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ABSTRACT Recent advances in deep learning (DL) have led many contemporary automatic modulation
classification (AMC) techniques to use deep networks in classifying the modulation type of incoming
signals at the receiver. However, current DL-based methods face scalability challenges, particularly when
encountering unseen modulations or input signals from environments not present during model training,
making them less suitable for real-world applications like software-defined radio devices. In this paper,
we introduce a scalable AMC scheme that provides flexibility for new modulations and adaptability to
input signals with diverse configurations. We propose the Meta-Transformer, a meta-learning framework
based on few-shot learning (FSL) to acquire general knowledge and a learning method for AMC tasks.
This approach empowers the model to identify new unseen modulations using only a very small number of
samples, eliminating the need for complete model retraining. Furthermore, we enhance the scalability of the
classifier by leveraging main-sub transformer-based encoders, enabling efficient processing of input signals
with diverse setups. Extensive evaluations demonstrate that the proposed AMCmethod outperforms existing
techniques across all signal-to-noise ratios (SNRs) on RadioML2018.01A. The source code and pre-trained
models are released at https://github.com/cheeseBG/meta-transformer-amc.

INDEX TERMS Automatic modulation classification, few-shot learning, meta-learning, transformer, unseen
dataset.

I. INTRODUCTION
Accurate classification of modulation types in incoming
signals is a key element of the wireless communication
system. Automatic modulation classification (AMC) and
radio signal recognition methods play a crucial role in
recognizing modulation types for various military and
civilian services, such as dynamic spectrum access, jamming
detection, surveillance, and spectrum coexistence. Typically,
the preamble of a received signal carries details about its
modulation scheme, enabling the receiver to determine the
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modulation type and pass it through to the appropriate
demodulation process [1].

However, the design of a highly precise AMC scheme
is challenging in the modern wireless communication
environment since numerous heterogeneous communication
systems coexist in a complex and non-cooperative manner.
Performing the AMC task is particularly challenging in
Cognitive Radio (CR) networks and Software Defined
Radio (SDR) systems, as they provide the flexibility to
employ various wireless communication services over a wide
frequency range. In CR and SDR environments, dynamic
spectrum sensing and access are performed over a wide
frequency band in a non-cooperative manner. This often leads
to inconsistent and partial signal reception. It is important to
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note that the AMC in these environments should be able to
identify modulation types even when the received samples do
not contain the entire packet information and may only have
partial information in the middle or tail [2].

AMC methods can be categorized into two primary
types: (i) likelihood-based (LB) and (ii) feature-based (FB)
approaches [3]. LB approaches achieve high classification
accuracy by harnessing prior knowledge about the target
modulations [2]. Nonetheless, with an increase in the
number of target modulations, LB approaches encounter
difficulties, including elevated computational complexity and
even mathematical intractability [4].
In recent years, FB approaches have extensively incor-

porated deep learning (DL) into AMC, attracting attention
due to their outstanding classification performance, even
when dealing with numerous target modulations [1], [2],
[5], [6], [7], [8], [9], [10], [11]. DL-based AMC methods
learn valid classification rules from a substantial amount of
complex modulation data [12] and achieve high accuracy in
modulation classification thanks to recent breakthroughs in
deep learning techniques.

However, current DL-based AMC methods still face
challenges in terms of real-world deployment, primarily
due to their limited scalability, particularly when dealing
with unseen modulations or input signals with different
configurations not seen during the training process. In non-
cooperative and complex real-world communication environ-
ments, received inputs frequently deviate from the features
employed during the model training phase, resulting in
substantial classification errors. Note that the performance
of most DL-based AMC methods heavily depends on the
availability of a substantial volume of training data. For
instance, most DL-based AMC methods utilize fixed frame
lengths as inputs to their models and do not account for
scenarios with variable input sizes [10]. Accordingly, they
may not work properly for short input frames.

