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ABSTRACT A crucial component within any structural health monitoring system is a pipeline leak detection
mechanism, vital for preventing avoidable water loss. Contemporary literature employsmachine learning and
deep learning for detecting pipeline leaks and cross-correlation for leak localization. The major drawbacks
in the existing methodologies are that machine learning and deep learning methods need two different
architectures for leak detection and localization, and the cross-correlation needs two sensors with a denoising
technique. The primary objective of this paper is to deploy a unified architecture capable of executing both the
detection and localization of a leak without any denoising technique and with a single sensor. The proposed
technique utilizes the data collected using an Acousto-optic sensor with two different pressures. This paper
proposes a novel custom one-dimensional time-series DenseNet for leak detection and localization. The
proposed method gives better accuracies compared with the existing one-dimensional DenseNet-121, three
different one-dimensional convolutional neural networks (1DCNN), and cross-correlation for two different
pressure datasets. The proposed method’s processing time is thirteen times less than the existing one-
dimensional DenseNet-121, with the observed average leak detection and localization accuracy of 99.08%.
The results state that the proposed novel custom one-dimensional time-series DenseNet accurately detects
and localizes the leak with less time.

INDEX TERMS Acousto-optic sensor, CNN, DenseNet, and pipeline leak detection and localization.

I. INTRODUCTION
Pipeline is the most considered mode of long-range water,
oil, and gas transportation. The aging, wind, corrosion,
and various external elements contribute to the degradation
of this pipeline. As a result of this deterioration, leaks
occur in the pipeline, leading to the loss of resources.
An appropriate monitoring system is needed to iden-
tify the pipeline leak earlier to avoid wastage. Catego-
rization of a few available pipeline leak detection and
leak localization methods are external, visual/biological,
and computational-based methods [1], [2]. This paper
concentrates on pipeline leak detection and localization
techniques using cross-correlation (CC), Machine Learning
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(ML) algorithms, and Deep Learning (DL) algorithms
under computational-based leak detection and localization
methods.

A few sensors applied in pipeline leak detection and
leak localization are Acoustic Emission (AE), Acousto-optic
sensor, spherical detector, flow meter, temperature sensor,
and listening devices/microphones. The information obtained
from the sensors in the real-time experimental arrangement
contains noise. Few methods are available to denoise the
signal collected from sensors. They are Empirical Mode
Decomposition (EMD), Independent Component Analysis
(ICA), Variational Mode Decomposition (VMD), Mel Fre-
quency Cepstral Coefficients (MFCCs), Continuous Wavelet
Transform (CWT), and Wavelet packet decomposition.
After denoising, the cross-correlation localizes the leak by
cross-referencing two sensor signals.
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ML algorithms like Support Vector Machine (SVM),
Decision Tree (DT), Random Forest (RF), and K Nearest
Neighbor (KNN) need feature extraction techniques. Feature
extraction helps extract essential information from the
raw or denoised data. DL algorithms like one-dimensional
Convolutional Neural Networks (1DCNN), Deep Neural
Networks (DNN), two-dimensional Convolutional Neural
Networks (2DCNN), Artificial Neural Networks (ANN), and
Long Short-TermMemoryAuto Encoder (LSTM-AE) extract
the features by itself from raw data or denoised data.

Xu et al. applied a leak detection approach using
VMD-MFCC and SVM, incorporating a spherical detector
for water pipelines [3]. The data collected from the spherical
detector is noisy. The VMD denoises and MFCC help extract
essential features for the SVM for leak detection. This
VMD-MFCC and SVM gave an accuracy of 93%. Wang
and Gao deployed a leak detection technique by integrating
information from two acoustic and two pressure sensors,
utilizing dual Pearson threshold ensemble EMD (DP-EEMD)
and 1DCNN for water pipelines [4]. The acoustic and pres-
sure signals undergo fusion and are subjected to DP-EEMD
for noise reduction before employing the raw data for leak
detection. Fusing data from two acoustic and two pressure
sensors gave more accurate results.

