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ABSTRACT Depth completion aims to recover dense depth maps from sparse depth maps. Recent
approaches have used additional modalities as guidance to improve depth completion performance. Image-
guided depth completion uses scene information from color images, but it still produces inaccurate object
boundaries. In this paper, we propose deep sparse depth completion using multi-scale residuals and channel
shuffle, named ReCSNet. ReCSNet is a dual-branch network based on a U-shaped architecture. ReCSNet
consists of one VIS-Semantic-Guided Branch (VSGB) and one Sparse Depth Guided Branch (SDGB) to
get global color, edge information, and local accurate depth information. VSGB utilizes two encoders to
extract features from theVIS-Semantic image pairs and the sparse depthmaps, and employs a feature channel
shuffle mechanism to blend the two sets of encoded features. The semi-dense depth map generated by VSGB
is concatenated with the original sparse depth map and input into SDGB to predict the second semi-dense
depth map. The confidence maps generated by the two branches are adaptively fused to generate the final
depth map. Moreover, we incorporate multi-scale residuals obtained from the VIS image and concatenate
them with the decoded features to further enhance the constraint on object boundaries. At the rear of the
dual-branch network, we add a Repetitive Deformable Convolution Module (RDCM) to further refine the
depth values in object edges. Experimental results show that ReCSNet achieves outstanding performance on
the KITTI depth completion validation dataset with an improvement of 16mm in the root mean square error
(RMSE) metric.

INDEX TERMS Depth completion, channel shuffle, deformable convolution, multi-scale residuals, semantic
segmentation.

I. INTRODUCTION
Depth sensors can accurately measure the distance of
objects in a scene and are widely used in the fields such
as autonomous driving [1], 3D modeling [2], augmented
reality [3] and SLAM [4]. The LiDAR camera uses sensors
that introduce LiDAR technology into imaging. It can
provide high-precision depth data and color images outdoors
and obtain more comprehensive and accurate environment
information. The KITTI dataset [5], [6], [7] was collected by
the Velodyne HDL-64E rotating 3D laser scanner. As shown
in Fig. 1 (c), even for expensive LiDAR, the valid points in the
collected depth map are very sparse (less than 5%), making
it impossible to directly apply the collected sparse data to the
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above fields. Therefore, sparse depth completion is required
to recover the depth of unknown positions from the sparse
depth maps.

With the continuous exploration of deep learning and
sensor fusion, depth completion has advanced from relying
on a single sparse depth map to using multiple modalities
as input for better performance. The sparse depth map
used as a single-modal input in the sparse depth-based
method [7], [8] cannot provide structural information of
the scene, thus the obtained depth map loses part of the
object boundary. In image-guided multi-modal methods, the
input data includes VIS images [9], surface normals [10],
and semantic maps [11], [12], corresponding to the sparse
depth maps. These modal information provide additional
information to estimate more accurate depth values. The
most widely used one is to take high-resolution color images
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FIGURE 1. Examples of three different modalities: (a) VIS image, (b) semantic map, (c) sparse depth map, (d) predicted dense depth map, and
(e) the corresponding ground truth.

and sparse depth maps together as inputs and use the CNN
model based on the encoder-decoder structure to densify the
sparse depth map. PENet [9] utilized a dual-branch network
structure to fuse the features of multi-modal inputs, i.e.
sparse depth maps and VIS images. RigNet [13] repeatedly
employed multiple hourglass structures to extract reliable
VIS image features to provide clear guidance for depth
recovery. EMDC [14] also applied a dual-branch framework
to extract global and local features and merge cross-modal
features between the two branches. These methods only
leveraged VIS images as the guidance of global scene
structure information. However, VIS image lacks strong
supervision at object boundaries and sparse depth maps are
accompanied by a lot of noise at object edges.