Fig. 1 illustrates the classification accuracy of ResNet-
based and CNN-based methods [10], [13] across various
input frame lengths. These methods utilize an input frame
length of 1024, which corresponds to the frame length of the
training dataset. Testing for variable input lengths was per-
formed by undersampling to lengths of {512, 256, 128, 64},
where shorter inputs were duplicated and concatenated in the
preprocessing step to reach the default length of 1024. When
the model was exclusively trained with a fixed-length frame
of 1024 samples, we observed a deterioration in classification
performance as the input frame length decreased. Unfortu-
nately, it is nearly impossible to collect sufficient labeled
training datasets in advance for numerous combinations
of the target classes, such as varying frame lengths and
signal-to-noise ratios (SNRs), to maintain classification
accuracy. Furthermore, when introducing previously unseen
modulations, existing solutions necessitate the collection of
a substantial number of samples and a subsequent retraining
of the model. In this paper, the term ‘‘unseen’’ refers to the
data belonging to classes that the model did not encounter

TABLE 1. Abbreviations and meanings.

FIGURE 1. Impact of input frames’ lengths on the classification accuracy
of ResNet-based and CNN-based methods [10], [13] under different SNR
values based on the RadioML2018.01A [5].

during the training phase. Therefore, it is essential to devise
a more intelligent and scalable AMC technique capable of
adapting to new unseen modulations and recognizing input
signals with complex combinations of temporal and spatial
features.

In this paper, we introduce Meta-Transformer, a scalable
AMC scheme that provides flexibility for new unseen
modulations and adaptability to input signals with diverse
configurations. Our proposed framework comprises three key
components: (i) a meta-learning framework that employs
few-shot learning (FSL), (ii) a feature extractor built upon
a Transformer architecture [14], and (iii) a main-sub model
architecture to ensure scalability for input frame sizes.Within
our proposed meta-learning framework, we initially train the
main-submodel on a source dataset, targeting a specific set of
modulations. Subsequently, we adapt the trained encoders to
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new target modulations using only a small number of newly
gathered samples.

This approach effectively mitigates the issues related
to data collection and the overhead of retraining when
addressing new unseen modulations. Moreover, to enhance
the scalability and performance of the model, we leverage a
Transformer-based encoder [14] in the design of the feature
extractor for our proposed AMC method.

The noteworthy point is the operation of the Vision
Transformer [14]. ViT divides an image into patches and
tokenizes them for processing. The size of these patches
plays a critical role in determining the receptive field. When
configuring larger patch sizes, the model can capture a
broader context initially, but it might miss finer details.
Conversely, opting for smaller patch sizes allows the model to
capture more intricate details but concurrently increases the
risk of overfitting, as it might focus excessively on localized
information. Hence, there exists a trade-off relationship to
consider when determining the optimal patch size. Through
extensive evaluations on the RadioML2018.01A dataset [5],
we find the appropriate patch size for the AMC task
and demonstrate that the proposed method consistently
outperforms existing techniques across all signal-to-noise
ratios (SNRs).

In real-world scenarios where AMC technology is applied,
the input frame length is likely to vary, unlike the fixed length
of 1024 frames used in the dataset employed in this study.
This demands a solution for variable input signal lengths,
and when using a single encoder, performance significantly
degrades if the input length during testing is shorter than
that used during training (Fig. 1). In fact, using multiple
encoders ensures higher performance for diverse input
lengths. However, there is a trade-off as the model becomes
heavier with an increasing number of encoders, requiring
consideration of computational constraints. Therefore, this
paper proposes a method of employing two encoders.

The remainder of the paper is structured as follows:
Section II summarizes related research work. Section III
describes the overview of the proposed meta-learning
based AMC scheme and its details. Section IV presents
the evaluation results, and Section V concludes this
paper.

II. RELATED WORK
Related work can be categorized into two main groups:
(i) deep learning-based approaches focused on enhancing
modulation recognition and classification performance, and
(ii) studies utilizing few-shot learning techniques for AMC.

O’Shea et al. [5] utilized a 1D CNN based on ResNet [13]
to extract features from the in-phase and quadrature-phase
(IQ) components of the signal. They conducted experiments
using the RadioML2018.01A dataset and achieved high
accuracy across 24 modulations, demonstrating the effective-
ness of CNN-based models for AMC. Subsequent studies
using CNNs have made efforts to enhance performance in
AMC using the RadioML2018.01A dataset. Kim et al. [10]

proposed a CNN model that employed frame replication to
expand it into a size of 4 × 1024 facilitating meaningful
feature extraction, and utilized average pooling to reduce
computational complexity. Huynh-The et al. [6], [11] pro-
posed MCNet, which demonstrates efficient computational
complexity based on 1D CNN, and RanNet, which shows
high performance using the residual-attention structure.
Additionally, various other CNN-based studies [7], [8], [9]
have been conducted.

