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ABSTRACT This paper presents an alternative methodology for the study of flyrock hazards in mining,
utilizing Artificial Intelligence (AI) through machine learning by classification. By using distance as a
delineator to denote the consequences of a blast, the models generated two classes of blasts: safe and
unsafe. In this study, statistical learning models best suited for classification, that is, K Nearest Neighbors
(KNN), Support Vector Machine (SVM), Decision Tree (DT), and Artificial Neural Networks (ANNs), were
used, and their classification abilities were assessed. Machine performance was evaluated using a Confusion
Matrix (sensitivity and specificity) and Receiver Operating Characteristic (ROC) curve. A higher weight was
assigned to the minority class (unsafe blasts). Overfitting assessment was also performed. The Wide Neural
Network (WNN) demonstrated the highest classification superiority. During training and validation, 75%
sensitivity, 100% specificity, and an ROC of 0.9853 were achieved. In the test phase, perfect stratification
(100 %) was maintained, with an ROC of 1. The Cubic SVM exhibited 50% sensitivity, 100% specificity,
and an ROC of 0.9412 during training and validation. In the test set, it achieved 100% sensitivity, 100%
specificity, and a ROC of 1. Fine KNN showed 50% sensitivity, 94.1% specificity, and an ROC of 0.7206 in
the validation set. The test set displayed 100% sensitivity, 100% specificity, and an ROC of 1. Conversely,
Coarse DT had a higher misclassification rate, resulting in a 25% sensitivity, 76.5% specificity, and an ROC
of 0.5221 during the validation phase. In the test set, it showed 50% sensitivity, 100% specificity, and an ROC
of 0.75. A feedforward neural network (FNN) was designed, trained, and demonstrated to be a highly flexible
classification tool. The FNN achieved an excellent classification score of 100%. These findings demonstrate
the potential for the broad applicability of machine learning through classification in addressing flyrock
challenges in open-pit mines.

INDEX TERMS Algorithm, artificial intelligence, classification, flyrocks, machine learning, neural net-
works, prediction, regression, rock blasting.

I. INTRODUCTION
Recently, Machine Learning (ML) has received significant
attention in science and engineering. This is because of their
ability to improve the quality of human life [1] by solving
complex problems associated with different phenomena [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Alberto Cano .

Machine learning (ML) is a subfield of artificial intelli-
gence (AI) dedicated to training machines to automatically
learn from data and past experiences [3] without the need for
explicit programming. This process involves identifying pat-
terns to make predictions, with minimal human intervention.
ML employs various statistical learning methods to improve
the performance of machines over time.

ML has wide application in various fields [4]. In the
mining industry, the deployment of intelligent machines has
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FIGURE 1. Blast zone delineation.

promoted efficiency and productivity, which are crucial to
profitability. One of the key safety concerns in mineral
exploitation is the generation of flyrock from poor blast
designs. As depicted in Fig. 1, flyrocks are rock fragments
from a blast propelled beyond the limits of the blast area
[5]. This is an undesirable occurrence in blasting operations
owing to its adverse environmental impact. These rock frag-
ments can cause significant damage to infrastructure such as
machinery, buildings, and other equipment. It can also cause
minor to severe injuries. Additionally, fatalities have been
reported [6].

Flyrock is a complex phenomenon [7]. Bajpayee et al.
postulated that this arises because of a mismatch between
the mechanical strength of the rock mass, confinement of the
charge in a blast hole, and distribution of the explosive energy
[8]. Other investigations [9], [10] point to controllable param-
eters such as the use of inappropriate blast patterns, incorrect
burdens, improper stemming lengths, excessive powder fac-
tors, and ill-suited delay times. In addition, uncontrollable
parameters, such as density, porosity, Uniaxial Compressive
Strength (UCS), primary wave and secondary wave veloci-
ties, and geological conditions, such as rock mass discontinu-
ities, have been noted as the most probable causative agents.

Traditional methods such as the use of empirical tech-
niques have proven cumbersome (technically difficult to
perform), unreliable, time-consuming, and prone to large
errors [11]. These pitfalls have led to a rapid interest in
ML technology, which, when trained properly, can be fast,
reliable, and can accommodate many parameters. The pos-
sibility of applying ML interventions to flyrock problems is
of increasing interest. Therefore, several studies on flyrock
distance prediction have focused on the use of AI through
ML to solve flyrock-associated problems. For example,

Monjezi et al. showed that an Artificial Neural Network
(ANN) was effective in predicting flyrock at the Sangan
iron mine in Iran [12]. Hasanipanah et al. found that the
Genetic Algorithm (GA) model had high accuracy compared
to the Imperialist Competitive Algorithm (ICA)-and Particle
Swarm Optimization (PSO)-based models [13]. Marto et al.
demonstrated that ICA – ANN was a more accurate model
than the Back Propagation-ANN [14]. Trivedi et al. proved
that an ANN using Back Propagation was a superior predic-
tive tool than the multivariate regression analysis (MVRA)
tool [15]. Jamei et al. compared Kernel Extreme Learn-
ing Machine (KELM) with Response Surface Methodology
(RSM), Boosted Regression Tree (BRT) and Local Weighted
Linear Regression (LWLR) and discovered KELM to have
good predictive capability since it was computationally effi-
cient [16]. These studies were aimed at flyrock distance
predictions and how ML can inform proper decision-making
that minimizes or eliminates flyrock hazards.