Kim et al. implemented a leak detection method using
a deep neural network for subsea gas pipelines with mass
flow, pressure, and temperature [5]. The deep neural network
model gave an accuracy of 80%. Ning et al. implemented an
RF leak detection method for gas pipelines using listening
devices [6]. The listening device captures the acoustic
signals. The EEMD helped to denoise the captured acoustic
signal, and a correlation coefficient helped to appropriate
IntrinsicMode Functions (IMFs). The features extracted from
the denoised IMF are MFCC, time-domain and waveform
features. The RF detects the leak with reasonable accuracy.

Spandonidis et al. studied 2DCNN and LSTM-AE using
accelerometers to detect leaks in oil and gas pipelines [7].
The spectrograms of the accelerometers were the input for
the 2DCNN, and the direct accelerometer signal was input
to the LSTM-AE. The 2DCNN gave a better accuracy of
92%. Using accelerometer data, Yu et al. studied SVM, DT,
KNN, and 2DCNN SqueezeNet for leak detection in water
pipelines [8]. SVM, DT, and KNN detected the leak using
features extracted from the accelerometer data. Meanwhile,
for 2DCNN, the leak was identified by SqueezeNet using
the spectrograms generated through the Short Time Fourier
Transform. The 2DCNN SqueezeNet gave the highest
accuracy of 95.15%.

Yang et al. implemented a leak detection model with
2DCNN using pressure sensor data [9]. To make the
one-dimensional pressure data suitable for 2DCNN, Yang
et al. utilized a CWT named Mortlet wavelet function.
The Mortlet wavelet denoised the data and converted
the one-dimensional data into two-dimensional data. The
2DCNNdetected a leakwith 97% average accuracy. Song and
Li implemented a leak detection model using 2DCNN for the

AE sensor data [10]. To make the one-dimensional acoustic
sensor data compatible with 2DCNN, Song et al. utilized
a CWT named DB8. Similar to the previously mentioned
approach, the DB8method denoised the data and transformed
the one-dimensional data into a two-dimensional format.
Utilizing the two-dimensional data, the 2DCNN successfully
identified the leak with an accuracy of 93%.

Vanijjirattikhan et al. used microphones to compare SVM,
1DCNN, and DNN for water pipeline leak detection [11].
The one-dimensional time-domain data collected from the
microphone is converted into a frequency domain using
Fast Fourier Transform (FFT). The frequency domain data
were then averaged and normalized before passing to the
classifiers for leak detection. The analysis showed that the
DNN outperformed the other two with 90% accuracy.Waleed
et al. deployed a neural network to detect in-pipe leaks in oil
and gas pipelines [12]. The in-pipe robot with three pressure
sensors and an Arduino board helped collect data. Waleed
et al. then performed an FFT operation on the collected
one-dimensional pressure data before passing it to NN for
classification. The NN classified the leak with reasonable
accuracy.

From the above leak detection methods in ML and DL,
it is evident that the ML and DL applications are for leak
detection only. Still, the primary applied technique for the
leak localization method is CC. Li et al. implemented a
leak localization method in gas pipelines using two AE
sensors [13]. This leak localization method included CC
with an adaptive time-delay estimator. This method observed
a relative error of 1% over an 80 m pipeline. The leak
localization method implemented by Kothandaraman et al.
is onGeneralized CC (GCC) using twoAcousto-optic sensors
for water pipelines [14]. The noisy one-dimensional time-
domain Acousto-optic sensor was denoised with adaptive
ICA. GCC was performed on the denoised data to obtain
the leak’s location. This Adaptive ICA and GCC gave an
accuracy of 93%.