To address the issues, we propose a deep sparse depth
completion network using multi-scale residuals and channel
shuffle, named ReCSNet. ReCSNet is based on a dual-branch
and encoder-decoder structure as shown in Fig. 2. The
upper branch, i.e. the VIS-Semantic Guided Branch (VSGB),
focuses on global information. This branch utilizes two
encoders that respectively extract color and structural infor-
mation from the VIS image and reliable object boundaries
from the semantic image, to guide the completion of sparse
depth maps, generating the first semi-dense depth map.
To introduce complementary information between the two
encoders while extracting features from different modalities,
we employ channel shuffle operation to blend the two sets
of encoded features. The lower branch, i.e. the Sparse Depth
Guided Branch (SDGB), concentrates on extracting precise
local information. By utilizing the sparse depth map as input
again, the true depth values in this map are used to constrain
the semi-dense depthmap generated by the upper branch. The
second semi-dense depth maps is obtained through the lower
branch encoder-decoder. While the two branches output two
semi-dense maps, they produce corresponding confidence
maps. The two semi-dense depth maps are fused through
a pixel-level weighted sum to obtain the final dense depth
map. Moreover, we add multi-level residuals obtained from
VIS image into the decoders of the two branches to
recover the depth maps with sharp edges during subsequent
up-sampling.

Compared with existing methods, the main contributions
of this paper are as follows:

• We propose a deep sparse depth completion network
using multi-scale residuals and channel shuffle, named
ReCSNet. ReCSNet is based on dual-branch with
a U-shaped encoder-decoder architecture, in which
the upper branch generates a semi-dense depth map
focusing on color and edge information in VIS and

semantic maps, and the lower branch further refines the
semi-dense depth map using the original sparse depth
pixels.

• We use channel shuffle to mix the encoded features
from two different modalities in the upper branch by
introducing complementary guidance information into
feature extraction.

• We utilize multi-scale residuals from VIS image to
optimize ReCSNet and generate a depth map with clear
object boundaries.

• We present a novel Repetitive Deformable Convolu-
tional Module (RDCM) to further refine dense depth
maps predicted by the dual-branch network.

The rest of this paper is organized as follows: Section II
reviews the related work, including non-image guided and
image-guided sparse depth completion methods. Section III
describes the network architecture and loss function of the
proposed ReCSNet in detail, while Section IV provides the
experimental results on the KITTI dataset. Section V draws
conclusion of this paper with future work.

II. RELATED WORK
Sparse depth completion methods refer to techniques that aim
to recover dense depth maps from sparse depth maps. These
methods can be categorized into twomain categories based on
whether they use image guidance or not. The first category,
without image guidance, focuses on using only the sparse
depth map and possibly additional geometric constraints to
complete the dense depth map. The second category, with
image guidance, utilizes additional modalities such as color
or grayscale images to provide additional cues for completing
the depth map.

A. NON-IMAGE GUIDED SPARSE DEPTH COMPLETION
Non-image guided sparse depth completion methods directly
infer missing depth information from sparse depth maps,
which can be further divided into three subcategories:
sparse perception convolutional neural networks, normalized
convolutional neural networks, and those training with
auxiliary images. The data in sparse depth maps is extremely
sparse, while standard convolutional operations are friendly
to dense inputs. Therefore, researchers have used binary
masks to mark the positions of real and missing points
in the input map to improve the performance of standard
convolution layers on sparse inputs. Uhrig et al. [7] proposed
the first non-image guided method based on deep learning,
which used a novel sparse convolution operation to address
the mosaic effect that occurs when regular convolution
processes sparse inputs. Huang et al. [15] introduced three
sparse-invariant (SI) operations and built the hierarchical
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FIGURE 2. Network architecture of the proposed ReCSNet for sparse depth completion based on dual-branch and encoder-decoder structure. The
VIS-Semantic Guided Branch (VSGB) focuses on global color and edge information. The Sparse Depth Guided Branch (SDGB) concentrates on
local information by using original sparse depth map.