ML can be used to solve problems via regression or clas-
sification. Regression models output continuous variables.
However, for classification models, there are a discrete num-
ber of possible outcomes [17]. For an imbalanced dataset
(data with unequal distribution of classes), which is usu-
ally the case for flyrocks, regression solvers, especially lin-
ear solvers, have been found to be less than ideal as they
are highly sensitive. Machine learning through classifica-
tion offers an alternative approach for understanding flyrock
problems more realistically than the regression approach. For
example, Hudaverdi and Akyildiz used a novel classification
approach, Multiple Discriminant Analysis (MDA), to group
the blasts. The study estimated the severity of the flyrock
rather than estimating a numerical value (flyrock distance).
They noticed that even though their regression model exhib-
ited high correlation coefficients, some of those regression
estimations had huge deviances of more than 10 -20 metres;
therefore, they could not be relied upon because accuracy was
as crucial as it could mean, in extreme cases, the difference
between life and death. Their study demonstrated that flyrock
throw distance can be presented using categorical variables
rather than numerical values [18].

As outlined in Table 1, many recent studies have focused
on how ML can solve regression problems for safe blast
outcomes. However, few studies have focused on how ML
through classification can be utilized to address the negative
impacts of flyrocks. Therefore, as an alternative approach,
more work is required to demonstrate the potential of using
classification models in the study of flyrock generation and
mitigation.

The aim of this paper to illustrate the capability of ML
classification in flyrock control through a case study. In this
study, the classification was based on a predetermined dis-
tance criterion that delineated the blast-clearance zone. The
goal was to classify, on the premise of distance, a set of blasts
in an open pit mine into ‘safe’ and ‘unsafe’ blast denoting
their severity. A safe blast in the context of this study was one
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whose blast-induced fragment throw was less than 90 m. Any
throw distance from 90 m onwards would result in a flyrock
and therefore the blast would be considered ‘unsafe’ since it
posed the highest risks. Thus, the primary objectivewas to use
different ML methods to assess classification performance.
This comparative study determined the best classifier based
on its superior performance. Based on this ML approach,
this study describes the selected machine learning meth-
ods: K Nearest neighbors (KNN), Support Vector Machines
(SVM), Artificial Neural Networks (ANNs) and Decision
Tree (DT). This paper shows that classification can be relied
upon to solve flyrock-related problems. To the best of our
knowledge, this is the first study that has focused purely
on classification techniques to characterize blast safety with
reference to flyrock generation. Moreover, it has considered
rock mass conditions, an aspect recommended by a number
of studies [19], [20] owing to insufficient attention in past
studies.

II. MATERIALS AND METHODS
This section discusses the data acquisition process and the
learning methods used in this study, that is, the DT, KNN,
SVM, and ANNs.

A. MATERIALS
The current investigation involved sampling and analysis of
blast data from an open-pit gold mine in the southern part of
Kyushu Island, Japan. A total of 29 experimental blasts con-
ducted in the mine formed the dataset used in this study. The
blast design parameters are presented in Table 2. To examine
the relationship between the input variables and the output
variable (flight distance) for each blast, seven blast design
parameters were chosen for this study. They included the
burden, stemming length, Brazilian Tensile Strength (BTS),
Uniaxial Compressive Strength (UCS), rock density, powder
factor, and crack density of the rock mass. Crack density is
the number of joints found within a 1 metre-traverse of the
bench face, as shown in Fig. 3.
The dataset consisted of blast geometry, explosive param-

eters, and rock mass properties. The majority of other studies
have rarely incorporated adequate rock parameters in their
study. However, in this study, a significant number of key
rock parameters, such as rock density, BTS, UCS, and crack
density, were investigated.

After analyzing the collected blast data, a 90 m boundary
was chosen. This decision was aimed at creating an imbal-
anced dataset, ensuring sufficient data for training in machine
learning, while leaving an ample amount for testing. An
‘unsafe’ blast (represented by 0) denotes a flyrock distance of
90 m and above, presenting the highest risk to infrastructure
and potential harm to personnel in the mine. On the other
hand, a ‘safe’ blast (represented by 1) has a flyrock throw
length below 90 m. This two-class grouping was achieved
through binning using Python in the Pandas library, conse-
quently transforming it into a binary classification problem.

TABLE 1. Examples of some of the most recent research on flyrock
problem using ML.

Rock blasting is a rapid occurrence; hence, a proper qual-
itative analysis of any blast is not possible with the aid of
the naked eye. Recently, high-speed cameras have gained
popularity because of their fast capture speed, high resolu-
tion, and light sensitivity. They can also be used to obtain
quantitative measurements, such as the flyrock direction and
velocity. In this study, a high-speed camera (Vision Research,
Phantom Ver.7.3) was set up perpendicular to the face direc-
tion, and the blast footage was recorded at a frame rate of
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FIGURE 2. The experimental setup.

1000fps. A 2-metre white line, serving as a scale, was marked
perpendicular to the bench face to aid in image analysis. For
each blast, 12 trackable blast-induced rock fragments were
analyzed using Phantom Camera Control (PCC) software.
The average velocity of each fragment was computed and
determined as the ‘initial velocity’ of the fragment. The
‘maximum initial velocity’ was defined as the largest ‘initial
velocity’ among the analyzed fragments. The experimental
setup is shown in Fig. 2.

To investigate the influence of rock mass conditions, a dig-
ital camera was used to capture the joints on the bench face
prior to each blast. A 1-metre traverse across the entire face
was established, as shown in Fig. 3.
An overview of the key stages of this study is presented

in Fig. 3. The data generated by the research are presented in
Table 4, and the statistical summary of the dataset is presented
in Table 5.

TABLE 2. Standard blast design.

