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ABSTRACT Lane-level self-localization is a critical task in the field of autonomous driving. Map-based
self-localization is commonly employed to achieve lane-level accuracy in urban settings. However, it is
known that in certain locations, such as narrow roads and intersections, map-based self-localization poses
challenges, leading to failures of autonomous driving tasks. Potential errors in specific locations can be
estimated before driving by leveraging the geometrical structures of the environment and can then be utilized
to enhance the safety of autonomous driving operations. In contrast to traditional self-localization error
estimation methods, which often rely on statistical analyses or regression specific to a particular map format,
this research focuses on identifying fundamental errors in self-localization within various map formats.
The proposed method employs a general formulation of environmental representation, specifically normal
distributions, and a closed-form uncertainty approximation of optimal solutions, enabling the identification
of essential self-localization errors in an environment. The results obtained through this method are not
only valuable for autonomous driving tasks but also contribute to discussions on the quality of specific map
formats. Experiments highlight locations within an urban environment that are susceptible to significant
errors in self-localization based on the proposedmetric. Furthermore, a comparison of self-localization errors
associated with specific map formats using the proposed metric reveals that essential errors in algorithms
can be estimated. The discussion presented in this paper reveals the patterns of geometrical features in the
urban environment that are likely to result in self-localization errors.

INDEX TERMS Autonomous driving, self-localization, high-definition maps, uncertainty analysis.

I. INTRODUCTION
Self-localization is a task to estimate a pose (i.e., translation
and rotation) of the self-vehicle in an environment. Lane-level
self-localization is crucial in autonomous driving systems,
where it finds applications in control, scene understanding,
and more [1]. Reliable self-localization with lane-level accu-
racy is needed for practical driving in diverse environmental
conditions.

Traditional self-localization methods rely on global nav-
igation satellite systems (GNSS) and inertial navigation
systems (INS) [2], [3]. However, in urban settings, GNSS-
based methods are prone to have multipath interference,
reflections, and non-line of sight (NLOS) problems due to
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tall buildings, leading to significant errors [2], [4]. Similarly,
INS-based methods are susceptible to cumulative errors.

For achieving lane-level accuracy in urban environments,
high-definition (HD) maps are utilized in today’s self-
localization [5], [6], [7], [8], [9], [10]. HD maps are
constructed in the target environment before driving and
provide geometrical information about the environment
for self-localization and other autonomous driving tasks.
By leveraging HD maps, self-localization strategies can be
formulated to align light detection and ranging (LiDAR)
scans with the map’s geometrical structures. The process
of aligning two point clouds is known as point cloud
registration (PCR). For example, the iterative closest point
(ICP) algorithm [11] is a well-known PCR method that
iteratively refines the pose by minimizing the sum of
Euclidean distances between LiDAR scan points and their
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corresponding points in the map point cloud. In addition to
point clouds, there are many map formats available for self-
localization, and the HD map formats employed have led to
a variety of PCR issues in autonomous driving.

It is known that self-localization errors occur even with
an HD map in real environments. The error sources of
self-localization are considered map representation and
essential errors in the environment. For example, in the map
representation problem, point cloud maps have redundancy
and noise, resulting in uncertainty of self-localization. Each
map format has advantages and disadvantages, and the best
map format for self-localization is still under discussion.

On the other hand, it is known that certain locations in
the environment pose challenges to self-localization. Such
essential errors in the environment do not depend on map
formats. For example, considering a narrow street surrounded
by tall buildings, self-localization will confuse the actual
positions because LiDAR scans look almost the same at dif-
ferent locations along the longitudinal direction. Such errors
are inherent characteristics of the environment and cannot
be improved by any algorithm or map format. Recognizing
essential errors before driving is vital for ensuring safety in
autonomous driving operations. Estimation of essential errors
is crucial for safe operations in autonomous driving. Because
the essential errors are errors that cannot be overcome
with map representation, they should be considered for safe
operations in autonomous driving. Also, gaps between the
actual errors on a specific map format and the essential errors
can be used to discuss the map format efficiency for each
location. Additionally, theoretically supported essential error
analysis is necessary for convincing the discussion.