multi-scale sparsity-invariant network (HSMNet) based on
an encoder-decoder to address the deficiency that sparse
convolution is not suitable for encoder-decoder networks. The
saturation in early layers can cause a reduction in model
performance of the validity masks, as previously pointed
out by some studies [16]. Eldesokey et al. [16] proposed a
new method based on normalized convolution, called the
Normalized Convolutional Neural Network (NCNN), which
generated continuous uncertaintymaps toweight the features.
Furthermore, to achieve faster convergence, the convolu-
tion filters were non-negative constrained by the SoftPlus
function [17]. To address the lack of semantic cues in the
single input of sparse depth map, Lu et al. [18] proposed a
framework that introduced an auxiliary learning branch to
reconstruct depth. The input of this framework was only
a sparse depth map, while the RGB image was treated as
the learning target during training. By predicting the recon-
structed image and dense depth map, this method cleverly
leveraged RGB image features to improve the accuracy
of depth completion. Lu et al. [19] used an autoencoder to
generate RGB information in the latent space and predict the
final depth at the output end. However, due to unsupervised
learning and the absence of more dense depth maps as ground
truth, the completion effect is unsatisfactory.

B. IMAGE-GUIDED SPARSE DEPTH COMPLETION
Although unguided sparse depth completion can quickly infer
the depth information of a scene without relying on additional
image information, the accuracy of predicted values is not

high enough to meet the high requirements for environmental
depth accuracy in applications such as autonomous driving
and robot navigation. To improve the accuracy and robustness
of reasoning, researchers have proposed image-guided sparse
depth completion methods, which infer dense depth maps
from auxiliary information such as color images, semantic
maps, or normal maps corresponding to the depth maps and
sparse depth information. As shown in Fig. 3, image-guided
depth completion methods produce more accurate and robust
results. There are five subclasses of image-guided methods:
early fusion strategies, late fusion strategies, explicit 3D
representation methods, residual depth methods, and spatial
propagation network (SPN) based methods. The first two
categories are distinguished based on the fusion strategy’s
position in the model, while the last three categories are
classified based on different models and also use early or late
fusion strategies.

The early fusion strategies typically employ an encoder-
decoder structure and a two-stage structure from coarse to
fine. The encoder-decoder model has a simple structure
and can obtain multi-scale features of the image. Ma and
Karaman, [20] concatenated the sparse depth map and RGB
image, then input them into an encoder-decoder network
based on ResNet-50 [21]. The coarse-to-fine prediction
model first obtains a coarse depth map in the coarse predic-
tion stage, and then uses subsequent refinement operations to
predict a refined depth map from the coarse depth map and
RGB image. Hambarde andMurala [22] proposed an S2DNet
composed of two pyramid networks, S2DCNet and S2DFNet,
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FIGURE 3. Differences in RMSE between unguided and image-guided
depth completion methods on the KITTI dataset, redrawn from [20].

which performed coarse filtering prediction and refinement
operations, respectively.

The methods that utilize late fusion strategies can be
divided into three types: dual-encoder networks, dual-
encoder-decoder networks, and global-local prediction net-
works. Each of them contains two encoders that extract
features fromRGB and sparse depth maps. Ito et al. [23] used
two independent encoders to extract multiscale features from
the two modalities, and directly concatenated the extracted
features as the input of the decoder. Dual-encoder-decoder
networks consist of an image branch and a sparse depth
map branch, each of which includes an encoder and a
decoder. Fusion operation is performed between the decoder
of the first branch and the encoder of the second branch.
RigNet [13] used the repeated hierarchical hourglass network
(RHN) to extract image features and also applied the repeated
guidance module (RG) based on dynamic convolution [24]
for feature fusion. In the methods that employ global-local
prediction networks, RGB and the original sparse depth map
are regarded as global information, and a single sparse depth
map is treated as local information. The global network
predicts the depth map from the global information, while
the local network predicts the depth values from the local
information. The final depth map is obtained by merging the
two depth maps. In predicting the dense depth map using
the global and local network, Cheng et al. [25] also generated
corresponding confidence maps, which were combined with
a weighted sum to generate the final dense depth map.

