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ABSTRACT Trajectory planning in the field of mobile robotics involves the generation of a trajectory
to navigate a robot from a start state to a goal state. One widely employed technique involves a two-step
approach: a path planner generates a path made up of piecewise linear segments with sharp turns, which are
then smoothed in the trajectory generation step. In contrast, this work formulates trajectory generation as
an optimization problem based on the Bézier curve, denoted as ‘BTP’, to generate the robot’s trajectory in
one step. It uses a weighted objective function of trajectory length and navigation time to suit different
optimization strategies while considering the robot’s kinematics and dynamics limitations. BTP adopts
matrix-based formulations for all mathematical operations to enable dynamic adjustment of the degree of
the Bézier curve during the optimization process, if convergence is not obtained with the current degree.
Additionally, BTP guarantees that the robot’s trajectory is always within the open space identified by the
robot’s sensors. The efficacy of BTP has been evaluated through simulations and real-world experimentation,
including soccer games and cluttered environment scenarios. Finally, the performance is benchmarked
against some of the existing trajectory planners. BTP reduced the robot’s navigation time by a minimum
of 11% up to 55% compared to other tested trajectory planners, ensuring C2 continuity rather than just
C1 continuity. Furthermore, it consistently achieved precise goal configuration, unlike the tested trajectory
planners, which exhibited deviations of up to 0.6 meters.

INDEX TERMS Bézier curve, kinodynamic robot’s trajectory, nonlinear optimization, trajectory planner.

I. INTRODUCTION
The last decade has witnessed remarkable advancements in
the application of autonomousmobile robots in various fields,
such as the warehousing industry [1], food delivery [2],
search and rescue [3], and planetary exploration [4]. Com-
panies in the commercial sector, including established ones
like Amazon and some startups [5], are actively deploying
autonomous robots for delivery purposes. Mobile robots also
play vital roles in challenging tasks like detecting landmines,
exploring other planets, delivering goods to customers, and
operating in container terminals. One significant advantage
of mobile robots is their ability to operate in hazardous
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environments, such as areas with radiation or pollution,
where humans are at risk [6]. These applications depend
significantly on developing an efficient motion planner to
enable the robot to move from a start to a goal position.

Motion planning of a robot is generally divided into two
main sub-areas: path planning and trajectory generation.
The broad interpretation of these two sub-areas is that path
planners generate a time-independent sequence of waypoints
from the start to the goal position, without considering
curvature continuity. Then, trajectory generation focuses
on converting the path to a trajectory by incorporating a
driveable velocity profile. Thus, it splits finding an optimal
kinodynamic trajectory into a two-step approach for problem
manageability. The first step finds an optimal obstacle-free
path generally made up of piecewise linear segments with
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sharp turns. The second step then smooths it by generating
a motion profile that obeys velocity and acceleration limits.
Some researchers have attempted to solve these two aspects
as an integrated problem. However, it is computationally
demanding when this strategy is adopted.

A. RELATED WORK
Path planning algorithms are classified into graph-
based, sampling-based, sensor-based, and learning-based
approaches [7]. Graph-based path planners such as A∗ [8]
generally generate an optimal path with sharp changes in
direction that need to be smoothed further with additional
techniques, such as the Bézier curve. Sampling-based path
planners, such as Rapidly Exploring Random Tree (RRT)
[9], randomly sample the state space to find a feasible
path between a start and a goal state while avoiding
obstacles. Sensor-based path planners such as Bug 1 and
Bug 2 [10] rely on local sensor data to determine the path,
by following the obstacle boundary when one is encountered
and otherwise just moving in a straight line. Learning-based
path planners, such as reinforcement learning techniques, use
a reward/penalty strategy to teach the robot to choose a path
to follow [11].
Trajectory generation work is split into model-based and

geometry-based methods. Most algorithms for model-based
trajectory generation adhere to the Model Predictive Control
(MPC) framework [12]. MPC creates a linear/nonlinear
model of the robot’s dynamics and environment. Then, it uses
this model and the robot’s current state to predict its future
over a finite time horizon. Finally, it optimizes the control
inputs to the robot to satisfy desirable criteria, such as
increasing trajectory smoothness, while satisfying constraints
such as velocity, acceleration, and obstacle avoidance. MPC
suffers from three main drawbacks: firstly, it generates
trajectories without immediate feasibility checks, wasting
effort on infeasible trajectories; secondly, the optimization
process heavily depends on the initial parameters provided,
such as prediction horizon. Thirdly, each optimization
iteration necessitates running MPC simulations, significantly
slowing the trajectory generation process.

In geometry-based trajectory generation, various geomet-
ric primitives, including arcs [13], B-splines [14], and Bézier
curves [15], have been utilized. Dubins’ early research [13]
introduced the concept of creating the shortest paths using
straight lines and circular arcs. Although the tangent continu-
ity is maintained in Dublin’s paths, there is a sudden change in
curvature at the points where straight lines meet circular arcs.
Li et al. [14] used a cubic B-spline to smooth curves generated
by sampling-based path planners in cluttered environments.
They also adopted a local trajectory adjustment strategy to
avoid collisions.