Several studies have been conducted to know possible
errors in self-localization before driving, such as statistical-
based [12] and factor-based [13], [14]. For instance, Akai et
al. estimate uncertainty empirically by conducting numerous
experiments at various locations in advance [12]. However,
they focus on specific algorithms, and conducting numerous
experiments is expensive in practice. Conversely, Javanmardi
et al. took a different approach, utilizing geometrical map
structures to estimate errors before driving [14]. They
enumerated possible geometrical features that could impact
self-localization accuracies (called factors) and employed
regression analysis on the factors to fit actual errors in
a specific map format. However, their approach is not
theoretically supported, and some experiments are necessary
for the regression for each environment and the map format.

This paper proposes a method to estimate essential
self-localization errors in the environment. Self-localization
is considered to find the best-fitted pose with a map. The
essential errors can be estimated with an objective function
to represent how the transformed scan and the environment
fit and an uncertainty estimation of an optimum pose on
the function. The concept of this evaluation is shown in
Figure 1. For example, in narrow streets with tall buildings,
possible scans towards the longitudinal direction look similar,
resulting in similar values of the objective function and the

FIGURE 1. The concept to estimate optimization uncertainty from map
structure.

uncertainty of the optimal pose for the longitudinal direction.
This uncertainty is intrinsic to the environment and cannot be
fully mitigated by any optimization algorithm. Therefore, it is
clear that function shape verification is useful for evaluating
self-localization.

This paper is the first study to reveal essential errors
analytically and evaluation in the urban environment. As a
result, the essential error patterns in an urban environment
were evaluated on the proposed metric and discussed.

II. RELATED WORK
This section describes related work about map-based self-
localization and evaluation techniques.

A. MAP FORMATS FOR SELF-LOCALIZATION
As the most basic map utilized in self-localization for
autonomous driving, a point cloud map, comprising a set
of three-dimensional points, is widely adopted. There are
some algorithms for self-localization using a point cloud
map. The most famous algorithm is the iterative closest
point (ICP) [11]. ICP optimizes the self-vehicle pose by
minimizing the sum of the Euclidean distances between
map points and LiDAR scan points. However, there are
a lot of redundant points for self-localization in a point
cloud map. For example, a flat wall is represented as a
dense point cloud, but the geometrical information is only
essentially a plane. This redundancy will cause a storage
size problem in automated vehicles’ limited storage systems.
Also, noises in a point cloud map will affect self-localization
accuracy. Some algorithms based on the ICP algorithm
have been proposed, such as point-to-plane ICP [15] and
generalized-ICP [16]. They extend the point cloud with
normal information belonging to each point.

As a more sophisticated map format, the normal distribu-
tion (ND) map is typically employed in self-localization for
autonomous driving. The normal distribution transformation
(NDT) [17] algorithm achieves accurate self-localization
with smaller map sizes than the point cloud map. An NDmap
consists of a set of normal distributions where each normal
distribution is defined in a voxel. With an ND map, the NDT
algorithm optimizes the self-vehicle’s pose by maximizing
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the sum of the likelihood of scan points within neighboring
normal distributions.

Conversely, certain map formats are tailored to specific
environments. For example, a vector-ND map [18], [19]
incorporates geographic information system (GIS) data for
self-localization in urban environments. Although this format
employs the same self-localization algorithm as NDT, the
results will differ as it focuses on voxels related to vector
information. Various maps based on vector information
have been developed, catering to specific aspects of the
urban environment. Examples include traffic light maps [20],
pole [21], [22], and lines [23].
A common characteristic among these formats is that there

are locations where self-localization cannot identify the pose
well, regardless of the chosen map format. This challenge
arises because errors are inherent in the environment
itself.

B. SELF-LOCALIZATION EVALUATION BEFORE DRIVING
There are several research to evaluate HD maps for
self-localization before actual driving.

Akai et al. proposed an experimental-based error evalu-
ation [12]. Their approach involves conducting evaluations
of self-localization algorithms multiple times in the target
environment before actual driving.

One approach involves a factor-based method that enu-
merates geometrical factors influencing self-localization
accuracy [14]. For example, the feature ratio measures the
proportion of each geometrical primitive (i.e., 1D, 2D, and
3D) in the environment. The authors assume that potential
self-localization errors can be evaluated with a regression
on these factor values. Experimental results demonstrated
a correlation between the NDT algorithm and the errors
estimated by the factor-based method.