Moreover, for enhanced precision in leak localization
through the utilization of two acousto-optic sensors in
water pipelines, Kothandaramam et al. integrated EMD in
conjunction with Adaptive ICA to achieve superior noise
removal [15]. The double-step noise-removed data was then
performed with GCC to obtain leak localization. This method
gave a leak localization accuracy of 96.47%. Furthermore,
to improve the leak localization’s accuracy, Kothandara-
mam et al. implemented a wavelet packet decomposition
along with Adaptive ICA [16]. This method was again
for water pipelines with two Acousto-optic sensors. This
wavelet packet-based Adaptive ICA denoised well, and GCC
localized leak with better accuracy.

The literature survey above indicates that ML and DL
achieved superior accuracy among different sensors with
more data for leak detection but not applied for localizing
leaks. The widely applied tool for leak localization is
cross-correlation. ML/DL and CC combined architectures
are applied to perform detection and localization. Lang et
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al. implemented leak detection using Least Square Twin
SVM (LSTSVM) and localization using CC for water
pipelines [17]. The data utilized in this study was collected
using pressure sensors with the Flowmaster software. The
LMD helped to denoise the data for both detection and local-
ization. Feature extraction for LSTSVM for leak detection
from a single pressure sensor included time and frequency
domain features. The leak was localized with CC from two
pressure sensors after denoising. The observed detection and
localization accuracies are 94.44% and 90.38%, respectively.

Zhou et al. explored a similar combined approach for
water pipelines utilizing 2DCNN detection and CC for
localization [18]. The data utilized in this study was
also collected using pressure sensors with the Flowmaster
software. The Improved Spline-Local Mean Decomposition
(ISLMD) helped to denoise the data collected from the
pressure sensors. Images of the denoised data from a
single sensor are the input to 2DCNN for detection. Leak
localized by CCwith two denoised sensor data. Obtained leak
detection and localization accuracies are 92.5% and 93.65%,
respectively.

A few disadvantages observed from the literature survey
are: 1) For detection and localization, two different architec-
tures are needed, and 2) Localization using cross-correlation
needs two sensors. These two different architectures and
two sensors for localization increase the complexity. This
paper proposes a novel custom one-dimensional time series
DenseNet, a single architecture for leak detection and
localization, with single Acousto-optic sensor data, and it
does not need any noise removal process; this reduces the
disadvantages of the existing systems. The paper organization
is as follows: II) Related works, III) Experimental setup,
IV) The proposed novel custom one-dimensional time-series
DenseNet, V) Results and discussion, and VI) Conclusion.

II. RELATED WORKS
A. CONVOLUTIONAL NEURAL NETWORK (CNN)
CNN is a widely used tool for computer vision and natural
language processing [19]. In recent years, applications of
CNN have also extended pipeline leak detection with both
one and two-dimensional. CNN is a feedforward architecture
with many layers, and it learns with the help of filters,
weights, and a bias. The optimizers aid in adjusting the
weights during training, and the concurrent training of all
layers minimizes the overall objective function [20]. The
layers available in CNN are 1) the convolutional layer,
2) the max pool layer, 3) the fully connected layer, and
the output layer. There are different activation functions
available in CNN. Among them, ‘ReLU’ is a widely used
activation function. Sample CNN architecture is in Fig. 1.
The ‘vanishing gradient’ is the only drawback with 1DCNN.
This problem increases as the number of layers in the CNN
increases. It means specific data get lost while going for
multiple convolutions.

CNN applied for pipeline leak detection and leak
size classification. Kang et al. implemented an ensemble

FIGURE 1. CNN architecture.