The powder factor, stemming length, and burden were
used to generate a prediction equation for the flight dis-
tance of fragmented rocks. This was due to their lower
p-values compared to the other parameters, which had higher
p values upwards of 0.5 (statistically insignificant). The
high p-values for rock density (0.50), BTS (0.51), UCS
(0.74), and crack density (0.99) rendered them insignificant
parameters for predictive value; thus, for the sake of the
equation, these parameters were omitted. A significance F
of 0.008886, which is below the recommended p-value of
0.05, inferred that the selected features were statistically
significant.

TABLE 3. Regression statistics.

Multiple regression analysis, summarized in Table 3, was
conducted to determine the influence of the selected param-
eters on the initial velocity (Vo). Thus, the linear equation of
the initial velocity (Vo) is presented.

Vo = 297.13 PF + 5.05 SL + 4.92 B − 53.24 + ε (1)

where Vo is the initial velocity in m/s, PF is Powder Factor
in kg/t, B is Burden in metres, SL is the stemming length in
metres and ε is the error term.

The initial average velocity (µ) was determined to be the
average of the measured maximum initial velocities which
were estimated by comparing the distance traveled by the
fragmented rocks after 1.0 ms with the scale. The travel
distance of the fragmented rocks was calculated every 50 ms
from the initiation time up to 600 ms.

Using the three-sigma (3σ ) rule on the assumption that
the measured maximum initial velocity could be expressed
with a normal distribution curve, the potential maximum
initial velocity(Vmax) was calculated using Equation 2
below.

Vmax =
µ + 3σ

µ
V0 (2)

where µ is the average initial velocity and σ is the associated
standard deviation. In order to incorporate the riskiest of
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FIGURE 3. The critical stages of the research.

FIGURE 4. Correlation matrix of the blast dataset.

scenarios, as in the case of typical hazard analysis, a 3 σwas
adopted.

Thus, the maximumflight distance of the fragmented rocks
became a cross product of the horizontal component of the
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TABLE 4. Data set is presented.

potential maximum initial velocity (Vx) of the fragmented
rock projectiles and the total flight time.

Vx = VmaxCosθ (3)

And total flight time (t) is given by:

t =
VmaxSinθ

g
+

√
(VmaxSinθ)2 + 2Hg

g
(4)
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TABLE 5. Descriptive statistics of the dataset.

whereH is the ench height, g is the acceleration due to gravity
(9.81m/s2), and θ is the elevation angle in degrees.
Therefore, the maximum flight distance (FD) is given by

the following equation:

FD = Vx t (5)

where FD is in metres, Vx is the horizontal component of the
potential maximum initial velocity in m/s, and t is the total
flight time of the blast-induced fragmented rock in seconds.
FD was calculated on the assumption that flyrock occurred
from the top of the face (face bursting) at an elevation angle
of 45 degrees. The nature of face bursts can be indicative of
overcharging or can easily express the impact of geological
weaknesses, such as joints or cracks present on the bench
face.

Fig. 4 shows the correlation matrix developed using Mat-
plotlib in the Scikitlearn library. It clearly indicates how the
selected parameters are associated with each other.

B. METHODS
This section introduces and provides a description of the
machine learning models (Decision Tree, KNN, ANNs and
SVM) that were proposed and applied in this study. Machine
learning tools, that is, classification, regression, and pattern
recognition tool (nprtool) in MATLAB R2023b, were used
in a Windows 10 environment to evaluate the performance of
the models on the blast dataset.

1) K – NEAREST NEIGHBORS (KNN)
KNN is one of the simplest and most widely used ML
algorithms, making it a baseline classifier for many pat-
tern recognition problems [21]. It is a supervised learning

method primarily used for classification tasks. KNN is non-
parametric, meaning that there are no fixed parameters for
any given data size [22]. The number of parameters depended
on the size of the training dataset. In addition, no assumptions
must be made regarding the underlying data distribution.

The algorithmworks on the assumption that ‘similar things
exist in close proximity,’ that is, similar things are most likely
to be found closer to each other. This means that an unfore-
seen point or tested example can be classified based on the
values of the closest existing points (training examples).

The ‘‘K’’ value refers to the number of nearest neighbor
data points to include in the majority voting process. The
assignment of the class label on a test example is a majority
vote by the K-nearest neighbors closest to it.

y (di) = argmaxk
∑

xj∈kNN
y
(
xj,Ck

)
(6)

where di is a test example, xj is one of its k nearest neighbors
in the training set, and y (xj, ck) indicates whether xj belongs
to class ck. Equation (6) indicates that the prediction will be
the class with the most members in the k-nearest neighbors.

The distance metric is a method for determining the dis-
tance between a new data point and an existing training
dataset [23]. KNN has different distance metrics (over 50 in
number). The use of the best distance metric yields good
results for the test data, that is, the highest precision, recall,
and accuracy [24]. For this study, Euclidean, Manhattan,
Cosine and Minkowski distance metrics were selected

2) SUPPORT VECTOR MACHINE (SVM)
SVM has proven to be dependable owing to its balanced
accuracy and reproducibility when learning data classifica-
tion patterns. The objective of every SVM is to optimize
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for correct labelling and ensure that the classifier can gen-
eralize well to the new data. Although it can be used to
perform regression, the SVM has been widely developed as
a tool for classification. This is because it is highly versatile,
making it a convenient tool across a range of data science
scenarios [25].

The SVM decision function is an ‘optimal’ hyperplane.
The hyperplane distinguishes observations belonging to one
class from another (see Fig. 5). This is a result of pat-
terns of information about these observations, which we call
‘features’ or support vectors. Thus, the most probable label
for unseen data can be determined from the hyperplane. In
addition to the raw data, interpolation can be conducted to
generate derivative data that are used to make up the features
that are used to infer the hyperplane. Therefore, the SVM can
classify both linear and nonlinear data.