Most state-of-the-art Bézier curve work focuses on the
second step of the two-step trajectory generation process.
Chen et al. [16] employed a quartic Bézier curve for robot
trajectory generation, meeting constraints on velocity and
curvature. Their trajectory generation methodology was split

into two phases - a trajectory satisfying curvature restrictions
was initially constructed, followed by a velocity-constrained
implementation phase. However, the algorithm did not
guarantee the feasibility of the obtained trajectory with the
incorporation of the robot’s velocity constraints. Moreover,
the two-stage method increased computational time and
required over 500 iterations to converge to a feasible
solution in the example provided. Zhang et al. [17] developed
two-step trajectory generation with a quintic Bézier curve.
The first step involves using Dijkstra’s algorithm as a global
path planner to generate the path’s waypoints within a known
environment. Subsequently, the second step smooths the
path created in the first step using a quintic Bézier curve.
This process includes optimizing the curve by adjusting the
magnitude of each segment’s initial and final tangents, aiming
to create the shortest possible path, while adhering to the
robot’s kinematic and dynamic (kinodynamic) constraints.
However, this method encounters issues with discontinuity
when the angle difference between the robot’s current
heading and the next path segment exceeds 90 degrees.
In such scenarios, the algorithm directs the robot to rotate in
place to align with the upcoming segment’s angle, aiming to
minimize the curve’s length.

Trajectory planning algorithms are employed in robotics
applications to generate an obstacle-free trajectory between
a starting and target configuration (configuration includes
position and some kinodynamic constraints, as discussed
later). Trajectory planners adopt a systematic approach to find
the optimal trajectory that minimizes a cost function, such
as minimizing navigation time, trajectory length, or energy
consumption while satisfying a set of constraints [18]. Kim
and Kim [19] proposed a time-optimal trajectory planning
algorithm for environments with multiple circular obstacles.
This algorithm takes into consideration the robot’s dynamics.
They tackled the nonlinearity resulting from the complexity
of the dynamics by dividing the trajectory into small
sections. Kielas-Jensen and Cichella introduced the Bern-
stein/Bézier Optimal Trajectories (BeBOT) approach [20],
which formulates optimal trajectory generation as a NonLin-
ear Programming (NLP) problem based on Bézier curves.
The authors demonstrated that Bézier curves have desirable
properties to enforce constraints along the robot’s trajectory.
Their approach considered forward and angular velocity
constraints, while minimizing a single optimization criterion
for theoretical examples that did not include simulated or
real robots. While drawing some inspiration from their
work, we significantly extend it to unknown environments
with irregular obstacle shapes while incorporating extensive
testing in simulated and real-world scenarios. Furthermore,
we consider various optimization criteria discussed in the
next subsection.

B. CONTRIBUTION
Most state-of-the-art Bézier curve work suffers from two
problems. The first is fixing the degree of the Bézier
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curve, requiring all analyses to be repeated if convergence
is not obtained with the chosen degree. The second is
limiting the focus to smoothing the discontinuities of a
path planner. This paper proposes a Bézier curve-based
Trajectory Planner, denoted as ‘BTP’, which circumvents this
first limitation by adopting matrix-based formulations for all
mathematical operations. As a result, the degree of the Bézier
curve can be dynamically adjusted during the optimization
process, in cases where the ongoing optimization process has
difficulty converging to a viable solution. Also, instead of just
smoothing the path discontinuities, BTP generates a robot’s
entire trajectory in one step by formulating trajectory genera-
tion as an optimization problem. It uses a weighted objective
function to accommodate different optimization strategies,
while considering its kinodynamic limitations in unknown
environments. In addition, an algorithm based on Delaunay
Triangulation (DT) is proposed to describe the robot’s open
(obstacle-free) space. The effectiveness of ‘BTP’ is evaluated
through simulations and real-world experiments using the
Pioneer P3-DX robot in various scenarios. Furthermore,
the performance of ‘BTP’ is benchmarked against some of
the well-known trajectory planners.

The organization of this paper is as follows: Section II
discusses the robot’s kinodynamic terms and the dependency
of properties of the Bézier curve on them. Section III
proposes BTP, which formulates the trajectory generation as
an optimization problem using the Bézier curve, considering
the robot’s kinodynamic terms and open space. Section IV
presents the deployment of BTP to diverse scenarios,
employing the Pioneer P3-DX robot in both simulated
and real environments. In addition, BTP is benchmarked
against some existing trajectory planners based on differ-
ent performance metrics. Finally, Section VI summarizes
the main contributions and identifies avenues for future
research.

II. MODELING
In this work, we aim to optimize the trajectory of a mobile
robot moving from an initial to a final configuration within an
unknown environment, taking the robot’s kinodynamics into
account. The trajectory is represented using a Bézier curve,
which possesses favorable characteristics for incorporating
the robot’s kinematic and dynamic limitations within its
definition. Furthermore, our approach requires depicting the
open space available to the robot within the environment
and ensuring that the trajectory generated by the optimiza-
tion algorithm in each iteration is restricted to this open
space.

This section reviews the concept of the Bézier curve
and examines how its properties facilitate incorporating
a robot’s kinodynamic behavior. Specifically, the focus
is on representing the robot’s velocities, accelerations,
orientation, and curvature as Bézier curves. The notation
P(t) is utilized to represent a continuous curve, while Pm(t)
denotes its mth degree Bézier curve with control points
(P̄m = {p̄i,m, i = 0, . . . ,m}).