In our previous study addressing the problem with-
out conducting experiments in the target environment,
we focused on objective function shapes [24]. Initially,
the objective function shape is estimated at each location
with synthetically generated LiDAR scans. Subsequently,
evaluating the objective function shape involves assessing
the condition number for the covariance matrix fitted to
the shape. The criterion can capture the difficulty of
iterative optimization of self-localization on the objective
function at the location. However, the computational cost
is large because the matching score for estimating the
objective function shape will be repeated at each candidate
of the poses. Also, the evaluation is not theoretically
supported.

Typically, evaluations in this domain rely on heuristic
or experimentally obtained rules. In contrast, this paper
introduces a theoretically derived uncertainty for optimizing
an objective function with map structures. The results
from this proposed evaluation can serve as a baseline
for essential self-localization errors in the environment
without the need for specific rules, as seen in the previous
work.

C. UNCERTAINTY ESTIMATION OF OPTIMAL SOLUTION
In GNSS, the possible positioning errors are modeled as
a dilution of precision (DoP) [25]. A DoP assumes noisy
observations for satellites with known positions and estimates
a covariance matrix for the analytical optimum. However,
it is hard to estimate such a covariance matrix analytically in
map-matching cases because the exact correspondences are
unknown.

On the other hand, several papers focus on estimating a
covariance matrix of the estimation for specific algorithms,
not for the map evaluation. The covariance matrix estimation
for the ICP algorithm is widely studied. A Hessian matrix
of the objective function is typically used to estimate a
covariance matrix, known as Laplace approximation [26].
Aoki et al. considered the Laplace approximation with the
effects of initial guess distribution for covariance matrix esti-
mation [27]. Their uncertainty estimation is specialized for an
algorithm (i.e., ICP) and used for the Kalman filter or some
filtering algorithm. These analyses are algorithm-specific
settings and do not model the uncertainty of self-localization
inherent in the map.

On the other hand, the proposedmodel reasonably analyzes
the errors inherent in the environment by utilizing an approxi-
mation theorem of uncertainty independent of the algorithm’s
properties. Also, a prior distribution of scans is assumed
using a set of normal distributions, resulting in an adequate
representation of the environment for self-localization, which
can be a basis for all the map representations.

III. PRELIMINARY
Firstly, we introduce a theorem as the foundational theory for
approximating the covariance matrix of the optimal solution
with respect to an objective function. Secondly, the objective
function is defined as the sum of the likelihood of a LiDAR
scan to a set of normal distributions.

A. POSE PARAMETERIZATION
A self-localization result indicates a transformation from
a local coordinate system of the LiDAR mount on the
self-vehicle to the map coordinate system. The result is
written in a six-degree vector comprising both a translation
part and a rotation part.

1) TRANSFORMATION MATRIX
The six-degree vector is called a pose parameter, and it is
written with T = [t⊤ θ⊤]⊤ ∈ R6. Here, t = [x y z]⊤ ∈ R3 is
the translation part and θ = [w1 w2 w3]⊤ ∈ R3 is the
rotation part. With the parameters, the transformation matrix
T ∈ SE(3) from a local coordinate system to the map
coordinate system can be drawn as below,

T =

[
R(θ ) t
0⊤ 1

]
(1)

where R : R3
→ SO(3) is a function to convert a rotation

vector θ to a rotation matrix.
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2) ROTATION MATRIX
The rotation vector coefficients, wx ,wy,wz here, means the
coefficients of the vector space so(3), which is the Lie algebra
of SO(3). The element in the Lie algebra so(3) for the θ can
be written as below,

θ∧
= [θ ]× (2)

=

 0 −wz wy
wz 0 −wx

−wy wx 0

 (3)

where [·]× is a projection to a skew-symmetric matrix. Then,
the corresponding rotation matrix R(θ ) ∈ SO(3) can be
written via the exponential function as below.

R(θ ) = exp(θ∧) (4)

3) POINT TRANSFORMATION AND JACOBIAN MATRICES
The three-dimensional point transformation uses · like the
following equation.

