108.

[11] E. N. Crothers, N. Japkowicz, and H. L. Viktor, ‘‘Machine-generated
text: A comprehensive survey of threat models and detection
methods,’’ IEEE Access, vol. 11, pp. 70977–71002, 2023, doi:
10.1109/ACCESS.2023.3294090.

[12] K. Cao, Y. Liu, G. Meng, and Q. Sun, ‘‘An overview on edge
computing research,’’ IEEE Access, vol. 8, pp. 85714–85728, 2020, doi:
10.1109/ACCESS.2020.2991734.

[13] N. Rotem, J. Fix, S. Abdulrasool, G. Catron, S. Deng, R. Dzhabarov,
N. Gibson, J. Hegeman, M. Lele, R. Levenstein, J. Montgomery, B. Maher,
S. Nadathur, J. Olesen, J. Park, A. Rakhov, M. Smelyanskiy, andM.Wang,
‘‘Glow: Graph lowering compiler techniques for neural networks,’’ 2018,
arXiv:1805.00907.

[14] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, ‘‘TVM:
An automated end-to-end optimizing compiler for deep learning,’’ in Proc.
13th USENIX Symp. Operating Syst. Design Implement. (OSDI), Carlsbad,
CA, USA, Oct. 2018, pp. 578–594.

[15] S. Cyphers et al., ‘‘Intel nGraph: An intermediate representation, compiler,
and executor for deep learning,’’ 2018, arXiv:1801.08058.

[16] B. Hoon Ahn, J. Lee, J. Menjay Lin, H.-P. Cheng, J. Hou, and
H. Esmaeilzadeh, ‘‘Ordering chaos: Memory-aware scheduling of irreg-
ularly wired neural networks for edge devices,’’ 2020, arXiv:2003.02369.

[17] R. Wei, L. Schwartz, and V. Adve, ‘‘DLVM: A modern compiler
infrastructure for deep learning systems,’’ 2017, arXiv:1711.03016.

[18] Y. Pisarchyk and J. Lee, ‘‘Efficient memory management for deep neural
net inference,’’ 2020, arXiv:2001.03288.

[19] R. Harren, K. Jansen, L. Prädel, andR. van Stee, ‘‘A (5/3+ϵ)-approximation
for strip packing,’’ Comput. Geometry, vol. 47, no. 2, pp. 248–267, 2014.

[20] K. Jansen andM. Rau, ‘‘Improved approximation for two dimensional strip
packing with polynomial bounded width,’’ 2016, arXiv:1610.04430.

[21] Z. Chen and J. Chen, ‘‘An effective corner increment-based algorithm
for the two-dimensional strip packing problem,’’ IEEE Access, vol. 6,
pp. 72906–72924, 2018, doi: 10.1109/ACCESS.2018.2882823.

[22] M. Chen, K. Li, D. Zhang, L. Zheng, and X. Fu, ‘‘Hierarchical
search-embedded hybrid heuristic algorithm for two-dimensional strip
packing problem,’’ IEEE Access, vol. 7, pp. 179086–179103, 2019, doi:
10.1109/ACCESS.2019.2953531.

[23] L. Barenboim, R. Drucker, O. Zatulovsky, and E. Levi, ‘‘Memory
allocation for neural networks using graph coloring,’’ in Proc. 23rd Int.
Conf. Distrib. Comput. Netw., Jan. 2022, pp. 232–233.

[24] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, ‘‘Caffe: Convolutional architecture for fast
feature embedding,’’ 2014, arXiv:1408.5093.

[25] A. Paszke et al., ‘‘PyTorch: An imperative style, high-performance deep
learning library,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019,
pp. 8024–8035.

[26] T. Chen,M. Li, Y. Li,M. Lin, N.Wang,M.Wang, T. Xiao, B. Xu, C. Zhang,
and Z. Zhang, ‘‘MXNet: A flexible and efficient machine learning library
for heterogeneous distributed systems,’’ 2015, arXiv:1512.01274.

[27] T. Chen, B. Xu, C. Zhang, and C. Guestrin, ‘‘Training deep nets with
sublinear memory cost,’’ 2016, arXiv:1604.06174.

[28] C.-J. Wu et al., ‘‘Machine learning at Facebook: Understanding inference
at the edge,’’ in Proc. IEEE Int. Symp. High Perform. Comput. Archit.
(HPCA), Feb. 2019, pp. 331–344.

[29] Y. Zhuang, S. Peng, X. Chen, S. Zhou, T. Zhi, W. Li, and S. Liu, ‘‘Deep
Fusion: A software scheduling method for memory access optimization,’’
in Network and Parallel Computing. Cham, Switzerland: Springer, 2019,
pp. 277–288.

[30] S. Minakova and T. Stefanov, ‘‘Buffer sizes reduction for memory-
efficient CNN inference on mobile and embedded devices,’’ in Proc. 23rd
Euromicro Conf. Digit. Syst. Design (DSD), Aug. 2020, pp. 133–140.