1DCNN-SVM for leak detection [21]. The ensemble includes
MLP, and SVM detects the leak after extracting features
from 1DCNN with a stochastic gradient descent optimizer.
The 1DCNN ensemble architecture comprises an input layer,
the initial convolutional layer with kernel and filter sizes of
32 and 64, succeeded by the first max-pooling layer with a
pool size and a stride of 8 and 4, respectively. After this,
the architecture splits into 1DCNN-SVM and Multi-Layer
Perceptron (MLP). The Radial Basis Function is integrated
into the 1DCNN-SVM, while the MLP features a dense
layer with 256 neurons. Both 1DCNN-SVM and the MLP
classify leaks, and the results are ensembled for optimized
leak detection accuracy. Bohorquez et al. implemented a
leak size detection and junction identification mechanism
using 1DCNN [22]. The leak detection 1DCNN architecture
comprises three convolutional layers with a leaky ReLU
activation function, having layer sizes of 1200, 600, and 300,
respectively. The filter size in each convolutional layer is
10. After the convolutional layer, the 1DCNN architecture
contains three dense layers with 21, 9, and 2 neurons,
respectively.

Ahmad et al. utilized 1DCNN to implement leak detection
and identify leak sizes in fluid pipes using an acoustic
emission sensor [23]. The architecture for leak detection and
size identification using 1DCNN includes one input layer,
five convolutional layers, four max pool layers, one dense
layer, and one output layer. The architecture includes a first
convolutional layer with a filter size 128 and a kernel size
of 16, followed by the first max pool layer. The second
convolutional layer has a filter size of 64 and a kernel size
of 8, followed by the second max pool layer. In the third
convolutional layer, the filter size is 32, and the kernel size
is 4, followed by a max pool layer with a dropout ratio of
0.25. The fourth convolutional layer has a filter size of 16 and
a kernel size of 4, followed by a max pool layer. Finally, the
fifth convolutional layer has a filter size of 8 and a kernel
size of 4, with a dropout ratio of 0.25, followed by a dense
layer and an output layer. The number of neurons in the dense
and output layers is 256 and 4, respectively. The 1DCNN
gives good results in detecting leaks. Still, it has a vanishing
gradient problem as there is an increase in the number of
layers, the structure of the original data gets lost, and the
architecture tends to overfit, resulting in poor prediction
accuracy, F-score and R-squared error.

B. DENSENET-121
DenseNet is a type of CNN that utilizes dense connections
between layers and addresses the ‘vanishing gradient’
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FIGURE 2. DenseNet-121 architecture.

problem. Apart from this, it has a few advantages: 1) feature
propagation strengthening, 2) reusability of features, and 3)
parameter reduction. A few drawbacks observed in DenseNet
architecture are its massive number of trainable parameters
that consume more memory and tremendous time to train,
test and validate. One type of DenseNet that is available
is DenseNet-121 [24]. The DenseNet-121 has 1) 1 - 7 ×

7 convolutional layer, 2) 61 - 1×1 convolutional layer, 3) 58 -
3×3 convolutional layer, 4) 1 - max pool layer, 5) 4 - average
pool layer, 6) 1 - fully connected layer, and 7) 1 - output layer.
The architecture diagram of the DenseNet-121 is in Fig. 2

A few DenseNet applications are below; Zhang and Zhang
applied DenseNet positively in their work to identify gas-
liquid two-phase flow patterns with a resistance sensor
array [25]. The data collected from the resistance sensor array
was a one-dimensional time series. The Garmian Angular
Field was pivotal in transforming the one-dimensional time-
series data into a two-dimensional format. With the two-
dimensional data, the implemented DenseNet architecture
identifies four different flow patterns with 98.3% accuracy.

Kuo et al. implemented a DenseNet architecture to predict
cutting tool wear with the NASA milling dataset [26]. The
dataset consists of AE, vibration, and current sensor data.
The DenseNet classified sixteen cutting tool wear cases
with 0.06 mean absolute error and 0.09 mean squared error.
Bakshi and Rajan implemented an Inception-based DenseNet
for fall event detection with the SisFall dataset [27]. The
SisFall dataset consists of fifteen fall cases and fifteen
non-fall cases. The Short Time Fourier Transform was
instrumental in converting the one-dimensional time series
data into two-dimensional data. With two-dimensional data,
the Inception-based DenseNet classified the fall event with a
97±4.7% F-score.