T · p := R(θ )p+ t (5)

where T ∈ SE(3) and p ∈ R3 are a transformation matrix
and a point on a local coordinate system, respectively. Then,
a Jacobian matrix of the transformation, ∂

∂T (T · p) ∈ R3×6

and ∂
∂p (T · p) ∈ R3×3, can be derived as follows [28].

∂

∂T
(T · p) = [I3×3 − R(θ )[p]×] (6)

∂

∂p
(T · p) = R(θ ) (7)

B. COVARIANCE MATRIX APPROXIMATION
Our previous work tried to assess uncertainty from the
function shape directly [24]. On the other hand, this paper
focuses on an analytical approximation of the covariance
matrix of the optimal solution for an objective function.
Censi [29] derived an approximation of a covariance matrix
of the optimal point of an objective function via the implicit
function theorem.
Theorem 1: Let us assume an optimization problem of a

parameter x with respect to a target function L(T , z) with
an observation z. If the algorithm A(z) which outputs the
optimal solution x̂ is differentiable, the covariance matrix of
the optimal solution can be approximated as

cov(x̂) ≈

(
∂2L
∂x2

)−1
∂2L
∂z∂x

cov(z)
(

∂2L
∂z∂x

)⊤ (
∂2L
∂x2

)−1

We assume z ∈ R3N as a LiDAR scan and a parameter
x ∈ R6 as a pose parameter. Specifically, as described
in the section III-A, the (translation + rotation vector)
parametrization is used for the pose parameter in this article.

IV. PROPOSED EVALUATION METRIC
This section provides an overview of the proposed map
evaluation metric. The proposed method does not require
an iterative process in the evaluation process once synthetic
LiDAR scans are constructed.

The subsequent sections delve into the specifics of the
proposed method, covering synthetic LiDAR generation and
the formulation for the resultant evaluation.

A. ERRORS OF MAP-BASED SELF-LOCALIZATION
Most map-based self-localization algorithms employ opti-
mization to address the question of ‘‘what is the best pose to
align a LiDAR scan with the surrounding geometrical struc-
tures of a map?’’. The latent error source for self-localization
in the environment can be considered as the uncertainty of
optimum solutions on an objective function representing the
fitness score between the scan and the environment.

Figure 1 illustrates this error source originating from
the environment. With the inherent noise in LiDAR scans,
these uncertainties can be considered as a range of possible
optimum solutions. In other words, this range in which
function values are indistinguishable is determined by the
noise range of a LiDAR scan.

Now, let us explore the considerations of a map format and
the shape of an objective function for map evaluation and
derive uncertainty from the objective function.

B. NORMAL DISTRIBUTION ENCODING OF MAPS
We employ a prior distribution of map structures, assuming
a combination of normal distributions. This assumption is
grounded in the concept that a LiDAR scan is derived from a
set of normal distributions.

Initially, the entire three-dimensional space is subdivided
into voxels. Subsequently, a normal distribution is estimated
using the points contained within each voxel. The objective
function to be minimized for a LiDAR pose x and a LiDAR
scan P = {pn}n=1,··· ,N can be formulated as follows:

L(T ,P) =

N∑
n=1

∑
v∈N (pn)

lvn (8)

lvn = exp
(

−
1
2
(rvn)

⊤6−1
v (rvn)

)
, (9)

rvn = T · pn − µv (10)

where {(µv, 6v)}v=1,··· ,V is a set of the normal distribution
parameters, and N (pn) is a set of neighbor map component
indices around the point.

Figure 2 compares the shapes of objective func-
tions between point-to-point (P2P)-based and normal
distribution-based objective function definitions at a narrow
street with tall buildings. The function shape of P2P distances
exhibits local minimums, leading to an overestimation
of uncertainty. In contrast, the normal distribution-based
function shape is designed to smooth out environmental
effects. This design proves to be more reasonable for
capturing self-localization uncertainty in a narrow street with
tall buildings.

In this study, the voxelization is carried out with a small
voxel size and a wide search radius for each point. A small
voxel makes a detailed representation of geometrical features.
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FIGURE 2. Objective function shape comparison at a narrow street.
(location (i) in Figure 6) Note that the goodness of values is invested in
each other.

Also, a wide search radius can imitate the reassignment
in the registration process. This makes the representation
of objective function more reasonable for general self-
localization algorithms.