A. ROBOT’S KINODYNAMIC TERMS
This work employs a differentially-steered robot with posi-
tion and orientation represented by P(t) = [Px(t),Py(t)]
and ψ(t), respectively. The change in the robot’s position
and orientation at any time, t , is determined by using the
kinematic equation (1), which relates these quantities to the
robot’s forward and angular velocities.Ṗx(t)Ṗy(t)

ψ̇(t)

 =
cos(ψ(t)) 0sin(ψ(t)) 0

0 1

 [
v(t)
ω(t)

]
(1)

While equation (1) describes how the instantaneous rate of
change of the robot’s pose is related to its instantaneous veloc-
ities, the effect of robot dynamics needs to be accommodated.
That is, how these velocities are reached, keeping in mind
the limitations of dynamics. As a first step in the modeling
strategy, this requires that the robot’s orientation, linear and
angular velocities, tangential and radial accelerations, and
curvature be expressed solely as a function of the first and
second derivatives of position, as shown in the equation (2).
These relationships can be derived by applying basic math
operations such as summation, subtraction, multiplication,
and division to equation (1).

ψ(t) = arctan
Ṗy(t)

Ṗx(t)
(2a)

||v(t)||2 = (Ṗx(t))2 + (Ṗy(t))2 (2b)

ω(t) =
Ṗx(t)P̈y(t)− Ṗy(t)P̈x(t)

(Ṗx(t))2 + (Ṗy(t))2
(2c)

at (t) =
Ṗx(t)P̈x(t)+ Ṗy(t)P̈y(t)

v(t)
(2d)

ar (t) =
Ṗx(t)P̈y(t)− Ṗy(t)P̈x(t)

v(t)
(2e)

k(t) =
ω(t)
v(t)

(2f)

In addition to incorporating the kinematic and dynamic
aspects of the robot, this work also attempts to prevent wheel
sideslip by ensuring that its tangential and radial accelerations
remain within an ellipse defined by their respective limits
(atmax , a

r
max) [21], as described below:

(at (t))2

(atmax)2
+

(ar (t))2

(armax)2
≤ 1 (3)

Continuing with our optimization model formulation, the
robot’s position is represented by a Bézier curve. This
automatically makes its orientation, linear and angular
velocities, tangential and radial accelerations, and curvature
Bézier curves because of the relationships described in
equations (2). In each iteration of the algorithm, the control
points of the Bézier curve for the robot’s position alone are
tuned while satisfying all the constraints. The control points
of the Bézier curves corresponding to the robot’s orientation,
velocities, accelerations, and curvature are affected indirectly
through their dependencies on the position control points.
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The dependencies are used to enforce compliance with the
robot’s limitations that relate to the dynamics. The following
sub-section reviews the Bézier curve and its associated
properties.

B. BÉZIER CURVE DEFINITION
An mth degree Bézier curve is a parametric curve defined
by a set of control points that control its shape as indicated
in equation (4). It is commonly referred to as Bernstein
Polynomials (BPs). In this work, the Bézier curve parameter
is the robot’s navigation time (t), and ranges from ’0’ to the
final navigation time ’tf ’, as follows:

Pm(t) =
[
Pxm(t)
Pym(t)

]
=

m∑
i=0

p̄i,mBi,m(t), t ∈ [0, tf ] (4)

where Pm(t) is themth degree Bézier curve, (Pxm(t),P
y
m(t)) are

the x and y components of Pm(t) respectively, (p̄i,m ∈ R, i =
0, . . . ,m) is the ith control point of Pm(t), and Bi,m(t) =(m
i

) t i(tf−t)m−i
tmf

is the basis of Pm(t) where
(m
i

)
=

m!
i!(m−i)! is the

binomial coefficient.
To express the robot’s orientation, angular velocity,

tangential and radial accelerations, and curvature, we need
to use rational Bézier curves. The rational Bézier curve is an
extension of the Bézier curve that incorporates weights. It is
used to represent the division of two one-dimensional Bézier
curves. Anmth degree rational Bézier curve,Qm(t), is defined
as:

Qm(t) =

∑m
i=0 q̄i,mwi,mBi,m(t)∑m
i=0 wi,mBi,m(t)

, t ∈ [0, tf ] (5)

where (q̄i,m ∈ R, i = 0, . . . ,m) is the ith control point of
Qm(t) and (wi,m ∈ R, i = 0, . . . ,m) is referred to as the
weight of the ith control point.
In this work, the robot’s position is represented by a Bézier

curve (Pm(t)), equation (4), with control points (p̄i,m, i =
0, . . . ,m) which facilitates the formulation of the trajectory
optimization problem as an NLP. The robot’s trajectory and
kinodynamic terms are represented by Bézier curves, which
possess properties that relate well to the robot’s drivability,
as explained earlier. Here, we will discuss the essential
properties of the Bézier curve and illuminate how these
properties are utilized to deduce the control points of the
robot’s kinodynamic terms, using the robot’s position control
points as a reference. For a comprehensive analysis of these
properties, the reader is encouraged to consult the work of
Farouki [22].
Property 1: Convex hull- A Bézier curve is always

contained within the area enclosed by its control points,
known as the convex hull. In our work, if the convex hull
of the robot’s position Bézier curve does not contain any
obstacles, it is guaranteed that the position Bézier curve will
be free of obstacles.

Property 2: Endpoint Values- A Bézier curve always
passes through its initial and final control points, known as
endpoints. This property ensures that the robot’s position

Bézier curve always passes through its start and goal positions
(Pm(0) = p̄0,m,Pm(tf ) = p̄m,m).
Moreover, the second control point (p1,m) and the second

last control point (pm−1,m) are located on its tangent at
the robot’s start and goal positions, respectively as shown
in equation (6). In the context of our work, this property
guarantees that the robot’s predefined initial and final
orientations are satisfied through the appropriate choice of
p1,m and pm−1,m.