Methods of using explicit 3D representations to extract
3D geometry cues from sparse depth maps. 3D-aware con-
volutions are used to remove disturbances caused by missing
values in local neighborhoods of sparse depth maps, which is
different from standard 2D convolutions. ACMNet [26] used
graph propagation for non-grid convolutions. Qiu et al. [10]
proposed the DeepLiDAR network, which consisted of a
surface normal branch and a color branch.

The residual depth methods predict both the residual map
and the depth map simultaneously. The residual map contains
rich edge and texture information, which can enhance the
object edge in the predicted blurry depth map. Additionally,
the residual map is less computationally burdensome during
training. Liao et al.’s approach first completed the sparse
depth map into a blurry depth map and then predicted the

residual map through the network [27]. Finally, the dense
depth map was obtained by element-wise summation of
the blurry depth map and the residual map. Gu et al. [28]
proposed DenseLiDAR first predicted a pseudo-depth map
with morphological operations and then fed the pseudo-depth
map, RGB image, and sparse depth map into a dual-encoder-
single-decoder module to predict the residual map, whichwas
ultimately obtained by linear addition to generate the final
depth map.

The affinity matrix represents the similarity between a
reference point and its neighboring points, and is com-
monly used for fine-grained predictions in computer vision
tasks. Cheng et al. [25], [29] first proposed the convolutional
spatial propagation network (CSPN), which applied the
spatial propagation network (SPN) to the task of depth
completion. CSPN refined the rough depth map and affinity
matrix predicted by a network based on an encoder-decoder
structure. During spatial propagation, the depth value of the
reference point was calculated using the diffusion process
of the affinity matrix and the depth values of its local
neighbors. Park et al. [2] proposed a novel non-local SPN,
which learned non-local neighbors and confidence maps
with affinity matrices through an encoder network and skip
connections. Unlike fixed local neighbors, it performed
spatial propagation using deformable convolution on K
non-local neighbors of the reference point. Lin et al. [30]
proposed a dynamic spatial propagation network (DySPN)
based on attention mechanism, which used decoupling based
on adjacent data points’ distance to learn an adaptive affinity
matrix for improving depth prediction performance during
spatial propagation.

III. PROPOSED METHOD
The proposed sparse depth completion network consists of
two branches: a VIS-Semantic Guided Branch (VSGB) and
a Sparse Depth Guided Branch (SDGB). They focus on the
extraction of global color, edge features and local precise
features, respectively, and each predicts a semi-dense depth
map and a corresponding confidence map for adaptive fusion
to obtain the final dense depth map. The entire model is
trained end-to-end on the KITTI depth completion dataset.

A. VIS-SEMANTIC GUIDED BRANCH
VSGB located in the red dotted box in Fig. 2 obtains global
color and structure information provided by VIS, object
boundary information in an aligned semantic segmentation
map, and depth information from sparse depth maps. VSGB
is comprised of two encoders and one decoder. The VIS
image and the semantic segmentation map are concatenated
as input to one of the encoders to extract rich scene
information. The original sparse depth map serves as the
input to the other encoder, directly extracting depth features
from the collected depth data by LiDAR sensor. The encoders
sequentially downsample through convolutional blocks with
a stride of 2 to obtain features at various scales, followed by
further extraction of richer and deeper-level features through
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convolutional blocks with a stride of 1. To enhance the
ability of the two encoders to extract features from their
respective inputs, we use a channel shuffle mechanism to mix
features of the same size from the two encoders. The decoder
gradually restores the feature size to the same as the original
sparse depth map through transposed convolution. Finally,
a convolution layer with a kernel size of 3 and a stride of
1 is applied to the final features to generate a semi-dense
depth map and a confidence map. Moreover, we use skip
connections to perform element-wise addition between the
features of the two encoders and the decoder to reduce
information loss due to down-sampling.