C. COVARIANCE MATRIX APPROXIMATION FOR NORMAL
DISTRIBUTION MAPS
The hessian matrices are derived in this section for the
approximation (8). First, the gradient vector for the lvn in (8)
can be derived as below (n, v is omitted for simplicity).

∂l
∂T

=
∂

∂T
exp

(
−
1
2
r⊤6−1r

)
(11)

=
∂

∂T

(
−
1
2
r⊤6−1r

)
l (12)

= −

(
r⊤6−1 ∂r

∂T

)
l (13)

Then, the hessian matrices of (8) can be drawn as below.

∂2l

∂T2 = −

(
J⊤

T6−1JT
)
l −

(
r⊤6−1JT

)⊤ ∂l
∂T

(14)

= −l
(
J⊤

T6−1JT − (J⊤

T6−1rr⊤6−1JT )
)

(15)

where JT = ∂r/∂T .

∂2l
∂p∂T

= −(J⊤

T6v
−1Jp)l − (r⊤6−1JT )⊤

∂l
∂p

(16)

= −l
(
J⊤

T6−1Jp − (J⊤

T6−1rr⊤6−1Jp)
)

(17)

where Jp = ∂r/∂p.
The Jacobian matrices JT , Jp can be drawn as below.

JT =
∂r
∂T

= [I3×3 − R(θ )[p]×] (18)

Jp =
∂r
∂p

= R(θ ) (19)

D. SYNTHETIC LIDAR SCAN GENERATION
In the covariance approximation, a model LiDAl scan is
needed to imitate an average (i.e., ideal) LiDAR scan. For the
model scan, a synthetic LiDAR scan is generated tomimic the
ideal LiDAR scan at a location. Importantly, our evaluation
metric does not necessitate actual LiDAR scans, as synthetic
scans are generated from an existing point cloud map.

The process to generate a LiDAR scan with a point cloud
map follows these steps:

• assumes a LiDAR model (e.g., VLP-16, Velodyne),
specifying parameters such as resolution for azimuth,
altitude, and range.

• generates a ray from a position towards the map.
• samples three-dimensional points along the ray at a
defined invertal.

• identifies the nearest point in the point cloud map for
each sampled point, starting from a near point on the
ray.

• accepts a point as a LiDAR point if the distance to the
nearest point is smaller than a specified threshold.

• repeats the sampling process for all rays.

Subsequently, the proposed metric models actual noisy
effects, including motion blur, occlusion, and sensing noises
in cov(z).

V. EXPERIMENTS
This section details the experiments conducted to reveal
how the proposed metric evaluates real urban environments.
It gives us an insight into the essential error sources
of self-localization in real environments. Through these
experiments, we can analyze where self-localization is
poor.

Furthermore, the experiments include a comparison with
factor values by Javanmardi et al., [13]. These factors
highlight potential features of geometrical structures in a map
that contribute to self-localization errors. This comparative
analysis convinces the conclusion from the geometrical
properties of the surroundings.

A. STUDY AREA
The experiments were conducted with data from an urban
environment, Shinjuku, Tokyo, Japan. An appearance of the
environment and paths we used are shown in Figure 3.
The environments have a lot of specific features in urban

environments, such as tall buildings, trees, and intersections.

B. VEHICLE SETTINGS AND IMPLEMENTATION
A point cloud map for the environment was collected using
previous work [30].
For the model of a LiDAR for self-localization, VLP-

16 from Velodyne is assumed in the experiments. We use
a voxel size of 0.5 meters for the normal distribution map
construction. The search radius of the nearest neighbor voxels
for a query point is set to 4.0 meters to capture features
around the point. The uncertainty of the scan noise, cov(z),
is assumed to be an isotropic distribution for each direction.
For the noise level of LiDAR scans, we assume σ = 0.3 for
each direction. The sigma value has linear increasing effects
on the estimated covariance matrix. It means that the value
will not matter if we want to know the error levels in the
environment. The effects of the voxel size are discussed in
Section. V-F.
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FIGURE 3. Study area and four experimental paths in Shinjuku, Tokyo,
Japan.

C. ESTIMATED ERROR RESULT
Figure 4 shows the error levels for the lateral and longitudinal
directions with the point cloud map. As you can see, there
are some specific regions where estimation will fail for a
direction of longitudinal, lateral, or both. Through all paths,
lateral errors are relatively lower than longitudinal errors.