Recently, methodologies employing few-shot learning
techniques have emerged to tackle the constraints of DL in
AMC, as discussed in Section I. Zhou et al. [15] introduced
AMCRN, an architecture based on CNN that assesses feature
similarity between test data and annotated few-shot data.
Zhang et al. [16] proposed the Attention Relation Network,
which incorporates channel and spatial attention to enable
modulation pattern recognition even with few-shot samples.
Hao et al. [17] proposed M-MFOR, a meta-learning system
leveraging few-shot learning. Their work demonstrates the
ability to achieve high accuracy, even on modulation datasets
with distribution bias, by effectively generalizing the meta-
knowledge learned through meta-learning.

In contrast to prior research employing few-shot learn-
ing approaches with CNN-based models, to the best of
our knowledge, we have pioneered the integration of a
Transformer-based encoder into the meta-learning-based
AMC. Our approach efficiently learns inter-sample rela-
tionships through the self-attention mechanism during the
training phase. This enables rapid adaptation and achieves
excellent performance even with limited data for unseen
modulations during the testing phase.

III. PROPOSED METHOD
This section begins with an introduction to the Meta-

Transformer, our proposed meta-learning framework
designed for the AMC task. In this section, we first introduce
the Meta-Transformer, which is the proposed meta-learning
framework for the AMC task, and then explain its specifics,
covering both the meta-training and meta-testing processes.
The objective of our work is to overcome the aforementioned
limitations of supervised learning-based DL approaches and
ensure scalability for unseen modulations or input signals
with varying configurations not seen during the training
phase.

A. META-TRANSFORMER
Fig. 2 illustrates the architecture of Meta-Transformer. Our
system consists of two main modules: (i) a meta-training
module and (ii) a meta-testing module.

• Meta-Training Module: The module utilizes a source
dataset for specific modulation classes, referred to as
seen modulations. It trains the modulation classifier,
namely main-sub Transformer-based encoders fθ and
fθ ′ , where θ and θ ′ represent the trainable parame-
ters. Unlike traditional supervised learning methods,
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FIGURE 2. Overview of Meta-Transformer: meta-training with source datasets for given target modulations and meta-testing process with unseen
modulations limited size datasets.

TABLE 2. Notations and meanings.

our meta-learning approach acquires meta-knowledge,
enabling quicker adaptation to new tasks even with
limited samples (Section III-B). During the meta-
training phase, the main encoder is trained with an input
frame size 2 × zm, while the sub-encoder is trained
with 2 × zs. The variables zm and zs denote the length
of the frame, playing a crucial role in determining

the performance of both the main and sub encoders.
A detailed explanation of the variables is covered in
Section III-C.

• Meta-Testing Module: Once trained, the meta-testing
module uses the encoders fθ , fθ ′ for new unseen modu-
lations with fewer collected samples (Section III-C).

The main encoder fθ and the sub encoder fθ ′ learn general
meta-knowledge to extract appropriate feature vectors for
AMC tasks, where meta-knowledge represents the under-
lying essence or commonality among multiple tasks [17].
To achieve this, we utilize the methodology of learning the
metric space by using prototypes of each class, as introduced
in ProtoNet [18].

Fig. 3 depicts the architecture of the encoder and
its operational sequence. To handle various input signal
configurations, we employ a feature extractor based on the
Transformer architecture proposed byDosovitskiy et al. [14].
The Transformer-based encoder has a modular architecture,
allowing each layer to work independently. Communication
between layers is facilitated through attention mecha-
nisms [14], providing flexibility in adjusting the model’s size
and complexity. In this setup, each module has an input layer
of 2×N , which takes IQ components of signal data as input.
These components are split into p patches of size 2× s, with
each patch undergoing linear embedding after the addition of
position information embeddings.

Table 3 summarizes the hyperparameters used for the main
and sub encoders within Meta-Transformer. Since the sub
encoder is trainedwith a smaller input frame size compared to
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TABLE 3. Details of proposed model hyperparameters.

FIGURE 3. Transformer-based encoder fθ to extract feature vectors of I/Q
signals. We employed ViT [14]’s encoder structure.

the main encoder, we adjusted the hidden size dimension D
to a larger value to optimize performance. The input length
z and patch length s are pivotal hyperparameters affecting
signal data manipulation and overall model performance.
We conducted experiments focused on determining the
most suitable values for these parameters, elaborated upon
in Section IV. Additionally, we determined the remaining
hyperparameters through empirical experiments to achieve
optimal model performance.