The whole process is defined as follows:

DVSG,Cf VSG = DeVSG(Encs(I , Sem) + End (SD)) (1)

where I , Sem, and SD correspond to the VIS image, semantic
segmentation map and sparse depth map; DeVSG denotes the
decoder; Encs and End are the color-semantic encoder and
sparse depth encoder respectively; D and Cf represent the
generated semi-dense depth map and confidence map.

1) SEMANTIC SEGMENTATION MAP AS INPUT
As shown in Fig. 1(c), due to the sparsity of the input
depth map and the presence of a substantial amount of noise
at the edges of objects, additional information is required
to supervise the training of the depth completion network.
Previous approaches primarily introduced the corresponding
VIS image of the depth map into the network to enhance the
completion results. The semantic segmentationmap, obtained
from VIS image segmentation based on semantic informa-
tion, is beneficial for subsequent image analysis and visual
understanding. Within a segmented region, the distribution of
pixel values is uniform, and there are significant differences
at the boundaries of different objects. As a result, the semantic
segmentation map can provide boundary information of
objects and suppress boundary noise. SemAttNet [12] intro-
duces a third semantic-guided branch, built on the foundation
of color and dense depth guidance. This branch concatenates
the semantic segmentation map, the semi-dense depth map
obtained from the color guidance branch, and the sparse depth
map as input to the encoder-decoder to reduce the variance
of depth values around the object boundary. However, this
makes the model complex, increases memory requirements,
and extends the training time. To reduce the complexity of
themodel, we directly concatenate the semantic segmentation
map and the VIS image and input them into a single encoder
to simultaneously obtain both color and edge features.

2) FEATURE CHANNEL SHUFFLE MECHANISM
We employ two separate encoders to extract features of two
different modalities of images. One encoder extracts features
of semantic maps and VIS images, while the other extracts
features of sparse depth maps. When the two encoders extract
features independently, information of only a single input
modality can be obtained. Channel shuffle, first proposed
in ShuffleNet [31], enables information to circulate among

FIGURE 4. Examples of muti-scale residuals from R1 to R5.

different groups after group convolution. FCFR-Net [32]
introduced channel shuffle into the backbone network to
enhance the ability of extracting features and predicting
depth residual maps. Unlike them, we use the channel
shuffle mechanism to exchange features extracted by the two
encoders of different modalities so that the features of one
encoder can be guided by the other encoder’s features. The
two sets of encoder features are added to the decoder features
through skip connections to directly estimate the semi-dense
depth map. Features after channel shuffle can be defined as:

F̂csi , F̂di = Chunk(CS(Cat(Fcsi ,Fdi ))) (2)

whereFcsi , F̂csi ,Fdi and F̂di are the input and output features of
the i-th convolutional block in the color-semantic encoder and
the sparse depth feature encoder, respectively; Cat represents
the concatenation operation; CS is the feature channel shuffle
mechanism; and Chunk means the chunk function in Torch to
split a feature into two parts.

B. SPARSE DEPTH GUIDED BRANCH
SDGBwithin the yellow dotted rectangle in Fig. 2 constitutes
a common U-shaped architecture comprised of one encoder
and one decoder. This branch is utilized for refining the
semi-dense depth map produced by VSGB through the
guidance of real depth values from the origin sparse depth
map. Similar to the upper branch, a convolutional block with
a stride of 2 is employed for down-sampling the features.
Additionally, to further integrate the global features from
the upper branch, the multi-scale features from the decoder
output of the upper branch are concatenated with the encoder
features of the same size in the lower branch. Finally,
at the end of the decoder, the second semi-dense depth map
and its corresponding confidence map are generated. The
semi-dense depth map DSDG and confidence map Cf SDG
generated by the SDG branch are expressed as follows:

DSDG,Cf SDG = DeSDG(EnSDG(SD,DVSG)) (3)

where DeSDG and EnSDG are decoder and encoder in sparse
depth guided branch, respectively.