D. COMPARISON WITH ACTUAL ERRORS OF
SELF-LOCALIZATION ALGORITHMS
To make our method more convincing for self-localization
evaluation, the comparison between the actual errors of
some algorithms and the estimated errors. Actually, self-
localization results from ICP and NDT and the model
standard deviations from the proposed method for each
direction were compared.

1) IMPLEMENTATION
Iterative optimization in ICP and NDT tends to be stacked
in local minimums but can be overcome with better settings
or optimization algorithms. To ignore such effects for the
error analysis, ICP and NDT were conducted in a grid
search manner. It means that the criterion values (target
function values of ICP and NDT) for each 5 centimeters were
evaluated, and the candidates with top or bottom 10 % from
the best criterion value are regarded as estimation.

For the other setting, NDTwas conducted with a voxel size
of 2.0 meters.

2) COMPARISON RESULT
Figure 5 shows the comparison results between modeled
errors and actual errors in Seq.1. As seen in the figure,
the estimated errors can track the actual self-localization
errors. Notably, it is common among the self-localization

algorithms. It means that ourmethod can track essential errors
of self-localization.

Since the estimated errors indicate essential errors in the
environment, gaps between actual and estimated errors may
indicate the effects of choices in map formats for each
algorithm. Such gaps can be used for the discussion of
compression difficulties of the point cloud map in each map
format.

On the other hand, there are locations with gaps between
the higher estimated errors and the lower actual errors, such
as around 400 meters in the cumulative distance. The location
is at an intersection in Seq.1, resulting in a smaller number of
normal distributions for covariance estimation. The sparsity
of distributions might make the estimation confusing for
self-localization error estimation.

E. QUALITATIVE EVALUATION OF ESTIMATED
COVARIANCE MATRICES AND DISCUSSION
Figure 6 shows estimated covariance matrices in the specific
locations. Results are shown on narrow streets with tall
buildings, wider streets with trees, and intersections.

Lateral errors tend to be high on streets with far buildings
(e.g., (vii) and (ix)). Sparse scan points for far buildings
will result in uncertainty toward the lateral direction because
the building walls are essential for lateral estimation.
Longitudinal errors tend to be high on narrow streets with
tall buildings (e.g., (i) and (ii)). This is because there are few
features to identify longitudinal positions in the environment.
On the other hand, the lateral errors are low because of
sufficient planar features for the lateral direction. Also,
on streets with a lot of trees, longitudinal errors tend to be high
(e.g., (iii), (vi), (viii), and (ix)). This is because mismatching
inter near pole-like features (i.e., tree trunks) will create
uncertainty in the longitudinal direction. At intersections
((iv), (vii), and (x)), lateral, longitudinal, or both errors
are high. It is well known that there are few features at
intersections, resulting in such large self-localization errors.

F. PARAMETER EFFECTS
We examined the parameter effects for the estimation.
Especially, the voxel size effects were examined in a narrow
area with tall buildings as Figure 7. As we see, the larger the
voxel size, the estimation tends to ignore the environment.
This is because large voxels will ignore the distinctive
features in the environment for self-localization. A smaller
voxel size can capture local geometry in detail, resulting
in the accurate modeling of the environment with normal
distributions. From the aforementioned discussion, we used
0.5 meters of the voxel size to track the effects of distinctive
features in the surroundings.

G. FACTOR ANALYSIS
Finally, factor values will be compared in locations where
estimated errors are either high or low. These factors have
been proposed by Javanmardi et al. for map assessment
for self-localization [13]. A factor measures a geometrical
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FIGURE 4. Estimated errors with map point clouds. Lateral (left) and longitudinal (right) errors are plotted.

feature in the surroundings as a value. For example, feature
ratios indicate how primitive shapes are the majority in
surroundings (i.e., line, plane, and others). These factors were
previously identified to have an impact on self-localization
accuracy.

By comparing the factor values with the estimated errors,
the geometrical specifics can be explained with the factor
values. This comparative analysis will offer insights into the
reasons behind the estimated errors in the environment.

1) FACTOR COMPUTATION
We compare three factors, such as 1d, 2d, and 3d feature ratio.