III. THE PROPOSED NOVEL CUSTOM ONE-DIMENSIONAL
TIME-SERIES DENSENET
The 1DCNN and the DenseNet are the most potent and
predominant architectures. Even though both architectures
have contributed to various types of classification with
great accuracy, they have a few flaws. The 1DCNN gives
good accuracy but has a vanishing gradient problem when
layers increase and tend to overfit, leading to less prediction
accuracy, F-score and R-squared error. The main advantage
of the DenseNet is its efficiency in solving the vanishing
gradient problem by helping the architecture maintain the

data pattern, so the tendency to overfit is minimal. The
only drawback with DenseNet is the tremendous number of
trainable parameters and the time it takes to train, test, and
validate. The 1DCNN is a lightweight architecture, whereas
the DenseNet is heavy. The design of the proposed method
brings both 1DCNN and DenseNet together by tailoring it to
preserve the advantages of both architectures.

This paper proposes a novel custom one-dimensional
time-series DenseNet combining 1DCNN and DenseNet.
This architecture complements the advantages of both
1DCNN and DenseNet by eliminating the vanishing gradient
problem with less trainable parameters. Further, the proposed
architecture is a standalone model defined for leak detection
and localization. The architecture diagram of the novel
custom one-dimensional time-series DenseNet is in Fig. 3.
The workflow of the proposed architecture is in Fig. 4.

Steps in proposed novel custom one-dimensional time-
series DenseNet Architecture:

1) Fetch raw one-dimensional time-series data,
2) Learn features using 1DCNN blocks from the convolu-

tional layer 1 to max pool layer 4,
3) Pass the learned features to the novel custom DenseNet

block from convolutional layer 5 to convolutional layer
7,

4) Flatten the learned features to one-dimension and pass
it to further dense layers,

5) Dense layers 1 and 2 help to reduce the number of
features gradually and pass it to the output layer, and

6) The output layer helps detect and localize the leak
based on the time the leak vibration signal takes to
reach the sensor concerning the sensor’s distance.

IV. EXPERIMENTAL SETUP
The experimental arrangement illustrated in Fig. 5 was
employed to gather data for this research, comprising the
following components,

1) A water storage unit of 1000 ltrs capacity,
2) A water pump,
3) A leak aperture of 5 mm,
4) Galvanized iron pipeline,
5) An Acousto-optic sensor,
6) A data acquisition unit and
7) A personal computer (PC).

The galvanized iron pipeline begins and concludes at
the water storage unit, covering a distance of 40 meters.
It possesses an internal diameter of 82 mm and an external
diameter of 90 mm. The landscape vision of the experimental
setup is in Fig. 6. Both Figs. 5 and 6 show how the
experimental setup of a 40-meter pipeline is connected with
a few small pipelines and elbow couplings and mounted from
the floor. Pua et al.’s Acousto-optic sensor played a crucial
role in gathering the data for this paper [28]. The schematic
diagram of the Acousto-optic sensor can be found in Fig. 7,
while the real-time image of the Acousto-optic sensor setup
is in Fig 8.
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FIGURE 3. Architecture of proposed novel custom one-dimensional time-series DenseNet.

FIGURE 4. Workflow of the proposed novel custom one-dimensional
time-series DenseNet.

FIGURE 5. Experimental setup.

FIGURE 6. Landscape view of the experimental setup.

A. DATA COLLECTION
The experimental arrangement is in Fig. 5, and Fig. 6
illustrates the landscape view of the experimental setup. Fig. 7
showcases the configuration of the Acousto-optic sensor
setup. At the same time, Fig. 8 features the placement of
the sensing fiber of the Acousto-optic sensor on the leak
aperture of the pipeline setup. It also contains the PicoScope,

FIGURE 7. EDFL setup systematic diagram.