A good SVM algorithm maximizes the marginal distance
between the two classes while minimizing the classification
error.

FIGURE 5. Linear classification.

Transformation is made possible using a kernel function.
The kernel maps non-linearly separable data into a feature
space or higher-dimensional space, where it is linearly sepa-
rable [26]. SVM models have different kernels. In this study,
the following kernels were investigated: Linear, Quadratic,
Cubic, SVM – Fine Gaussian, SVM – Medium Gaussian and
SVM –coarse Gaussian.

3) ARTIFICIAL NEURAL NETWORKS (ANN)
The human biological nervous system inspired the develop-
ment of Artificial Neural Networks (ANNs) [27]. The goal
of neural networks is to build machines using components
that mimic the biological neurons. Consequently, machines
are capable of executing complex tasks similar to those of the
human brain.

A neural network, as shown in Fig. 6, is a mathematical
model that consists of an input layer, hidden layer, and output
layer. The mathematical relationship between the input and
output values is obtained once the historical data is trained
[28]. Weights are associated with the input depending on the
degree of relevance for each input that is associated with the
output. An activation (transfer) function is then applied to
produce the output value. The unit step (threshold), piece-
wise, linear, Gaussian, and sigmoid functions are among the
most commonly used activation functions.

FIGURE 6. Shows a perceptron with its four basic parts: input, bias,
weights, activation or step function.

ANNs can have different architectures, causing them to
function or behave differently [29].
Feed-Forward Neural Network (FNN): This is also

known as multilayer perceptron (MLP), or simply Neural
Networks. In FNN, the connections between nodes do not
form a cycle; that is, no loops are formed (see Fig. 7). This
approach is simple because information processing is unidi-
rectional. Once data is passed through hidden layers (nodes),
it can never move backwards.

FIGURE 7. Feed forward neural network (MLP).

4) DECISION TREE (DT)
This is a non-parametric type of supervisedmachine learning,
in which the decision-making process results in a visual
flowchart that resembles an upside-down tree-like structure
(see Fig. 8). The decision starts at the top of the tree, referred
to as the root node. It adopts a data-separating sequence that
results in Boolean values, that is, Yes or No/True or False.
Therefore, information processing using this sequence flows
from the root node to the internal nodes (branches), and
terminates at the leaf nodes. Each node represents a feature,
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FIGURE 8. Decision tree.

each branch represents a decision rule, and each leaf indicates
a categorical value (for classification) or a continuous value
(regression case). InDT, decisions are represented by root and
intermediate nodes, whereas the outcomes are represented by
leaf nodes.

This algorithm is best utilized in solving classifi-
cation problems but can also be used for regression
applications [30].

Hyperparameter tuning is performed to optimize the per-
formance of the algorithm. This can involve proper splitting
i.e. division of the main nodes into sub-nodes. This is attained
using a split measure function that selects the ‘best’ split-
ting attribute based on the impurity measure. As indicated
in equations (7), (8), and (9), information gain/entropy (E),
Gini index (G), and misclassification error (M) are the most
popular impurity measures [31].

gE (S) = −

∑K

k=1

nk (S)
n(S)

log2

(
nk (S)
n(S)

)
(7)

gG(S) = 1 −

∑K

k=1

(
nk (S)
n(S)

)2

(8)

gM (S) = 1 −
maxk

{
nk (S)

}
n(S)

(9)

C. PERFORMANCE MEASURES
For this study, the following performance indicators were
used to measure machine performance:

1) CONFUSION MATRIX TECHNIQUE
In this study, the minority class, that is, the important class
with fewer samples, had a higher risk loss compared to
the majority class (with more samples). The main goal was
to correctly classify minority data points. To avoid poor
generalization owing to hyperplanes that are more biased
towards the majority class, standard machine learning aimed

at achieving an optimized overall accuracy should be avoided.
For such an imbalanced set (because flyrock does not occur
in every blast), the overall accuracy of a classifier’s good-
ness is usually biased. To overcome this, a confusion matrix
(shown in Fig. 9) with information such as False Posi-
tives/Negatives and True Positives/Negatives, sensitivity, and
specificity offers a more reliable measure of the classifier
performance [32].

Because the data classification is divided into two classes,
the resulting confusion matrix is made up of four cells, with
each cell corresponding to True Positives (TP), False Posi-
tives (FP), False Negatives (FN), and True Negatives (TN).
All parameters are evaluated to determine their accuracy,
sensitivity, and specificity.

FIGURE 9. Confusion matrix.

A description of the essential terms is given below:
i. Accuracy – The number of data points that were clas-

sified correctly by the classification algorithm.

Accuracy =
TP+ TN

TP+ TN + FN + FP
(10)

ii. Positive class – Represents the minority class and is the
class that holds utmost significance to the designer.
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iii. True Positive (TP)– Details the number of data points
from the positive class that have been correctly classi-
fied.

iv. False Positive (FP)/Type 1 error – The number of data
points from the negative class that have been incor-
rectly classified as belonging to the positive class.

v. True Negative (TN) – the number of data points from
the negative class that have been correctly classified.

vi. False Negative (FN)/Type 2 error – The number of
data points from the positive class that have been incor-
rectly classified as belonging to the negative class.

vii. Specificity/True Negative Rate – Specifies how well
the data points in the negative class have been
classified.