Ṗm(0) =
m
tf
(p1,m − p0,m)

Ṗm(tf ) =
m
tf
(pm,m − pm−1,m) (6)

Property 3: Derivative- The derivative of an mth degree
Bézier curve, Ṗm−1(t), is a Bézier curve of degree (m − 1)
described by equation (7). Its control points are calculated as
the difference of two successive control points of the original
Bézier curve (Pm(t)). Alternatively, the control points can be
calculated in matrix form by multiplying the control points of
the original mth degree Bézier curve (P̄m) with the difference
matrix (Dm ∈ R(m+1)×m). This work adopts matrix-based
formulations for all mathematical operations encompassing
addition, subtraction, multiplication, division, differentiation,
and degree elevation to facilitate the dynamic change of
the Bézier curve degree during the optimization process if
convergence is not achieved with the current degree.

Ṗm−1(t) =
m−1∑
i=0

m
tf
(pi+1,m − pi,m)Bi,m(t), t ∈ [0, tf ]

=

m−1∑
i=0

P̄mDmBi,m(t), t ∈ [0, tf ]

Dm =
m
tf



−1 0 . . . 0

1
. . .

. . .
...

0
. . .

. . . 0
...

. . .
. . . −1

0 . . . 0 1


(7)

In our work, this property is used to calculate the robot
position’s first and second derivatives. When applied to the
position Bézier curve (Pm(t)), it results in the first derivative
components (Ṗxm−1(t) and Ṗ

y
m−1(t)) as (m−1)

th degree Bézier
curves, and the second derivative components (P̈xm−2(t) and
P̈ym−2(t)) as (m− 2)th degree Bézier curves.

Property 4: Degree Elevation- Elevating the degree of a
Bézier curve increases its degree without altering its shape.
To elevate the mth degree Bézier curve, equation (4), to nth

degree Bézier curve, Sn(t),(n > m), the elevated Bézier curve
must have the same endpoints (s0,n = p0,m, sn,n = pm,m).
The remaining control points of the elevated Bézier curve are
calculated in a matrix form by multiplying the control points
of the original mth degree Bézier curve (P̄m) by the degree
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elevation matrix (En).

S̄n = P̄mEn
(8)

where En = {ei,i+j} ∈ R(m+1)×(n+1) is the degree elevation
matrix with (i, i + j) elements values given by equation (9)
and the remaining elements are zero.

ei,i+j =

(n−m
j

)(m
i

)( n
i+j

) , i = 0, . . . ,m, j = 0, . . . , n− m

(9)

This technique is utilized in our work to increment the
degree of the Bézier curve by one after using the derivative
property. Consequently, this allows for applying arithmetic
operations that require the Bézier curves to have the same
degree. The application of this property to the first and second
derivatives of the robot’s position Bézier curve results in
the (m)th degree Bézier curves, represented by Ṗxm(t), Ṗ

y
m(t),

P̈xm(t), and P̈
y
m(t).

Property 5: Arithmetic Operations- Arithmetic oper-
ations include addition, subtraction, product, and division
of two Bézier curves. As an example, these operations
will be illustrated by their application in calculating the
control points of the robot’s angular velocity Bézier curve
(equation 2c).
• Whenmultiplying two Bézier curves, the resulting curve
will have a degree equal to the sum of the degrees
of the original curves. In the context of the robot’s
angular velocity Bézier curve, the products Ṗxm(t)P̈

y
m(t),

Ṗym(t)P̈xm(t), (Ṗ
x
m(t))

2, and (Ṗym(t))2 yield (2m)th degree
Bézier curves.

• The degree of a Bézier curve remains unchanged when
adding or subtracting two Bézier curves of the same
degree. In the context of the robot’s angular velocity
Bézier curve, the numerator subtraction Ṗxm(t)P̈

y
m(t) −

Ṗym(t)P̈xm(t) results in a (2m)th degree Bézier curve, and
the denominator sum (Ṗxm(t))

2
+ (Ṗym(t))2 also yields an

(2m)th degree Bézier curve.
• Furthermore, the ratio of two Bézier curves can be
represented as a rational Bézier curve. In the context of
the robot’s angular velocity Bézier curve, the division
of the (2m)th degree numerator and denominator Bézier
curves is represented as a (2m)th degree rational Bézier
curve. It is important to note that without the application
of degree elevation on the first and second derivatives of
the robot’s position Bézier curve, the numerator will be
an (2m− 3)th degree Bézier curve, and the denominator
will be an (2m − 2)th degree Bézier curve, thus making
it impossible to apply the ratio property directly. In this
work, the robot’s orientation, angular velocity, tangential
and radial accelerations, and curvature are represented
as rational Bézier curves due to the involvement of a
division operation between two Bézier curves.

Property 6: De Casteljau algorithm- The De Casteljau
algorithm [23] is an efficient method for evaluating the value

of a Bézier curve at any given time. By utilizing the properties
of Bézier curves previously discussed, the control points of
the robot’s kinodynamic Bézier curves can be derived and
formulated. The De Casteljau algorithm can then evaluate
these terms at any time instance t ∈ [0, tf ] during the
optimization problem.

Using equation (2) and the properties of the Bézier curve,
the control points of the robot’s kinodynamic terms are
expressed as functions solely of the position control points.
For instance, the control points of the robot’s forward velocity
Bézier curve (equation 2b) are calculated through a three-
step process. Firstly, the robot’s position control points
are differentiated using the elevated derivative property.
Secondly, the product property is applied to square the
differentiated terms. Lastly, the squared terms are summed
using the sum property. Note that a squared version of
the forward velocity (v2m(t)) must be used to maintain a
polynomial form for the equation because working with vm(t)
would involve the use of a square root operation, which would
not yield a polynomial. As a result, squared versions of the
robot’s curvature and tangential and radial accelerations will
also be used since this corresponds to the squared version
of velocity. For the same reason, a tangential version of the
robot’s orientation must be used to maintain its equation in
polynomial form. In the next section, the robot’s trajectory is
optimized while considering the constraints imposed by the
robot’s kinodynamic limitations.