9938 VOLUME 12, 2024

http://dx.doi.org/10.1109/ACCESS.2022.3174108
http://dx.doi.org/10.1109/ACCESS.2023.3294090
http://dx.doi.org/10.1109/ACCESS.2020.2991734
http://dx.doi.org/10.1109/ACCESS.2018.2882823
http://dx.doi.org/10.1109/ACCESS.2019.2953531


A. Kvochko et al.: Off-Chip Memory Allocation for Neural Processing Units

[31] A. Artemev, T. Roeder, and M. van der Wilk, ‘‘Memory safe computations
with XLA compiler,’’ 2022, arXiv:2206.14148.

[32] M. Abadi et al., ‘‘TensorFlow: Large-scale machine learning on heteroge-
neous distributed systems,’’ 2016, arXiv:1603.04467.

[33] P. Ramachandran, ‘‘Use of extended Euclidean algorithm in solving a
system of linear diophantine equations with bounded variables,’’ in Proc.
Int. Algorithmic Number Theory Symp., 2006, pp. 182–192.

[34] K. Aardal, C. A. J. Hurkens, and A. K. Lenstra, ‘‘Solving a system of linear
diophantine equations with lower and upper bounds on the variables,’’
Math. Oper. Res., vol. 25, no. 3, pp. 427–442, Aug. 2000.

[35] L. De Moura and N. Bjørner, ‘‘Z3: An efficient SMT solver,’’ in Proc.
14th Int. Conf. Tools Algorithms Construct. Anal. Syst. Berlin, Germany:
Springer-Verlag, 2008, pp. 337–340.

[36] R. Sousa, B. Jung, J. Kwak, M. Frank, and G. Araujo, ‘‘Efficient tensor
slicing for multicore NPUs using memory burst modeling,’’ in Proc. IEEE
33rd Int. Symp. Comput. Archit. High Perform. Comput. (SBAC-PAD),
Oct. 2021, pp. 84–93.

[37] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, ‘‘Inception-v4,
inception-ResNet and the impact of residual connections on learning,’’ in
Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 4278–4284.

[38] K. He, S. Ren, J. Sun, and X. Zhang, ‘‘Identity mappings in deep residual
networks,’’ in Proc. ECCV, 2016, pp. 630–645.

[39] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, ‘‘SqueezeNet: AlexNet-level accuracy with 50× fewer
parameters and <0.5 MB model size,’’ 2016, arXiv:1602.07360.

[40] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, ‘‘MnasNet: Platform-aware neural architecture search for
mobile,’’ inProc. IEEE/CVFConf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 2815–2823.

[41] Samsung. (2022). Samsung/One: On-Device Neural Engine. [Online].
Available: https://github.com/Samsung/ONE.git

ANDREY KVOCHKO received the B.S. degree in
mathematics and computer science from Moscow
Engineering Physics University, in 2010, and the
M.S. degree in computer science from The Uni-
versity of Arizona, in 2013. From 2014 to 2022,
hewas an Expert Software Engineer with Samsung
Research Russia, Moscow. Since 2022, he has
been a Research Engineer with Lightricks, Israel.
His primary research interests include image pro-
cessing, compiler development, and deep learning
accelerators.

EVGENII MALTSEV received the Ph.D. degree in
computer science from Siberian Federal Univer-
sity, Krasnoyarsk, in 2017. From 2013 to 2018,
he was an Associate Professor with Siberian
Federal University. From 2018 to 2022, he was
a Research Scientist with the Skolkovo Institute
of Science and Technology, Moscow. Since 2022,
he has been the Project Leader with the Advanced
System Software Laboratory, Samsung Research
Russia, Moscow. He is the author and coauthor

of more than 20 articles on machine learning, computer-aided design, 3D
printing, and remote sensing. His current research interests include software
development, machine learning for edge devices, and neural processors.

ARTEM BALYSHEV received the B.S. and M.S.
degrees in applied mathematics and physics from
the Moscow Institute of Physics and Technology
(MIPT), Moscow, in 2023. Since 2022, he has
been a Software Engineer with the NN Compiler
and Runtime Project, Samsung Research Russia,
Moscow. His main research interests include
system software development, machine learning,
and learning on devices.

STANISLAV MALAKHOV received the B.S. and
M.S. degrees in mechanics and applied mathe-
matics fromLomonosovMoscowState University,
Moscow, in 2005. Since 2022, he has been a
Software Engineer with the Advanced System
Software Laboratory, Samsung Research Russia,
Moscow. His main research interest includes the
compilation of deep neural networks for edge
devices.

ALEXANDER EFIMOV received the Specialist
degree in applied mathematics and computer
science from Lomonosov Moscow State Uni-
versity, Moscow, in 2013. From 2018 to 2023,
he was the Software Engineer/Tech Leader with
the Advanced System Software Laboratory, Sam-
sung Research Russia, Moscow. Since 2023,
he has been a Senior Software Engineer with the
AI/MLGEMSTeam, Luxoft Serbia, Belgrade. His
main research interests include system software
development, ML frameworks, and runtimes.

VOLUME 12, 2024 9939