C. MUTI-SCALE RESIDUALS
The multi-scale residuals in [33] are utilized to add with
the estimated depth maps of each layer in the decoder, thus
obtaining sharp edges. In our approach, we incorporate the
multi-scale residuals (as seen in Fig. 4) from VIS image into
the decoders of two branches, and concatenate them with
the decoded features with the same size, to further enhance
constraints on the object boundaries in the depth features.
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FIGURE 5. Difference of sampling points between traditional convolution
and deformable convolution, redrawn from [35]. The sampling point
positions of deformable convolution are adaptively generated.

The multi-scale residuals (Rk ) of the input VIS image are
as follows:

Ii+1 = Down(Ii), i = 1, . . . , 5 (4)

I ′5 = Up(I6), I ′j = Up(I ′j+1), j = 4, . . . , 1 (5)

Rk = Ik − I ′k , k = 1, . . . , 5 (6)

where Down is the bilinear interpolation with a scale factor
of 0.5; I1 is the VIS image of the original size; and Up is a
2× interpolation up-sampling operation.

D. DEPTH FUSION
We employ the same strategy as used in Chen et al.’s [34]
method and PENet [9], i.e., pixel-level adaptive fusion of
two semi-dense depth maps using the confidence maps
learned from two branches. The fused dense depth map Df
is represented by the following equation:

Df =
eCfVSG · DVSG + eCfSDG · DSDG

eCfVSG + eCfSDG
(7)

E. REFINEMENT MODULE
Deformable convolution [35] is a convolution operation that
has the unique ability to perform deformation sampling.
As shown in Fig. 5, unlike traditional convolution that
employs fixed kernel sampling, deformable convolution
allows for deformable kernel sampling. This crucial dis-
tinction enables deformable convolution to more effectively
accommodate the deformation characteristics of diverse
objects within an image. Specifically, in traditional con-
volution, the fixed sampling local neighborhood ignores
the depth distribution of objects in the local area, which
can result in foreground objects mixing with depth values
of background object during propagation, and the same
applies to objects located in the background. In contrast,
in deformable convolution, the position of each sampling
point in the convolution kernel is estimated based on the color
and depth information of objects in a broad region, allowing
for better adaptation to object deformation and improved
depth map accuracy.

Inspired by the use of deformable convolutions in
NLSPN [2] for depth completion, we propose a Repetitive
Deformable Convolution Module (RDCM) as shown in
Fig. 6. The RDCMmodule further refines the depth values of

FIGURE 6. Network structure of the Repetitive Deformable Convolution
Module (RDCM). RDCM further refines the fused depth map with the
guidance and confidence map. fVSG and fSDG are the output features of
VSG and SDG branches.

objects in the depth map obtained by fusing the two branches,
particularly those located at the edges of foreground and
background objects, using deformable convolutions. The
RDCM module takes the concatenated features from the last
convolution layer of the VSG and SDG branches as input, and
generates guidance information and confidencemaps through
two convolution layers. The guidance information is used to
generate the sampling positions of K neighboring points. The
coordinates of the K non-local neighbors of the reference
point (m, n) are defined as follows:

Nm,n =
{
xm+i,n+j | (i, j) ∈ F (fVSG, fSDG,m, n) , i, j ∈ R

}
(8)

where F is the module that predicts the coordinates of K
neighbors for each pixel; fVSG and fSDG are the features of
the last layer of the VSG and SDG branches, respectively.

The affinity matrices are also obtained by guidance.
In spatial propagation networks, the affinity matrix encodes
the similarity between adjacent pixels and allows for propa-
gation operations in the image or space, while transferring
information from one pixel or position to its neighboring
pixels or positions. The confidence map represents the
reliability of the depth values, where the information of
unreliable pixels (e.g., noisy pixels) should not be propagated
to neighboring pixels, regardless of their affinity with
neighboring pixels. By combining the confidence with
normalized affinity, the interference generated by unreliable
pixels during propagation can be eliminated, which generates
a more accurate depth estimation.