The factors are defined using geometrical features of
normal distribution voxels and those layouts. Specifically, the

voxel size of 2.0 meters is adopted in their proposal, and we
adopt the same setting with them.

The following sections describe the definition of factors
roughly. Please refer to the original paper [13] for the
details.

2) FEATURE RATIO
The 1d, 2d, and 3d feature ratio measures the ratio of each
feature in the surroundings. Each voxel in the environments
for factor computation is classified into three classes, such as
1d, 2d, and 3d, based on their eigenvalues of the covariance
matrix. Let σ1 ≥ σ2 ≥ σ3 ∈ R be the squared rooted
eigenvalues for the covariance matrix of a voxel. A metric
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FIGURE 5. Comparison between model errors and actual self-localization
errors.

a1, a2, a3 is defined as follows.

a1 =
σ1 − σ2

σ1
, a2 =

σ2 − σ3

σ1
, a3 =

σ3

σ1
(20)

Then, the voxel is classified as 1d when a1 ≥ a2, a3, 2d when
a2 ≥ a1, a3, and otherwise 3d.
The ratio of the number of each feature is used as a factor

value.

3) RESULTS
Figure 8 shows the statistical results of Welch’s t-test
for comparing factor values at locations with higher
estimated lateral errors (≥ 0.1 meters and lower ones
(< 0.1). The criterion is determined by the lane-level
requirement in self-localization. As the results indicate,
there are significant differences in factor values between
locations.

The feature ratio indicates that the surrounding geometrical
structures. From the result, the 3d feature ratio is lower when
the self-localization errors are lower. The 1D feature ratio

FIGURE 6. Visualization of estimated covariance matrices. Note that it
shows 20 times trust regions. The points indicate the neighbor point
cloud. The colors of the point cloud become brighter the higher height.
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FIGURE 7. Parameter effects for covariance estimation.

FIGURE 8. Statistical test of factor values between places with higher and
lower estimated errors.

and the 2D feature ratio are higher when the self-localization
errors are lower. In conclusion, self-localization tends to be
accurate when the 1d feature ratio and the 2d feature ratio are
relatively higher. These results are reasonable for the common
knowledge of self-localization. As seen in location (vii) and
(ix), 2D features are required for the lateral accuracy. Also,
1D features (pole-like objects) are essential to localize both
lateral and longitudinal directions. On the other hand, the
3D feature spread out for each direction in three-dimensional
space, resulting in less information about self-localization in
the surroundings.

VI. CONCLUSION
We introduce a novel evaluation technique to assess the high-
definition map’s potential capabilities for self-localization
in real-world environments. Unlike previous methods that
rely on empirical or rule-based error estimation using
geometrical features, our approach directly estimates poten-
tial self-localization errors based on theoretical covariance
derived from the assumption that the map comprises normal
distributions. This theoretical modeling provides a rough
representation of the environment’s geometric features,
enabling the estimation of latent errors without the need for
experiments in the target environment before driving.

Our method involves deriving a covariance matrix approx-
imation analytically, incorporating likelihood calculations
for a hypothetical scan against normal distribution maps.
To accommodate differences in sensor models, we employ
ideal LiDAR scan generation using pre-existing point cloud
maps. Moreover, small voxels and wide correspondence
searching are used to enhance the ability of our method to
capture correspondence switching beyond voxels.

We conducted experiments in an urban environment in
Shinjuku, Tokyo, Japan. In the environment, we estimated
self-localization errors that vary in different environmental
settings. Notably, errors tend to be higher in the longitudinal
direction on narrow streets surrounded by tall buildings, while
lateral errors are pronounced in areas with wide roads. High
error levels in both lateral and longitudinal directions were
observed at intersections, aligning with intuitive expectations
and prior analyses. Also, factors [13], [14] are introduced
to describe the estimated self-localization errors from the
geometrical feature aspects. Observed factors reason

The proposed method effectively captures essential errors
in the environment, providing valuable insights into the
environment for self-localization purposes before driving.
Autonomous driving systems can leverage our method for
safe operations, particularly in areas where higher errors are
estimated. Furthermore, we believe that our estimation of
essential errors can contribute to discussions on HD map
formats from a compression perspective.
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