B. META-TRAINING
The meta-training module trains two encoders, denoted

as fθ and fθ ′ , incorporating meta-knowledge for the ACM
task. Both encoders follow an identical training approach,
which will be explained hereafter explained with respect to
fθ . Training occurs episodically in this phase. Each episode,
labeled as ϵ, comprises two parts: (i) a support set (training
set) for prototype generation and (ii) a query set (validation
set) for modulation prediction and parameter updating.
To generate the support set and query set for each episode,
we first randomly choose k categories from the source
dataset.Within each selected category, we then randomly pick
n instances. Here, k represents the total number of classes
within the support set, often referred to as k-way, and n
represents the number of data samples for each class (way),
known as n-shot. The total number of episodes, denoted as
Nϵ , can be determined using the following equation:

Nϵ =
ptrain ∗ N
NS + NQ

∗ Nepoch, (1)

where N represents the total number of data, ptrain is the
ratio of the training dataset, NS is the number of support sets,
NQ is the number of query sets, and Nepoch is the number of
training epochs. Here, the modulation classes used in training
are regarded as seen modulations. The N annotated data used

as input, denoted as S = {(x1, y1), . . . , (xN , yN )}, have a
frame size of 1 × 2 × z (C × H ×W ), which is provided in
the RadioML2018.01A [5] dataset. The corresponding class
labels are represented as yi = {1, . . . ,K }.

In each episode, the signal undergoes preprocessing based
on experimentally derived values for zm and zs. Following
this, the support set and query set data are segmented into
patches as previously described and then fed into the encoder.
For the support set, the prototype cl is created by averaging
the extracted feature vectors (referred to as embedded support
points) from the annotated dataset Sl belonging to class l.

cl =
1
|Sl |

∑
(xi,yi)∈Sl

fθ (xi) (2)

The feature vectors extracted from the query set are classified
using the generated prototypes, based on a distance function
d , which could be methods such as Euclidean distance or
cosine similarity. In ProtoNet [18], the distance between the
query embedding and the prototype is measured byEuclidean
distance, which shows excellent performance. Consequently,
we also employed Euclidean distance as our distance metric.
Based on softmax over the distances between the query point
x and the prototypes in the embedding space, we generate a
distribution over classes. The equation for this distribution is
as follows:

pθ (y = l|x) =
exp(−d(fθ (x), cl))∑
l′ exp(−d(fθ (x), cl′ ))

(3)

Algorithm 1 Process of Meta Training. k≤K Is the Number
of Classes per Episode, E Is the Selected k Classes for
Episode, NS Is the Number of Support samples per Class,
NQ Is the Number of Query samples per Class, m̂ Is the
Bias-Corrected Moving Average of the Gradients, v̂ Is the
Bias-Corrected Moving Average of the Squared Gradients,
α Is the Learning Rate and ϵ Is a Small Value Used for
Numerical Stability. Random uniformS,N Denotes Uniform
and Random Selection of N Values From the S Set. Signal
LengthS, z Denotes the Adjustment of All x Lengths in Set S
to z.
Input: Training set Strain = {(x1, y1), . . . , (xN , yN )}
Output: Trained base encoder fθ
For l in {1,. . . ,k} do
Ssupport ← Random uniform(SEl ,NS )
Squery← Random uniform(SEl\Ssupport ,NQ)
Ssupport ← Signal Length(Ssupport , zm)
Squery← Signal Length(Squery, zm)
cl ← 1

NS

∑
(xi,yi)∈Sl fθ (xi)

end for
L ← 0 {Initialize loss L}
For l in {1,. . . ,k} do

For (x, y) in Squery do
θ ← θ − α

√
v̂+ϵ

m̂
end for

end for
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As each episode progresses, the parameters θ of fθ are
iteratively updated using the Adam optimizer [19] to
minimize the negative log probability of the actual class k ,
as described in Equation 4.

L(θ ) = −logpθ (y = k|x) (4)

The algorithm 1 illustrates the main encoder meta-training
process for an episode. The sub encoder is also trained using
the same approach.