Specificity =
TN

TN + FP
(11)

viii. Sensitivity/True Positive Rate/Recall Rate –Specifies
how well the data points in the positive class have been
classified.

Sensitivity =
TP

TP+ FN
(12)

2) RECEIVER OPERATING CHARACTERISTIC (ROC) CURVES
This is another indicator that graphically illustrates the useful
information that details the performance of a classifier on an
imbalanced dataset. ROC Curves are generated by plotting
true positives (sensitivity) against false-positive rates, that is,
(1-specificity). Sensitivity and Specificity are inversely cor-
related; that is, a decrease in sensitivity indicates an increase
in specificity. As shown in Fig. 10, the line of equality (50%
specific and 50 % sensitive) where no discriminative value
exists is represented by an area under curve (AUC) of 0.5.
This is a diagonal line that runs from the lower-left corner to
the upper-right corner. The incorrectly predicted results are
represented by a curve below the line of equality. A curve
close to the line of equality signifies a low accuracy and is
not different from that obtained by chance. A curve above
the line of equality indicate correct predictions or possesses
a high discriminatory power [33], [34].

3) CROSS ENTROPY ERROR
The cross-entropy error or loss is a metric that evaluates
the performance of a classification model during machine
learning. The model weights are adjusted during training to
minimize loss. A better model is one that has comparatively
lower loss values in the range of 0 to 1. Cross-entropy loss of
zero points to a perfect model.

III. RESULTS AND DISCUSSION
In this study, several machine classification algorithms were
developed to classify flyrock hazard. The models would be
able to predict based on severity whether a blast would be

FIGURE 10. An example of a ROC curve.

‘safe’ or ‘unsafe’. Decision Tree (DT), K Nearest neighbors
(KNN), SVM and ANNs were investigated.

As proven by Hudaverdi and Akyildiz [18], a classification
approach can be utilized to indicate the potential risk of a
blast.

Regression models were also evaluated to justify the use of
the classification. Among the four machine learning models,
namely, Support Vector Regression (SVR), KNN, ANNs and
Decision Tree, the SVR with a linear kernel demonstrated
the highest performance. It achieved the lowest Root Mean
Square Error (RMSE) of 10.90, indicating the smallest pre-
diction errors. Additionally, the SVR model showed a com-
mendable R-squared value of 0.83, signifying a strong ability
to explain variance in the data. The Variance Accounted
For (VAF) was also impressively high, at 84.20%, further
validating the model’s capability.

However, the Decision Tree model performed poorly, dis-
playing negative values for both R-squared (-0.13) and VAF
(-0.61), suggesting a weak fit to the data. The Neural Net-
work model showed a high RMSE (48.95) and negative
R-squared value (-2.50), indicating inadequate predictive
power. In this regression context, the K-Nearest Neighbors
model displayed moderate performance, with an RMSE of
22.95 and an R-squared value of 0.23. SVR emerged as the
most suitable regression model for predicting flyrocks in
the experimental mine blasts, offering the highest accuracy
and reliability compared to other models. As observed in
Fig. 12, despite the SVR performing well, it still exhibited a
high magnitude of differences between the true and predicted
values, more so, in the unsafe blasts whose consequences are
significant. Overall, this analysis, as illustrated in Fig. 11,
proved that machine learning via regression was not optimal
in our research context. Thus, we could explore the potential
of classification learning to derive meaningful learning from
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FIGURE 11. Performance metrics comparison in regression models.

FIGURE 12. True vs predicted flyrock distances for SVR - linear model.

machine performance, which is crucial in decision-making
with regard to blast safety in a mine.

For classification, this study utilized different criteria for
the hyperparameters, particularly within each modeling tech-
nique. For example, in SVM, a number of SVM methods,
such as Linear SVM, Quadratic SVM, Medium Gaussian
SVM, have been examined to determine the best technique.
This section presents the results of the learning models based
on their classification abilities.

Initially, the dataset was stripped into x- and y-features.
The x features represent all the explanatory variables. Con-
sequently, the y features (response variable) displayed cate-
gorical values for two types of blasts, that is, safe and unsafe
blasts.

Training was conducted using the default settings of the
MATLAB Classification Learner. Feature selection was not
performed. Misclassification costs were set to default. No
optimizer properties were used, and Principal Component
Analysis (PCA) was deactivated. This was performed to pre-
serve the integrity of the original dataset. Thus, the machine
performance was judged based purely on the original data.
Twenty models were trained using the Levenberg–Marquardt
algorithm (LMA).

At the end of the training, all models were assessed accord-
ing to their performance. Accuracy, Total cost and Training
Timewere the three key performance indicators that informed
the selection of the most ideal machine models. Simulta-
neously, the hyperparameter attributes of each model were
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TABLE 6. Performance of the models (70% training & validation, 30% testing).

TABLE 7. The top four selected models.

investigated. This would show which specific tuning param-
eters were responsible for the training, validation, and test
results.

A summary of the classification training and testing is
presented in Table 6. Once their performances were ranked,
the best four models were selected.

The Cubic SVM performed better than the other SVM
kernels. It produced a hyperplane that was able to completely

separate the vectors into two non-overlapping classes. This
means that the nonlinear region was capable of separating
the data more efficiently. Usually, the higher the degree of
the polynomial, the more curved the resulting hyperplane
line. Cubic SVM, which is a third-order polynomial when
compared to quadratic SVM, was therefore more robust.

From the ANNs tested, the Wide Neural Network (WNN)
performed comparatively better, perhaps due to the high
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TABLE 8. Hyperparameters for the top four selected models.