III. METHODOLOGY
This section discusses in detail the proposed Bézier curve-
based Trajectory Planner, denoted as ‘BTP’, that generates
the optimal trajectory for a mobile robot while considering its
kinodynamic limitations. To accomplish this, we employ the
Bézier curve to represent the continuous-time optimization
problem as an NLP problem that can be solved using a
numerical optimization algorithm. Moreover, we propose a
safety check algorithm to ensure the generated trajectory falls
within the robot’s available open space.

A. ROBOT’S TRAJECTORY SAFETY CHECK ALGORITHM
A trajectory planner requires an initial description of the
environment, as ascertained by the robot’s sensors, as input
to identify the open space available to restrict the optimal
trajectory. To accomplish this, we propose algorithm 1 that
utilizes LiDAR readings and Delaunay Triangulation [24]
to represent this open space. Algorithm 1 has as input the
LiDAR readings (Liread ) with maximum range (Rmax), and
the robot’s position Bézier curve (Pm(t)), and outputs a
flag (safe_flag) indicating whether the robot’s trajectory lies
within the open space or not, in the current optimization
iteration. The algorithm is demonstrated through a simple
example in which the robot’s start and goal positions
(C0 and Cg) are located at (0,0) and (4,4), respectively, and
two cubical and one spherical obstacle are contained within
the environment, as depicted in Figure 1. This simplified
obstacle configuration is only to illustrate the safety check
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FIGURE 1. Simplified Gazebo environment obstacle layout to understand
safety check algorithm.

FIGURE 2. LiDAR readings from simplified obstacle layout for conceptual
understanding of open space.

algorithm - actual testing is done on more complex obstacle
configurations in the results section. The LiDAR view
provides the initial description of this environment as
depicted in Figure 2.

The MATLAB® built-in ‘‘delaunayTriangulation’’ func-
tion then decomposes this initial description into a set
of non-overlapping triangle meshes (DT ), line 1 in the
algorithm, as indicated in Figure 3. The endpoints of the
robot’s position Bézier curve are fixed at the start and goal
positions, as indicated in line 2 of Algorithm 1. The Delaunay
triangles that intersect the line connecting the robot’s start
and goal positions are referred to as ‘‘Intersect_tri’’ and are
depicted as colored triangles in Figure 3. These intersection
triangles are then concatenated into a single polygon (Pol),
line 5 in the algorithm, to represent the open space within
which the robot’s trajectory must be restricted. Finally,

FIGURE 3. Colored Intersection Triangles from Delaunay Deconstruction.

the MATLAB® built-in function ‘‘inpolygon’’ is utilized
to restrict the robot’s trajectory points to the obtained
open space described by equation (10). The (safe_flag) is
triggered, indicating an obstacle-free trajectory, as shown in
lines (8)-(12).

minVPol ≤ Pm(t) ≤ maxVPol, ∀t ∈ [0, tf ] (10)

where VPol are vertices of the robot’s open space poly-
gon (Pol).

Algorithm 1 Robot’s Trajectory Safety Check Algorithm
Input: Liread , Rmax , and Pm(t)
Output: safe_flag

1: DT ←delaunayTriangulation(Liread ,Rmax)
2: Pm(0) = C0, Pm(tf ) = Cg
3: Intersect_tri← DT .Triangles ∩ line(C0,Cg)
4: Pol ←union( Intersect_tri)
5: VPol ← Pol.Vertices
6: In←inpolygon(Pm(t),VPol)
7: Nout ←numel(∼ In)
8: if Nout = 0 then
9: safe_flag← 1
10: else
11: safe_flag← 0
12: end if
13: return safe_flag

B. CONTINUOUS OPTIMIZATION PROBLEM
We aim to optimize the robot’s trajectory contained within
its open space, which is obstacle-free, as discussed in
the previous sub-section, while considering the robot’s
kinodynamic limits. This problem can be formulated as an
optimization problem with an objective function (f ) that is
subject to boundary conditions and path constraints, as shown
in equation (11). In this formulation, the objective function is
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a linear combination of the robot’s navigation time and the
length of its trajectory, with weights β1 and β2, respectively,
such that β1 + β2 = 1. The values of these weights assign
relative importance to the two aspects to evaluate different
navigation strategies. The robot’s initial and final states (S0 =
{C0, ψ0, v0, ω0} and Sf = {Cg, ψf , vf , ωf }) including its
position, orientation, forward velocity, and angular velocity
are imposed as boundary conditions. The forward and angular
velocity limits, maximum curvature, and sideslip prevention
check are imposed as trajectory constraints.