F. LOSS FUNCTION
We utilize the ℓ2-norm to compute the loss between the
predicted dense depth map and the ground truth as shown in
Eq. (9). Due to the low density of ground truth being less than
20%, it still contains a large number of invalid pixels. Hence,
during the loss calculation, we only consider the pixels with
valid depth values as follows:

L(D) = ∥(D− DGT ) ⊙Md∥2 (9)

where D represents the predicted depth map, DGT is the
ground truth, andMd deotes the valid depth mask, which can
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be represented as:

Md (m, n) =

{
1, DGT (m, n) ≥ 0
0, DGT (m, n) < 0

(10)

To optimize two branches and generate depth maps with
high quality, the total loss is the weighted sum of the losses
between the semi-dense depth maps predicted by VSGB and
SDGB, and the fused depth map and the ground truth during
the first stage of training. In the later stage, only the loss of
the fused depth map is calculated as follows:

Ltol = λ1L(DVSG) + λ2L(DSDG) + (1 − λ1 − λ2)L(Df )
(11)

where λ1 and λ2 are the weights of losses for VSGB and
SDGB.

IV. EXPERIMENTAL RESULTS
A. DATASET
The KITTI depth completion dataset [5], [6], [7] is a
benchmark dataset designed to evaluate the performance
of depth completion algorithms in autonomous driving and
robotics applications. It consists of high-resolution VIS
images and corresponding sparse depth maps collected from
Velodyne LiDAR sensors. The dataset includes 85898 image
pairs for training, with 1000 validation image pairs and
1000 test image pairs also provided by the official website.
We evaluate the training performance of ReCSNet using the
official validation set after each training epoch. Due to the
absence of depth data in the top regions of the depth maps
in the KITTI dataset, we crop the bottom of the validation
images to 1216 × 352, and use image pairs with a resolution
of 1216 × 320 during training. Since the corresponding
semantic maps are not provided by KITTI, we use semantic
segmentation maps generated by WideResNet38 [36] as
presented in SemAttNet [12].

B. EVALUATION METRICS
The commonly used evaluation metrics for depth completion
include root mean squared error (RMSE [mm]), mean
absolute error (MAE [mm]), root mean squared error of the
inverse depth (iRMSE [1/km]), and mean absolute error of
the inverse depth (iMAE [1/km]).

C. IMPLEMENTATION DETAILS
We implement ReCSNet using the Pytorch framework
and perform training and validation on a NVIDIA
GeForce 3090 GPU. For optimization, we employ the Adam
optimizer with the parameters β1 set to 0.9 and β2 set to 0.99.
The weight decay is set to 1× 10−6. During the data loading
stage, data augmentation techniques such as random crop,
flip, and color jitter [20] are utilized. Following the training
process of PENet [9], we adopt a three-stage training strategy.
In the first training stage, we only train the front dual-branch
networkwithout refinementmodules. The training images are
cropped to 1216× 320 with a batch size of 4, and trained for

TABLE 1. Performance comparison in terms of RMSE on the KITTI depth
completion validation dataset. The results of other methods are cited
from their papers. Best results are shown in bold, while underline
represents the second-best performance.

35 epochs. The initial learning rate was set to 1.28 × 10−3

and decayed to 1
2 ,

1
10 , and

1
100 of the initial value at epochs

10, 15, and 25, respectively. In the early stages of training,
we set λ1 = λ2 = 0.2 in Eq. 11, then set it to 0.05 in
the fourth epoch and 0 in the sixth epoch. In the second
training stage, we fixed the parameters of the dual-branch
network and trained only the RDCM module for 4 epochs.
The batch size was set to 8, and the initial learning rate was
1.28×10−3. In the third training stage, we train both parts of
the network together, setting the initial learning rates of the
dual-branch network and RDCMmodule to 1.28× 10−3 and
1.28 × 10−4, respectively. The training lasted for 60 epochs,
and the learning rates decayed to 1

2 ,
1
10 ,

1
50 ,

1
250 and 1

1250
of their initial values at epochs 10, 20, 30, 40, and 50,
respectively. To shorten the training time, we randomly crop
the training images to 576× 160 and set the batch size to 12.