TABLE 9. Ranking of the top four machine models.

number of neurons (100 in its first layer compared to 25 in
the Medium Neural Network (MNN) and 10 neurons in the
Narrow Neural Network (NNN). It also proved superior to
Bilayered and Trilayered Neural Networks, which have two
and three fully connected layers, respectively.

Using the Gini index, all DT algorithms yielded similar
results. However, Coarse DT was unique because it managed
the shortest training time. A possible inference is that the
number of splits has a direct bearing on the machine perfor-
mance, that is, the lower the number of splits, the faster the
training time.

The Fine KNN has 1 neighbor compared to 10 in Medium
KNN or to 100 in Coarse KNN. The classifier accuracy
increased when the number of neighbors decreased. Fine
KNN is therefore able to make finely-detailed distinctions
between classes. Euclidean distance associated with Fine
KNNwas observed to be the best determiner of nearest neigh-
bors compared to other KNNmodels. It performed better than

the distance weighting used in theWeighted KNN, which was
the second best KNN model.

The corresponding hyperparameters are listed in the
Table 8.

The main purpose of this study was to assess the classifi-
cation ability of SVM, KNN, ANN, and DT for the flyrock
problem. After determining the best models, the next step
involved carrying out a further comparative analysis among
the selected models based on the main performance indica-
tors. In this research, the Confusion Matrix and the Receiver
Operating Characteristic (ROC) curve, denoted by the Area
Under Curve (AUC), were the main statistical indicators used
to measure the performance of the selected models.

Fig. 13 illustrates the performance of the Coarse DT
algorithm. An inspection of its performance revealed that it
correctly predicted 13 of 17 safe blasts (76.5% specificity). It
gave 1 correct prediction out of 4 (25% True Positive Rate)
for the unsafe blasts during training and validation. However,
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FIGURE 13. Confusion matrix and ROC for coarse DT during validation and testing phase.

it attained a 50% sensitivity for unsafe blasts during the test
phase. In contrast, it correctly classified all safe blasts and
thus achieved a specificity of 100% for the same test sample.

Moreover, it achieved an ROC of 0.5221 in the validation
phase, and an ROC of 0.75 during testing. Therefore, it can
be deduced that the Coarse DT algorithm showed a slight
improvement in performance on the test set.

Analysis of the Cubic SVM model during validation
indicated outstanding classification performance with 100%
specificity for safe blasts. 2 of the 4 unsafe blasts were
correctly classified (50% sensitivity). In the test set, themodel

accurately pinpointed the two categories of blasts with 100%
scores for both sensitivity and specificity.

As presented in Fig. 14, using the Cubic SVM model,
an ROC of 0.9412 was achieved during training and valida-
tion, whereas the test dataset recorded a perfect ROC score
of 1.

In Fig. 15, it can be observed that the classification ability
for unsafe blasts was similar to that of Cubic SVM, that is,
50% sensitivity (2 correct predictions of 4 unsafe blasts).
However, it had a high specificity of 94.1% for the vali-
dation set. In the test phase, the Fine KNN model showed
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FIGURE 14. Confusion matrix and ROC for cubic SVM during training and testing phase.

good distinction power because it appropriately classified all
blasts.

The ROC measurements indicated an improvement from
0.7206 in the validation set to 1 in the test data.

As shown in Fig. 16, the WNN generated the highest
classification accuracy. The confusion matrix illustrated that
all 17 safe blasts and 3 of 4 unsafe blasts were correctly
identified. Moreover, it registered a 100% recognition rate for
both types of blasts in the test set.

The ROC also demonstrated exceptional performance
powers associated with the WNN. It also had the highest
ROC scores of 0.9853 for the validation set and 1 for the test
set.

Finally, all models were compared, and a ranking was
established to ascertain the superiority of the classifiers (see
Table 9).
Overall, in the assessment of the results based on the sensi-

tivity and specificity measures from the confusion matrix and
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FIGURE 15. Confusion matrix and ROC for Fine KNN during training and testing phase.

ROC measures, WNN and Cubic SVM were found to be the
most capable algorithms. The rest also displayed significant
classification abilities. WNN and Cubic SVM displayed bet-
ter ROC performances and were able to classify blasts better
than Fine KNN and Coarse DT. Coarse DT was the least
desirable model. It had a misclassification (1 FN) in the test
sample compared with the other models.

To validate the results of the machine-learning exercise,
an assessment of overfitting was conducted. Given the small
dataset, a 5-fold cross-validation was performed. Subse-
quently, the obtained performance was compared with the test
accuracy of the four models. The ‘‘5% points or less’’ rule of

thumb i.e. a heuristic guideline commonly used in machine
learning, was chosen as a useful estimate for assessing the
potential presence of overfitting.

Table 10 illustrates slight variations between the test accu-
racy obtained from the 70-30 train-test split dataset and the
results obtained from 5-fold cross-validation for both the
WNN and Cubic SVM. This implies a reduced probability
of overfitting in the models. Conversely, the notable gaps in
performance between Fine KNN and Coarse DT indicate a
higher potential for overfitting. These results highlight the
robust generalization capability of the WNN and Cubic SVM
models.
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FIGURE 16. Confusion matrix and ROC for WNN during validation and testing phase.

After determining that the WNN had the best overall per-
formance, the second phase of the study investigated how
ANNs can be trained for classification tasks using a different
approach. The goal of the second phase was to develop a
new neural network model that could achieve a 100% accu-
racy rate in both the training-validation and testing phases,
surpassing the performance of the WNN model. This would
be achieved by building a new model and assigning new

parameters and functions that would tune the machine to
achieve a 100% classification accuracy for all types of blasts
and in all datasets.