C. META-TESTING
Meta-Testing module utilizes the encoders fθ and fθ ′ trained
through the meta-training phase. The parameters θ , θ ′ remain
fixed and are not updated during the meta-testing process.
In the meta-testing phase, both the support set and the query
set consist of unseen modulations, enabling us to evaluate
the model’s adaptation to a new domain and assess its
generalization capability. The signal length L for both the
support set and the query set follows these conditions: zs <

L ≤ zm for input to the main encoder, and zmin ≤ L ≤ zs
for input to the sub-encoder. Here, zm is set to 1024, the
signal length of RadioML2018.01A, and zs is experimentally
chosen as 128 to enhance the model’s scalability for shorter
signal lengths. Additionally, the minimum length zmin is
set to 64, achieving over 50% performance, and anything
below cannot be used for classification. As we will discuss
in Section IV, we consider the application of our method
to SDR platform scenarios. For example, in the case of
operational SDR equipment, upgrades are necessary to enable
recognition of new modulations not encompassed in the
current model’s training. For this purpose, the meta-testing
module can include datasets for both the seen modulations
used in the training phase and new unseen modulations.
The results of these tests are presented in Section IV-D.
A commonly adopted configuration for support sets in most
FSL-based approaches is the 5-shot setting, where the support
set comprises five data samples. Similar to the meta-training
phase, the meta-testing module generates k ′ prototypes using
the trained fθ , fθ ′ , where k ′ denotes the number of target
classes for meta-testing. The query set used for inference
is classified based on the Euclidean distance between the
embedding vectors and the prototypes. In our experiments,
we investigated the impact of the k ′ value, the results of which
can also be found in Section IV-D.

IV. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our

proposed system through a series of extensive experiments.
These experiments include experiments to determine the
appropriate patch size for the proposed Meta-Transformer
(Section IV-B), comparing meta-learning and supervised
learning approaches (Section IV-C), evaluating the few-
shot learning capability of our method on new Unseen
modulations (Section IV-D), and examining the scalability of
our method for different input frame sizes (Section IV-E).

The training dataset ratio ptrain is set to 0.8, and Nepoch is
set to 50 for the main encoder and 100 for the sub encoder.
The optimizer used is Adam [19], with an initial learning
rate α of 0.001. A scheduler with a step size of 10 and γ

of 0.9 is employed. The experiments were conducted on an
Ubuntu 20.04 system with an Intel(R) i9-9900KF processor
and GeForce RTX 2080 Ti 11GB GPU.

A. DATASET
We conducted our experiments using the widely utilized
RadioML2018.01A dataset [5] in the field of AMC research.
This dataset comprises a total of 24 modulations, including
analog modulations such as AM-DSB-WC, AM-DSB-SC,
AM-SSB-WC, AM-SSB-SC, FM, and digital modulations
such as OOK, 4ASK, 8ASK, BPSK, QPSK, 8PSK,
16PSK, 32PSK, 16APSK, 32APSK, 64APSK, 128APSK,
16QAM, 32QAM, 64QAM, 128QAM, 256QAM, GMSK,
and OQPSK. This diverse set of modulations includes high-
order schemes like QAM256 and APSK256. Each frame
consists of 1024 samples for the IQ components. The
dataset consists of 4096 frames for each modulation-SNR
combination, resulting in a total of 2.5 million frames. The
SNR range spans from -20 dB to 30 dB with a step size of
2 dB.

B. PATCH SIZE
The proposed Meta-Transformer utilizes an encoder based
on ViT [14], and the input signal is divided and tokenized
at the patch level for processing. In this case, the patch
size s used has an impact on the receptive field, ultimately
affecting the classification performance. In the original ViT,
images are divided into patches of size s × s, assuming a
square-shaped image. However, for the AMC task, signals
are provided in the form of IQ components, resulting
in a 2D shape of 2 × L. When setting s to 2 and
dividing the signal into 2 × 2 patch size, the amount of
information becomes extremely low, resulting in significantly
reduced classification performance. Therefore, we conducted
experiments to find an appropriate value for s that is suitable
for the AMC task. The proposed model comprises both the
main and sub encoders, each trained for signal lengths of
1024 and 128. Hence, we conducted separate experiments to
determine the appropriate s value for both encoders with these
two input sizes.