FIGURE 8. Acousto-optic sensor setup.

laser pump, and a photodetector. The sensing fiber is filled
with laser particles with the help of the laser pump to
make it suitable for observing the acoustic vibrations. The
photodetector then observes the vibrated laser particles. The
PicoScope and the PicoScope software on the PC connected
at the photodetector’s end helped collect data for this study.
The data collected from the PicoScope is a one-dimensional
time series. The leak aperture in the pipeline causes negative
vibrations in the pipeline. The sensing fiber plays a crucial
role in capturing these vibrations, while the PicoScope is
instrumental in storing the observations for leak detection and
localization analysis. The time taken for vibrations to reach
the sensing fiber varies based on the distance at which the
sensing fiber is on the pipeline. The design of the proposed
architecture helps to understand the data pattern at different
distances accordingly.

B. DATA DESCRIPTION
The dataset for this study contains seven sets with two
different pressures. The pressures considered in this setup
are 2bar and 3bar. The sensing fibers are positioned at
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FIGURE 9. Sample of No-leak data.

FIGURE 10. Sample of leak data at a 2-meter distance.

FIGURE 11. Sample of leak data at a 29-meter distance.

seven different lengths to gather data. The seven sets of data
collected for this paper are as follows:

1) No-leak,
2) Leak at a.7-meter distance,
3) Leak at a 1-meter distance,
4) Leak at a 2-meter distance,
5) Leak at a 3-meter distance,
6) Leak at a 5-meter distance and
7) Leak at a 29-meter distance.
For the no-leak data, position the sensing fiber at a 1-meter

distance from the leak aperture with the leak aperture closed.
Additionally, collect data for the leak sets at their respective
distances with an opened leak aperture. At a time, one sensor
is placed at each distance, as listed above, with the leak
aperture open to observe the vibrations in the pipeline. Each
dataset category contains 1200 samples with 50 milliseconds
duration. Therefore, there are 8400 samples in all categories.
The ratio of dataset split of training, validation, and prediction
is 80%, 16%, and 4%, respectively. For reference, sample
images of data at 2bar pressure of no-leak, leak at a 2-
meter distance, and leak at a 29-meter distance are shown
in Figs. 9-11. Fig. 9. reflects the no-leak data containing
only the vibrations of the pipeline when the leak aperture
is closed. Figs. 10 and 11 reflect that the time taken for the
leak vibration signal to reach the sensor differs based on the
distance. From the Figs. 9-11, it is observed that there is a
difference in amplitude between the leak and no-leak data.

V. ANALYSIS AND DISCUSSION
It is vital to visualize the benefits of DenseNet and 1DCNN
architectures individually to understand the benefits of
the proposed novel custom one-dimensional time-series
DenseNet. So, this paper implements 1) one-dimensional
DenseNet-121 [24], 2) Ensemble 1DCNN-SVM [21], 3)
1DCNN [22], 4) 1DCNN [23], 5) Proposed DenseNet
architecture only, 6) Proposed 1DCNN architecture only,
and 7) cross-correlation apart from the proposed novel
custom one-dimensional time-series DenseNet. The one-
dimensional DenseNet-121 [24], Ensemble 1DCNN-
SVM [21], 1DCNN [22], and 1DCNN [23] are customized
to have seven neurons in the final layer for the models
to detect and localize leaks. The proposed DenseNet-only
architecture comprises the following layers: 1) Convolutional
layer 5, 2) Concatenation layer 1, 3) Convolutional layer 6,
4) Concatenation layer 2, 5) Convolutional layer 7, 6) Flatten
layer, 7) Dense layer 1, 8) Dense layer 2, and 9) Output layer.
On the other hand, the proposed 1DCNN-only architecture
consists of the following layers: 1) Convolutional layer 1,
2) Max pool layer 1, 3) Convolutional layer 2, 4) Max pool
layer 2, 5) Convolutional layer 3, 6) Max pool layer 3, 7)
Convolutional layer 4, 8) Max pool layer 4, 9) Flatten layer,
10) Dense layer 1, 11) Dense layer 2, and 12) Output layer.