Minimize f = β1 ∗
∫ tf

0
dt + β2 ∗

∫ tf

0

dP(t)
dt

dt

Subject to: Boundary conditions

P(0) = C0, P(tf ) = Cg

tan(ψ(0)) = tan(ψ0), tan(ψ(tf )) = tan(ψf )

v2(0) = v20, v2(tf ) = v2f

ω(0) = ω0, ω(tf ) = ωf

Path constraints

v2(t) ≤ v2max
− ωmax ≤ ω(t) ≤ ωmax

at (t)2

(atmax)2
+

ar (t)2

(armax)2
≤ 1

k(t)2 ≤ k2max
minVPol ≤ P(t) ≤ maxVPol (11)

where C0 and Cg are the robot’s start and goal positions, ψ0
and ψf are the robot’s initial and final orientations, v0 and
vf are the robot’s initial and final forward velocity, ω0 and ωf
are the robot’s initial and final angular velocity, vmax andωmax
are the robot’s maximum forward and angular velocity, atmax
and armax are the robot’s maximum tangential and radial
acceleration and kmax is the robot’s curvature limit.

C. DISCRETIZED OPTIMIZATION PROBLEM
Once the problem is formulated in continuous form, the next
step is to express it as a constrained numerical optimization
problem that can be solved using one of the off-the-shelf
optimization algorithms. In this work, we use a Bézier curve
of degree m to approximate the robot’s trajectory, with
(m + 1) control points (p̄0,m,p̄1,m, . . . , p̄m,m), where p̄0,m
and p̄m,m correspond to the start and goal positions of the
robot, respectively. The objective function is a weighted
combination of the robot’s navigation time and the length
of its trajectory. The length of a Bézier curve trajectory
is approximated by accumulating incremental Euclidean
distances between successive points along it rather than
integrating trajectory segments in the continuous form. In this
work, we split the trajectory into Na segments and then
calculate the sum of these straight-line distances between
each pair of points. This sum gives us an approximation
of the curve’s total length. This approximation method is

explicitly detailed in the objective function’s second part,
as shown in equation (12). After defining the objective
function, it is important to define the tuning parameters
that change during optimization to get the optimal solution,
while satisfying the constraints. In this work, the tuning
parameters are the control points for the position Bézier
curve other than the endpoints and the robot’s navigation
time (tf ). The optimization problem involves tuning the
x and y components of these control points, as well as
the robot’s navigation time, resulting in the state vector
(x = [p̄1,m, p̄2,m, . . . , p̄m−1,m, tf ]). The control points of
the kinodynamic terms depend on these tuning parameters,
according to equation (2), and will automatically be tuned to
ensure compliance with the robot’s kinodynamic limits.

minimize
p̄j,m,tf

β1 ∗ tf + β2 ∗
Na∑
i=1

Pm(i
tf
Na

)− Pm((i− 1)
tf
Na

)2,

j ∈ {1, . . . ,m− 1}

subject to Boundary conditions

Pm(0) = C0, Pm(tf ) = Cg
tan(ψm(0)) = tan(ψ0), tan(ψm(tf )) = tan(ψf )

vm(0)2 = v20, vm(tf )2 = v2f
ωm(0) = ω0, ωm(tf ) = ωf
Path constraints ∀t ∈ [0, tf ]

vm(t)2 ≤ v2max
− ωmax ≤ ωm(t),≤ ωmax
atm(t)

2

(atmax)2
+

arm(t)
2

(armax)2
≤ 1

km(t)2 ≤ k2max
minVPol ≤ Pm(t) ≤ maxVPol (12)

Numerical optimizationmethods require an initial estimate
of the states. In this study, the robot’s initial trajectory is
assumed to be a straight line connecting the start and goal
positions. In the initial estimate, the robot is assumed to
be oriented towards the goal and moving at the maximum
velocity. Therefore, the robot’s navigation time is initialized
as the ratio of the Euclidean distance between the start
and goal points to the robot’s maximum velocity. The
second and second-to-last control points, represented as
p̄1,m and p̄m−1,m, are initialized to satisfy the robot’s initial
and final orientations, as described in equation (13). The
remaining control points, p̄2,m, . . . , p̄m−2,m, are initially
placed equidistant between the second and second-to-last
control points. The initial estimate is tuned during the
optimization process to reach an optimal feasible solution that
satisfies all the constraints.

p̄1,m = p̄0,m +
v0 ∗ tf
m

̸ (ψ0)

p̄m−1,m = p̄m,m −
vf ∗ tf
m

̸ (ψf ) (13)

VOLUME 12, 2024 8661



A. Mazen et al.: Optimal Kinodynamic Trajectory Planner for Mobile Robots

D. PERFORMANCE METRICS
Various performance metrics are used to assess a trajectory
planner’s performance, such as navigation time, trajectory
length, trajectory smoothness, and target deviation. Multiple
performance metrics will better capture the overall system
quality [25]. In this work, we consider three metrics to
compare BTP with some existing trajectory planners: trajec-
tory smoothness, navigation time, and target deviation. The
trajectory smoothness can be measured by Bending Energy
(BE), which refers to the energy needed to bend something
into a desired shape [26]. Mathematically, it is calculated
by adding up the squared curvature values at each point
along a robot’s trajectory as indicated in equation (14). In the
context of mobile robots and trajectory planning, C0, C1, and
C2 continuity refer to different levels of smoothness in the
robot’s trajectory or path. C0 continuity represents a lower
level of smoothness, with continuous position but potentially
abrupt changes in velocity and acceleration. C1 continuity
refers to continuous position and velocity profiles. Finally,
C2 continuity represents a higher level of smoothness, with
continuous positions, velocities, and accelerations, leading to
a more stable and smooth robot trajectory without any jerky
or sudden changes in direction or velocity. C0 continuous
trajectories have large BE values due to infinite curvature
in the robot’s halts, C1 continuous trajectories have medium
values, and C2 continuous trajectories have small ones with
smooth curvature.