Fig. 4 and Fig. 5 depict the experimental results for
s = {8, 16, 32, 64}. In both figures, the best performance
is observed when s = 16 in good SNR environments
(0 dB or higher). It can be noted that performance decreases as
the patch size increases or decreases from this optimal value.
On the other hand, in poor SNR environments, there is a slight
difference, but better performance is observed as s increases.
This suggests that, in the presence of high noise, expanding
the receptive field is necessary to capture a broader range of
information. We selected s = 16 as the default patch size,
ensuring robust performance in good SNR environments, and
proceeded with the remaining experiments.
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FIGURE 4. Performance test based on the patch size of the main encoder.

FIGURE 5. Performance test based on the patch size of the sub encoder.

C. COMPARING META-LEARNING AND SUPERVISED
LEARNING
We first conducted an experiment to compare how well meta-
learning models, including our proposed model, perform in
accurately classifying the 24 different modulations, com-
pared to supervised learning models and other transformer-
based models. The supervised learning models used in the
experiments include ResNet [5] based and CNN [10] based
models, where we will denote them as ResNet and CNN,
respectively. For the meta-learning models, we employed
ProtoNet [18] and DAELSTM [20] along with our pro-
posed model. Note that the original DAELSTM [20] is a
supervised learning-based model, but we modified it into
a meta-learning structure by leveraging our encoder-based
framework. We then included both the modified DAELSTM
and the original one in our comparison experiment. These five
models were trained using a SNR range of [−10, 20] dB,
demonstrating their optimal performance within this SNR
range. Their performance was evaluated in terms of accuracy,
with a step size of 2 dB, across the entire range of [-20
to 20] dB contained in the RadioML2018.01A dataset. This
experiment was designed to compare the performance of
the proposed meta-learning approach with models proposed
using traditional supervised learning methods. Additionally,

FIGURE 6. Performance comparison between meta-learning (our
proposed method, DAELSTM [20] and ProtoNet [18]) and supervised
learning (ResNet [5] and CNN [10]) models for all 24 modulations.

TABLE 4. Complexity comparison of different models.

it aims to verify the effectiveness of the transformer architec-
ture for the AMC task by comparing it with commonly used
CNN and LSTM-based models.

Fig. 6 shows the results of the evaluation. We observed
that our proposed Meta-Transformer achieved the highest
performance at 95.76% accuracy in the good SNR range,
particularly at SNR 20 dB (Fig. 7). This demonstrates
the effectiveness of our transformer architecture and meta-
learning approach for the AMC task, outperforming CNN and
ResNet models based on conventional supervised learning
methods. Furthermore, we demonstrated that even existing
models like DAELSTM, originally proposed using super-
vised learning, can be adapted to our proposed framework by
utilizing the framework’s encoder. ProtoNet, despite being a
meta-learning approach, exhibited lower performance. This
suggests that the model architecture was not specifically
designed to address the AMC task, highlighting the impor-
tance of tailoring the model structure to suit the requirements
of the task.

We also compared the complexity of the models in Table 4.
Despite having a higher computational complexity compared
to the other four models, the proposed model demonstrated
the best performance across all 24 modulations.

D. UNSEEN MODULATION
Next, we evaluate the adaptation performance of our
proposed method to new modulation types. As mentioned
previously, one of the advantages of meta-learning is its
ability to quickly adapt the model to new unseen classes.
For instance, consider a scenario where an operational SDR
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FIGURE 7. Confusion matrix for the proposed model inference results at
SNR 20dB.

TABLE 5. 12 modulations used for training in three repeated test cases.

equipment requires an upgrade to recognize new modulation
types. We conducted experiments where the proposed model
was trained on 12 randomly selected modulations (denoted
as Seen modulations) out of the total 24 modulations.
We then randomly selected 5 modulations out of the
remaining 12 modulations asUnseenmodulations for testing.
We divided the test cases into three categories as indicated
in Table 5. For each test case, we carried out 100 test
iterations, with each iteration involving the random selection
of five Unseen modulations. We then calculated the average
accuracy. The default value for ‘‘shot’’ was set to 5-shots.
The reason is that many few-shot learning studies use 1-shot
and 5-shot evaluations as benchmarks. The number of sample
frames used for training was approximately 1.3 million,
while for testing, around 0.5 million frames were used for
5 randomly selected modulations.

Fig. 8 depicts the accuracy results for the three test
cases, illustrating an average accuracy of around 80% in
the high SNR region for the five randomly selected Unseen
modulations. The variation in accuracy among the test cases
is influenced by the complexity of the modulations used
during the training phase. More complex modulations tend to
demonstrate better performance during the inference phase.