The metrics employed to assess all models, excluding
cross-correlation, encompass the following: 1) time for
training, validation, and prediction, 2) training accuracy (TA),
3) validation accuracy (VA), 4) prediction accuracy (PA),
5) precision, 6) recall, 7) specificity, 8) f-score, and 9) R
squared, in conjunction with the total number of parameters.
Total number of parameters in one-dimensional DenseNet-
121 [24], Ensemble 1DCNN-SVM [21], 1DCNN [22],
1DCNN [23], Proposed DenseNet architecture only, Pro-
posed 1DCNN architecture only, and the proposed novel
custom one-dimensional time-series DenseNet are 5453255,
42084279, 2100529, 1346303, 83135367, 2041111, and
1784151, units respectively. As the cross-correlation needs
two sensors for localization, the four best samples from the 1-
meter cross-correlated with the four best samples from all the
distance samples from both 2-bar and 3-bar pressures. Only
average accuracy and R-squared are considered for cross-
correlation, as other accuracy metrics are not applicable for
cross-correlation.

Tables 1 and 2 contain the results for leak detection and
localization under 2 and 3 bar pressures. Tables 4 and 5
give the confusion matrix of the proposed novel custom one-
dimensional time-series DenseNet at 2 and 3 bar pressures,
respectively. The results show that the proposed novel custom
one-dimensional time-series DenseNet outperformed all the
other mechanisms. While looking at the training, validation,
and prediction accuracies, time, and number of parameters,
the proposed 1DCNN performs better than 1D-DenseNet-
121. On the contrary, while looking at the F-score and
R-square, the 1D-DenseNet-121 performs better than the
1DCNN. These results clearly show that the proposed novel
custom one-dimensional time-series DenseNet complements
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TABLE 1. Results for leak detection and localization at 2 bar.

TABLE 2. Results for leak detection and localization at 3 bar.

TABLE 3. Confusion matrix of the proposed novel custom
one-dimensional time-series DenseNet at 2 bar.

TABLE 4. Confusion matrix of the proposed novel custom
one-dimensional time-series DenseNet at 3 bar.

the advantages of both DenseNet and 1DCNN in a very short
time for both pressure datasets.

VI. CONCLUSION
The leak detection and localization mechanism for iden-
tifying pipeline leaks is crucial in every structural health
monitoring system. The state-of-the-art approaches gave high
leak detection accuracy using machine learning and deep
learning. However, to localize the leak, the only available
mechanism is cross-correlation. The cross-correlation also
gives good accuracy in localizing leaks but with two sensors
and an appropriate noise removal method. So, the existing
method’s complexity is very high. This paper proposed

a novel custom one-dimensional time-series DenseNet,
a standalone leak detection and localization architecture
with reduced system complexity without any noise removal
technique and cross-correlation. This paper also implemented
the existing one-dimensional DenseNet-121, three variations
of 1DCNN, and cross-correlation to check the credibility
of the proposed method. The proposed novel custom one-
dimensional time-series DenseNet outperforms all the other
mechanisms. The number of parameters in the proposed
novel custom one-dimensional time-series DenseNet is less
compared with the existing one-dimensional DenseNet-
121. To be precise, the number of parameters in the
proposedmethod is approximately one-quarter of the existing
one-dimensional DenseNet-121. The training time of the
proposed method is also only one-thirteenth of the existing
one-dimensional DenseNet-121. The proposed method and
the one-dimensional DenseNet were trained, validated, and
predicted with seven classes at two different pressures
and gave an average accuracy of 99.08%, 98.63%, and
98.34%, respectively. Moreover, the results demonstrated
that the proposed novel custom one-dimensional time-
series DenseNet achieved more accurate leak detection and
localization in a shorter time.
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