BE =
1
Na

Na∑
i=1

k2(ti) (14)

where Na represents the total number of points that form
the robot’s trajectory, and k(ti) denotes the curvature at each
specific point along the robot’s trajectory.

The navigation time is the time that the robot takes to reach
the target configuration from an initial configuration. Finally,
the deviation of the robot’s target refers to the displacement
from the exact target position. This is crucial, especially when
the robot’s movement is part of a larger task that involves
additional actions. The closer the robot is to the intended
target, the more accurately it can perform subsequent tasks.
The optimum trajectory should reach the target precisely
(pass through the target position with zero target deviation)
with zero curvature in the minimum possible time.

IV. RESULTS AND DISCUSSION
In this section, we apply the proposed BTP optimization
algorithm to various scenarios while also benchmarking its
performance against other trajectory planners. This work
uses the MATLAB® NLP function called ‘‘fmincon’’,
a gradient-based method that finds a constrained minimum
of a scalar function while considering linear/nonlinear
equality/inequality constraints and lower and upper bounds
of the states. The constraints on the robot’s movement are
represented in the optimization problem as nonlinear equality
constraints for boundary conditions and nonlinear inequality

FIGURE 4. Robot’s trajectory in Example 1.

FIGURE 5. Tangent of robot’s orientation in Example 1.

constraints for path constraints. The optimization problem is
solved using the Sequential Quadratic Programming (SQP)
method.

The Pioneer P3-DX differentially-steered robot equipped
with a Hokuyo LiDAR sensor is used as the test bed in both
simulated Gazebo environments and in real-world situations.
The numerical values of the robot’s kinodynamic limits are
obtained from the Pioneer P3-DX manual [27]. BTP initially
employs a fifth-degree Bézier curve for the trajectory to find
the optimal solution. If convergence is not realized using
this degree, the algorithm incrementally increases it until a
solution is reached. BTP consistently achieved convergence
using the fifth-degree Bézier curve for the case studies
investigated. For trajectory length calculation in the objective
function, the robot’s trajectory is segmented into 50 equal
parts (Na = 50).

A. TEST EXAMPLES
Two scenarios are used to evaluate BTP: The first scenario
assesses different weight values in the objective function,
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FIGURE 6. Robot’s forward velocity in Example 1.

FIGURE 7. Robot’s angular velocity in Example 1.

while the second scenario involves the selection of the
best-positioned robot from a group of three to kick a ball in
a soccer game. This robot will be the quickest to get to the
ball.

Example 1: Consider a Pioneer P3-DX robot navigating
from an initial configuration S0 = (C0, ψ0, v0,w0) =
([0, 0], 0, 0.1, 0) to a goal configuration Sf = (Cg, ψf , vf ,
wf ) = ([4, 4], π4 , 0.1, 0), while satisfying the kinodynamic
constraints, in the environment illustrated in Figure 1.
To evaluate the effectiveness of the proposed method, three
cases with different weight values for the objective function
are tested, each demonstrating a different optimization
strategy. Given the same initial and final conditions, case 1
(β1 = 0, β2 = 1) represents the shortest distance, while
case 3 (β1 = 1, β2 = 0) represents the minimum time
optimization problems respectively. Finally, case 2 (β1 = 0.2,
β2 = 0.8) represents a weighted combination between the
fastest and shortest trajectory with a weight ratio of 1:4.
For each case, the number of iterations required for the

TABLE 1. Example 1 results.

FIGURE 8. Soccer game environment of Example 2.

FIGURE 9. Robot’s trajectory in the Example 2 soccer game.

algorithm to converge to an optimal solution, the length of
the robot’s trajectory (l), and the navigation time required to
follow the obtained trajectory (tnav) are recorded, as shown in
Table 1. As expected, the results show that the robot reaches
the goal configuration in minimum time for case 1 and
minimum distance for case 3. Figure 4 shows the robot’s
generated trajectory for each case within the open space in
cyan color, with every trajectory passing through the start
and goal positions as expected. Figure 5 shows the tangent
of the robot’s orientation for each case, where the robot’s
initial and final orientations are satisfied. Figures 6 and 7
show the robot’s forward and angular velocities for each case,
where the robot’s initial and final velocities are satisfied,
and the velocity limits are not exceeded over the entire
trajectory.

Example 2: In a soccer game, three robots are positioned
at C0 = [3, 3], [5, 5], [−1, 5], with initial orientations
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FIGURE 10. Robot’s forward velocity in the Example 2 soccer game.

FIGURE 11. Robot’s angular velocity in the Example 2 soccer game.

ψ0 = [0, π4 , 0] respectively, as indicated in Figure 8. The
objective is for a robot to score a goal by kicking the ball into
the net located at [2, 8] at an angleψk = π

2 . The kick location
is given by Ck = [2, 6], and all three robots are equidistant
from this location. Turning in place is prohibited during the
game to satisfy trajectory smoothness as well as immediately
not contending for optimality. BTP determines the robot that
should execute the kick based on the navigation time to the
kick position from the initial position. Figure 9 illustrates the
three robots’ optimal trajectories, where they all pass through
the start and goal positions. The robots’ forward and angular
velocity profiles are shown in Figures 10 and 11, respectively.
As indicated in Table 2, robot ‘‘3’’ should be selected to
kick the ball as it is the fastest to reach the kick position
with the desired orientation. This example is an elementary
practical implementation of BTP in determining robot
soccer strategy, obviously with significance beyond a soccer
game.

TABLE 2. Example 2 soccer game results.

FIGURE 12. World 4 in BARN dataset [33].