FIGURE 8. Performance comparisons for three test cases in Table 5.

FIGURE 9. Impact of number of shots on classification performance for
5-way (five Unseen modulations/classes) with 1, 5, 10, and 15 different
shots.

For the subsequent experiments, we used the Test B category
in Table 5.

Fig. 9 presents the results of an experiment that inves-
tigated the influence of shots on each class (way) of the
support set during the meta-testing phase. For the 5-way
classification, we used the {1, 5, 10, 15} shots. The results
demonstrate that accuracy increases with a higher number of
shots. With 15 shots, our method achieved 90% accuracy on
the Unseen modulations, demonstrating its ability to quickly
acquire general knowledge about a new domain even with a
few datasets.

Fig. 10 displays the classification performance results for
three different numbers ofUnseenmodulationswhile keeping
the shots fixed at 5. We conducted tests with Unseen modu-
lations consisting of 3, 5, and 7 classes. The results indicate
that as the number of Unseen modulations decreases, there
is an improvement in differentiating prototypes within the
embedding space, leading to higher performance. Notably,
a substantial increase in classification accuracy is observed
for lower SNRs as the number of Unseen modulations
decreases.

Fig. 11 represents an experiment tailored for the SDR
platform scenarios. The evaluation encompasses both the
Seen modulations used in the training phase and the Unseen
modulations. Despite the inherent challenges posed by the
12-way and 13-way configurations in the meta-learning
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FIGURE 10. Performance evaluation for different numbers of ways, i.e., 3,
5, and 7 Unseen modulations, with a fixed 5-shot learning.

FIGURE 11. Performance evaluation using both the 12 Seen modulations
used during training and additional Unseen modulations in the test
phase.

context, our method achieved a high performance level,
surpassing 80% accuracy with 5-shot learning. We expect
that performance can be further improved through an
investigation of hyperparameters and by leveraging more
powerful computing environments. We plan to explore these
possibilities in greater detail in our future work.

E. INPUT SIZE SCALABILITY
In real-world scenarios, modulation classification may be
required for signals with incomplete reception or varying
lengths. In many existing AMC methods, however, the input
frame size was often overlooked in both model design and
evaluation. Fig. 12 clearly indicates that using themainmodel
trained with a 2 × 1024 frame size results in performance
degradation for smaller input frame sizes when actually
utilized. Therefore, we conducted additional experiments
to evaluate the scalability of our Meta-Transformer using
two encoders for frame sizes smaller than the given 2 ×
1024 frames. Specifically, we experimented with frame sizes
of 2×64, 128, 256, 512 to evaluate the model’s performance
and generalizability.

Fig. 13 presents the results of evaluating the proposed
model using smaller input frames while it was trained with
2 × 1024 frames. Thanks to the main-sub encoder structure,
even for samples with smaller input frame sizes, each

FIGURE 12. The impact of varying input frame lengths on the
classification accuracy of the proposed model (only main encoder) in the
RadioML2018.01A dataset [5].

FIGURE 13. The impact of varying input frame lengths on the
classification accuracy of the proposed model in the RadioML2018.01A
dataset [5].

encoder effectively captures the interactions between sample
patches within the same frame. Consequently, using smaller
input frame sizes results in a relatively minor performance
degradation compared to using the main encoder architecture
alone, specifically for sizes below 2× 128.

V. CONCLUSION
In this work, we introduced a Meta-Transformer, a scal-
able AMC scheme that provides flexibility for handling
new modulations and adaptability to diverse input signal
configurations. By utilizing a meta-learning framework
based on FSL, we empowered the model to acquire
general knowledge and effectively recognize new unseen
modulations using a small number of samples without the
need for complete retraining. Furthermore, we enhanced the
scalability of the classifier by employing two Transformer-
based encoders, enabling effective processing of signals with
varying configurations. Through extensive evaluations on the
widely used RadioML2018.01A dataset, we demonstrated
the effectiveness of our proposed AMC method over existing
techniques in all SNR ranges.

Despite achieving rapid adaptation to a new set of
modulations and providing a high classification performance
of over 90%, incorporating the modulations from the initial
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training stage poses a challenging task. This challenge can
be particularly critical in SDR platform scenarios demanding
precise classification across a diverse range of modulation
types. In our future endeavors, we plan to address these
challenges.
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