D. EVALUATION ON KITTI DATASET
Dense depth maps predicted by ReCSNet on the KITTI
depth completion validation dataset are shown in Fig. 7.
Quantitative measurements on the KITTI validation set
are shown in Table 1. ReCSNet outperforms the baseline
ENet [9] in terms of RMSE, MAE, iRMSE, and iMAE. The
modifications proposed in our backbone result in significant
improvements in RMSE and MAE, which decrease by
13.5mm and 4.3mm, respectively. Compared to PENet [9]
optimized by the CSPN++ module [40], ReCSNet with the
refinement module RDCM achieves a reduction of 0.8mm in
RMSE and 0.07 1/km in iRMSE.

E. ABLATION STUDY
We conduct an ablation study on the KITTI validation
set to investigate the impact of each modification on the
performance. Table 2 shows the evaluation results of the
model under different settings. From the results between
the baseline and method (a), it can be seen that adding
semantic segmentation map and concatenating VIS imag as
inputs to the encoder results in a 3.5mm reduction of RMSE.
In method (b), based on method (a), we utilize two encoders
to extract features of color, edge, and depth, respectively,
and perform feature channel shuffle operation to mix the
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FIGURE 7. Dense depth maps predicted by the proposed ReCSNet on the KITTI depth completion validation dataset. Top to bottom: VIS image, semantic
segmentation map, sparse depth map, dense depth map from the 1st stage, refined depth map, and ground truth.

TABLE 2. Ablation study on KITTI depth completion official validation dataset. Sem represents the incorporation of semantic segmentation maps as
inputs, while CS denotes the utilization of feature channel shuffle mechanism to mix the features from two modalities. MR stands for multi-scale
residuals and RDCM is the repetitive deformable convolution module. bold represents the best performance.

two sets of features. It can be observed from the results
that this modification further reduces the RMSE by 4.5mm.
As evidenced by (b) and (c), incorporating multiple-scale
residuals in the decoder leads to a further decrease of 5.5mm
in RMSE and a 3.5mm drop in MAE. When comparing
methods (c) and (d), the values of the four indicators, namely
RMSE, MAE, iRMSE and iMAE, are all reduced under the
effect of RDCM to further refine the fusion depth map.

V. CONCLUSION
In this paper, we have proposed a dual-branch network
for sparse depth completion based on three encoders and
two decoders, named ReCSNet. We have concatenated VIS
image and semantic segmentation map in VSGB to use edge
information of objects in the semantic segmentation map.
One encoder is used to extract color and edge features, while
another encoder is used to extract depth features from the
sparse depth maps. Channel shuffle is utilized to fuse the
two modal features from both encoders. We have leveraged
edge information in the multi-scale residuals to optimize
object boundaries in the predicted depth map. Moreover,
we have utilized SDGB to extract local features from the
sparse depth map and the semi-dense depth map obtained
by VSGB. VSGB and SDGB generate confidence maps,

which are used to adaptively fuse two semi-dense depth
maps. In addition, we have proposed RDCM to further
refine the dense depth maps predicted by the dual-branch
network. RDCM utilizes deformable convolution to perform
adaptive sampling on features and improve the accuracy of
the predicted depth maps. Experimental results demonstrate
that ReCSNet generates high-quality dense depth maps. The
ablation study shows that the proposed method reduces the
RMSE value of 13.5mm by the first stage and further reduces
the RMSE value of 2.5mm by the refinement stage.

Our futurework includes applying sparse depth completion
to 3D object detection and autonomous driving.
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