B. COMPARSION OF BTP WITH THE EXISTING
TRAJECTORY PLANNERS
The performance of BTP is benchmarked against the other
trajectory planners based on three metrics: navigation time,
trajectory smoothness, and target deviation. Five trajectory
planners are considered in this benchmark: Learning from
Hallucinations (Lfh) [28], Learning from learned Hallucina-
tion (Lflh) [29], Dynamic-Window Approach (DWA) [30],
Elastic Band (EBand) [31], and end-to-end machine learn-
ing method (e2e) [32]. The environment used for this
comparison is the fourth environment of the Benchmark
for Autonomous Robot Navigation (BARN) dataset [33],
as shown in Figure 12. Robots that ran Lfh and e2e collided
with obstacles in the test environment. Thus, the performance
of BTP is benchmarked against the remaining three trajectory
planners: DWA, EBand, and Lflh, with detailed outcomes
presented in Table 3. BTP surpasses the considered trajectory
planners by generating the fastest path, while considering the
constraints imposed by the robot’s limitations. BTP navigated
this particular environment using two fifth-degree Bézier
curves as indicated in Figure 13. DWA and Lflh exhibited
numerous oscillations in forward movement during testing,
alternating between advancing and retreating, as illustrated
in the forward velocity graph (Figure 14). This behavior
significantly increased the time it took for DWA and Lflh
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FIGURE 13. Robot’s trajectory in World 4 of BARN dataset [33].

TABLE 3. Comparison between BTP and other trajectory planners.

to reach the goal. The percentage of reduction in the
navigation time of the tested trajectory planners compared
to BTP, as a reference, is documented within column ‘‘tred ’’
of Table 3.

When the robot was run with DWA, Lflh, and EBand,
it experienced several halts, causing the curvature to become
infinite. These infinite curvature values were substituted with
a value of 100 in numerical analyses to keep them in the
comparison. As indicated in Table 3, BTP exhibited the
smoothest trajectory with the lowest BE value, followed by
EBand, DWA, and Lflh. BTP ensures C2 continuity, whereas
other trajectory planners only account for C0 continuity.
This implies that the robot’s motion exhibits jerky or
sudden changes in direction and velocity as evidenced by
the displayed fluctuations in angular velocity of the tested
trajectory planners (see Fig 15). In contrast, BTP maintained
consistent forward and angular velocities, Figure 14 and 15,
leading to a quicker and smoother navigation to the goal
than the other trajectory planners. In addition to smoothness,
BTP consistently passes directly through the designated goal
position unlike the other trajectory planners, which aim to
stop the robot within a 1-meter radius of the goal position,
resulting in a slight deviation from the target.

C. CONVERGENCE CRITERIA AND COMPUTING
EFFICIENCY
All the simulation scenarios were successfully implemented
in real-world experimentation. The recorded navigation time

FIGURE 14. Robot’s forward velocity in World 4 of BARN dataset.

FIGURE 15. Robot’s angular Velocity in World 4 of BARN dataset.

for robots only exhibited some dilation by 60.83% because
of variable ground friction between the simulation and
real-world experimentation and speed limitation in the actual
robot.

BTP has adopted two convergence criteria: optimality
Tolerance and constraint tolerance. Optimality tolerance
monitors variations in the objective function throughout
iterative processes, prompting the algorithm’s termination
when the change in the objective function falls below this
specified tolerance threshold. On the other hand, constraint
tolerance specifies the permissible deviation within which
the constraints are deemed satisfied. For our work, both
optimality and constraint tolerance are established at 1e-6.
If BTP fails to converge with the current degree under these
convergence criteria, BTP incrementally increases the degree
of the Bézier curve by one until convergence.

We have employed factorization techniques to mitigate
computational burdens and accelerate computations to
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optimize computational efficiency and scalability. Addition-
ally, we have integrated the deCasteljau method into BTP to
decrease computational time and ensure numerical stability
throughout the calculation processes.

V. CONCLUSION
This paper presents a novel method denoted as ‘‘BTP’’ to
generate optimal trajectories based on Bézier curves for
a differential robot navigating an unknown environment.
The Bézier curve structure facilitates the incorporation of
the robot’s kinodynamic limits, while also guaranteeing
continuous curvature. A weighted objective function of the
robot’s navigation time and trajectory length is formulated
to permit different optimization strategies. Furthermore,
a Delaunay Triangulation-based algorithm is incorporated
to ensure the trajectory is within the robot environment’s
open space. Unlike existing Bézier curve-based work with a
fixed degree, BTP uses a matrix formulation that facilitates
the dynamic change of Bézier curve degree during the opti-
mization process to obtain convergence. The effectiveness
of the proposed method has been evaluated with various
scenarios in the Gazebo simulator as well as on a real
Pioneer P3-DX robot. BTP outperformed the considered
trajectory planners based on navigation time, smoothness,
and target precision. Although BTP can generate smooth and
continuous trajectories, it is unsuitable for online navigation
due to its high computational overhead. This inhibits real-
time execution, particularly when the robot is moving
at higher speeds in a cluttered environment. Instead, the
proposed algorithm can serve as a benchmark trajectory
for training other real-time (online) trajectory planners to
improve their overall performance.

Future research will extend the work to multi-robot
scenarios. This expansion necessitates the integration of
measures addressing robot-to-robot collision. As the number
of robots in the mission escalates, the number of tuning
parameters will exponentially evolve, which, in turn, will
require more computational resources and processing time.
The matrix formulation within the BTP offers a systematic
and practical framework for implementing this expansion.
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