The nprtool in MATLAB was used in this study. This tool
can be used to create models suited to pattern-recognition
problems. Therefore, it is the best tool for training learning
models for classification. The network architecture shown in
Fig. 17 is a two-layer feedforward neural network (FNN).
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TABLE 10. Overfitting analysis.

FIGURE 17. Two layered feed-forward neural network architecture.

It contains sigmoid hidden neurons and softmax output neu-
rons, both of which are ideal for classification. The training
dataset was set to 70%, validation to 15%, and testing to 15%.

These optimal solutions can also be verified using ROC
curve results. In all stages, from training to validation and
testing, the two-layered FNN achieved a perfect score of 1 for
the true-positive rate (see Fig. 19).

The training outcomes obtained using this network archi-
tecture are shown in Fig. 18.

As can be seen in the confusion matrix below, the FNN
model also exhibited exceptionally high performance after it
was trained and tested. The sensitivity and specificity based
on the predicted outputs during the training and validation
phases were 100% for the safe and unsafe blasts. Out of a
total of 21 blasts, 18 blasts were successfully categorized as
‘safe’ while the remaining 3 were ‘unsafe.’ Consequently,
the validation phase predicted 2 ‘safe’ blasts and 2 ‘unsafe’

blasts. To further confirm the classification power in this
supervised environment, the test set successfully classified 3
‘safe’ blasts and 1 ‘unsafe’ blast. No blast was misclassified.
Finally, a review of its performance based on the ‘All Con-
fusion Matrix’ revealed that it is also a far more accurate,
flexible, and reliable model than classifiers such as Fine KNN
and Coarse DT, which were trained using the classification
learner app in MATLAB.

The best performance, as shown in Fig. 20, for the
two-layered FNN occurred at epoch 30. The best model
was selected based on the Cross-entropy and Error results.
The cross-entropy loss function was selected as the objec-
tive function. Typically, high-accuracy classification models
depict small values of cross-entropy. The goal was therefore
to select the model with the smallest cross-entropy value as
well as the smallest error values.

Table 11 lists the tabulated results from the training, vali-
dation, and testing of the two-layered FNN.

TABLE 11. Classification results using the two-layered FNN.

The results therefore seem to indicate that machine learn-
ing models, such as KNN, SVM, DT, and ANN, can be
applied to solve practical problems, such as flyrocks in
mines. The experiment also implies that ANN have a sig-
nificantly higher classification ability than KNN and DT.
Among the ANN studied in this research, the two-layered
FNN demonstrated how training on trained data can lead to
the development of a superior learning model.

As earlier stated in this paper, most of the previous research
studies that focused on flyrocks problems in mines were
focused on building regression-based models for flyrock
prediction. Upon closer examination of the data utilized in
this study, it is evident that a nonlinear relationship exists
between the input and output parameters. This nonlinearity
is a challenging obstacle when attempting to solve regres-
sion problems. It is often difficult for regression models to
predict with 100% accuracy compared to classification mod-
els. Although classification models have been used in other
fields and in mining, very few, if any, have been used for
flyrock distance determination. Therefore, this study tested
classification algorithms as an alternative approach for solv-
ing flyrock-related problems. Moreover, it focused on the
superiority of a selected number of classification models.

The aim of this study was to determine the safety aspects
of a blast based on a predetermined distance. This made it
possible to classify a blast into two classes: safe (< 90 m)
and unsafe (> 90 m). Note that if the distance changes to let’s
say 60 m, the same process is repeated, and ML is applied
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FIGURE 18. Confusion matrix for the FFNN.

FIGURE 19. ROC curve for FFNN.

to determine the best classification algorithm. Although the
distance is an important parameter, determining whether a

blast is safe is a more significant goal. This classification
strategy attempts to interpret the consequence of the flyrock
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FIGURE 20. Best validation performance for two-layered FNN.

distance in terms of the safety level assigned to a given
blast. The results of the investigation indicated that Coarse
DT, Cubic SVM, Fine KNN, and WNN were the four best
machine-learning models to use. Among these, WNN and
Cubic SVM displayed higher-level performance outcomes
with a lower likelihood of overfitting. Fine KNN and Coarse
DT were the inferior models compared to the former two
(WNN & Cubic SVM); with Coarse DT being the least
performing model.

The underperformance of DT may have been due to
its inability to properly learn the complex relationships
between the features in the data. DTs are also highly sus-
ceptible to overfitting, that is, high accuracy on training
data but low accuracy on test data, or exceptionally high
results on the test data with relatively low results during
the training and validation phases. For example, Coarse
DT registered 66.7% validation accuracy and 87.5% test
accuracy. In addition, DTs generally work well with large
datasets compared with the one investigated in this research,
which had 29 sample points and thus considered a small
dataset.

KNN and DT are simplistic compared to SVM and ANNs.
Only one hyperparameter, that is, the distance between a
group of data points expressed by the value of K (total clos-
est neighbor), is investigated for KNN, whereas ANNs can
have many hyperparameters. ANNs operate via black-box

modeling, meaning that the mechanism that produces the
output is not clearly understood.

A high degree of nonlinearity calls for complex operations
in which models such as ANNs and SVM work optimally.
SVM can use kernels that map nonlinear data points into a
higher-dimensional space where linear separation is possi-
ble. In this case, Cubic SVM was the best kernel. A major
advantage of SVM is its ability to classify datasets that have
numerous attributes, even when a small sample size is avail-
able for training. This could be the reason for the exemplary
performance of Cubic SVMpresented in this paper. In ANNs,
the hidden layers contain neurons that are largely responsible
for their learning capabilities. In the WNN, the 100 neurons,
which can be considered as an intermediate number of neu-
rons in the hidden layer, encouraged proper learning. Small
neuron numbers were associated with underfitting. TheWNN
also did not have a high number of neurons that resulted in
overfitting, as evidenced by its ability to generalize well to
the test data.

The research further investigated the classification ability
of ANNs using the nprtool in MATLAB to train a Two-
layered FNN with the sole aim of achieving 100% classifi-
cation accuracy. This was attained and proved that the FNN
was equally capable and that, overall, it was a highly flexible
model since already trained data could be used for the next
training phase, thus making the learning process quicker.

8604 VOLUME 12, 2024



I. Krop et al.: Assessment of Selected ML Models for Intelligent Classification of Flyrock Hazard

FIGURE 21. Strength of relation between input parameters and flyrock
distance using ReliefF algorithm.

A. SENSITIVITY ANALYSIS
Sensitivity analysis is a crucial process because it can demon-
strate the relationship between input factors and their effect
on the response variable. Therefore, it was possible to deter-
mine the importance of each feature on a relative basis. In
this study, a sensitivity analysis was performed on all seven
features to determine their degree of influence on the output.
First, scatter plots for each feature against the dependent
variable (i.e., the flyrock distance) were plotted. The statis-
tical measure used to establish the influence of the features
was R-squared, which indicates the proportion of variance in
the dependent variable explained by the independent variable
of interest. The R-squared values in Table 12 indicate the
magnitude of the influence for each feature.

TABLE 12. Results from scatter plot analysis.

To validate the results of the scatter plots, two additional
statistical methods were employed: the ANOVA and ReliefF
algorithms. These are two popular algorithms used for feature
selection in machine learning. The results are presented in

FIGURE 22. Strength of relation between input parameters and flyrock
distance using ANOVA.

FIGURE 23. Burden vs Flyrock distance.

Fig. 21 and 22. To a large extent, all three methods were
in agreement, suggesting that burden, stemming length, and
powder factor were the most influential parameters on the
throw distance. Additionally, they assigned varying degrees
of importance to BTS, UCS, rock density, and crack density.
The least influential parameters, as noted by all three meth-
ods, were the Uniaxial Compressive Strength, Crack density,
and BTS.

Box plots were also used to examine the strength of rela-
tions among two selected features i.e. burden and powder
factor. These features express sensitivity to the resulting fly-
rock distance. An inverse relationship was observed between
burden and flight distance (see Fig. 23). This conforms
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FIGURE 24. Powder factor vs Flyrock distance.

with most other studies that have established a similar
relationship [35].

Generally, a positive correlation was observed between
powder factor and the resulting flight distance (see Fig.24).
This is supported by other research studies, which have shown
that an increase in powder factor often results in a greater
fragment throw distance.

IV. CONCLUSION
In this study, an alternative machine-learning method, that is,
learning by classification for the prediction of flyrocks in a
mine, was developed.

The following conclusions were drawn:
i. Wide Neural Networks (WNN) demonstrated the

strongest classification power for two categories of
blasts: safe and unsafe blasts. This is followed by a
Cubic SVM. This means that such a model can be
relied upon to predict the safety of future blasts in the
mine.

ii. The performance of a model can be influenced by the
dataset size. Coarse DT demonstrated poor machine-
learning abilities. It had one false-negative result. It
also exhibited the highest misclassification rate among
the tested models. This may be attributed to the over-
fitting behavior common in most Decision Tree mod-
els. To a large extent WNN, Cubic SVM, and Fine
KNN performed well, indicating that a sample size
of 29 blast observations was sufficient. A larger sam-
ple size would have provided a clearer picture of the
classification ability of the selected learning models,
particularly with a clear improvement in the perfor-
mance of the Decision Tree model. Future work should
therefore focus on a larger dataset to ascertain, with
very high confidence, the performance of machine
learning models.

iii. In the case of the mine investigated, the Powder Factor
(PF), Stemming Length (SL), and burden (B) were
discovered to be the input parameters that had the most

influence on the resulting fragment throw distance.
Therefore, proper consideration of these variables dur-
ing the blast design process should be performed to
avoid flyrock accidents in mines.

iv. The input parameters in the dataset did not exhibit
a strong linear relationship when gauged against the
response variable. However, this study showed that
machine learning by classification can be applied suc-
cessfully, even for phenomena that may not be well
represented using regression analysis.

v. Regression solutions are commonly validated using
metrics, such as the Coefficient of Determination
(R-square), Mean Absolute Error (MAE), and Mean
Squared Error (MSE). Similarly, this study illustrates
that for classification problems, combining the analy-
sis from a confusion matrix, for example, the use of
accuracy, recall, and Receiver Operating Characteristic
(ROC) analysis, also offers a dependable evaluation of
machine model performance. This alternative approach
can aid domain experts in mining in making informed
decisions.

Lastly, to the best of our knowledge, this study is the first
of its kind to purely use machine learning through classi-
fication intervention to show how flyrock problems can be
analyzed. Therefore, it has opened up the possibility for
deep consideration of machine learning by classification as
a solution to tackle flyrock problems in other mines. By
demonstrating the feasibility of using machine learning to
solve flyrock problems, this study developed a framework
for future studies to assess the performance of classification
models. Future studies will aim to conduct additional test
blasts to accumulate a robust dataset or sufficient sample of
blast data for machine learning. Additionally, we intend to
explore novel machine learning techniques, particularly those
utilizing hybridization in machine learning (HML), to further
evaluate their performance.
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