
Received 21 December 2023, accepted 4 January 2024, date of publication 11 January 2024, date of current version 23 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3352605

An Efficient and Scalable Byzantine
Fault-Tolerant Consensus Mechanism
Based on Credit Scoring and
Aggregated Signatures
SHIHUA TONG 1, JIBING LI 2, AND WEI FU2
1Chongqing College of Electronic Engineering, Chongqing 401331, China
2College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Corresponding author: Jibing Li (s210331046@stu.cqupt.edu.cn)

This work was supported in part by the Chongqing Colleges and Universities Innovation Research Group Project under Grant CXQT21031.

ABSTRACT Practical Byzantine Fault Tolerance (PBFT), a classic consensus algorithm in blockchain
technology, is extensively used in consortium blockchain networks. However, it is challenged by issues
such as low consensus efficiency, poor scalability, inability to guarantee throughput with large-scale node
access, and complex communication processes. To solve these problems, this paper proposes an improved
PBFT consensusmechanism based on credit scoring and aggregated signatures, i.e., the CA-PBFT algorithm.
First, the algorithm designs the node credit scoring mechanism, adds the coordination node in the original
algorithm model, stipulates the node state and functional limitations, and realizes the dynamic joining and
exiting of the nodes, to solve the low efficiency of the PBFT algorithm during the consensus process and
the problem of not supporting the dynamic joining and exiting of the nodes; at the same time, the signature
scheme based on the BLS aggregated signature is designed, which reduces the length of the signature and
simplifies the signing process, to solve the problem of the node’s signature taking up too much space during
the consensus process, which affects the efficiency of the signature validation as well as the efficiency of
the signature construction. Experimental results show that this consensus mechanism enables an efficient,
secure, and scalable consensus process with low resource and computational costs.

INDEX TERMS Blockchain, consensus mechanisms, PBFT, credit scoring, aggregated signatures.

I. INTRODUCTION
Since the official release of the Bitcoin system [1] in 2008,
blockchain, based on blockchain technology, has attracted
increasing attention from researchers. Blockchain technology
is developed on the technologies of economics, cryptography,
and computer science [2], which can realize multi-party
peer-to-peer trustworthy information transmission under the
system environment without a trusted center, and its applica-
tions in the fields of smart healthcare [3], digital finance [4],
Internet of Things [5], and supply chain management [6], [7],
[8] have been widely researched.

The associate editor coordinating the review of this manuscript and

approving it for publication was Cong Pu .

Blockchain technology, as an emerging distributed book-
keeping technology, can be mainly divided into three types:
public chain, private chain, and consortium chain, based
on the different environments and authority management
methods of its application. A public chain is a completely
open and decentralized blockchain system, in which anyone
can participate freely, for example, Bitcoin is a typical
representative of a public chain. In a public chain, all nodes
are free to join or leave, and the reading and writing of data is
donemainly through transactions or mining. The public chain
is highly transparent, safe, and reliable, but its transaction
speed and processing efficiency are relatively low due to
its decentralized nature. A private chain, which is deployed
and operated by an individual or private organization,

VOLUME 12, 2024


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

10393

https://orcid.org/0009-0000-4548-6989
https://orcid.org/0009-0007-7847-8732
https://orcid.org/0000-0002-7952-0038


S. Tong et al.: Efficient and Scalable Byzantine Fault-Tolerant Consensus Mechanism

uses blockchain technology for its underlying bookkeeping,
but bookkeeping access is limited to specific participants.
A private chain ismore centralized than a public chain and has
the advantages of controlled access, fast transaction speed,
and low cost, but its limitation is that it is less trustworthy
because it is more centralized. A consortium chain, which sits
between public and private chains, is a type of blockchain that
applies to consortium organizations. A consortium chain is
an organization with a large number of members. Compared
with private and public chains, a federated chain has higher
processing efficiency and lower cost while maintaining
partially decentralized characteristics. Table 1 presents a
comparison of the three types of blockchains.

To better solve the problem of blockchain landing
application, the focus of blockchain research has gradually
shifted to consensus algorithms, which, as the most critical
link in the blockchain, is a protocol that ensures that the
nodes on the chain are synchronized with each other and
determine whether a transaction is legal and generate a block.
More and more consensus algorithms appear enthusiastically,
the Proof of Work (PoW) [9] consensus algorithm in the
public chain can achieve consistency confirmation in the
case of large-scale node access; the Proof of Stake (PoS)
[10] algorithm adds the concept of tokens based on PoW
algorithm, which improves the efficiency of the consensus
in the blockchain; DPoS [11], as an improved scheme of
PoS, achieves better performance and higher fault tolerance
by decentralizing decision-making to coin holders; the
Raft [12] algorithm proposes a strong leader consensus
concept, which greatly improves the consensus efficiency
in the non-Byzantine fault-tolerant domain; the Practical
Byzantine Fault Tolerance (PBFT) [13] consensus algorithm
is aimed at the Byzantine model, which realizes that even
if there is a 33.3% of evil nodes in the consensus network,
the consensus can be guaranteed to be completed. Table 2
presents a comparison of the classical consensus algorithms
mentioned above.

PBFT is a consensus algorithm to address the presence of
malicious nodes in distributed systems [14]. In this algorithm,
each node sends its proposal request to other nodes, who will
vote according to their own rules, and the consensus is finally
reached when a certain number of votes are cast. If there
are malicious nodes in the current consensus network, they
may send different proposals or deceive other nodes, thus
destroying the consensus result. The basic idea of PBFT is to
reach a consensus by eliminating the influence of malicious
nodes on the consensus network through multiple rounds
of voting [15]. In each round of voting, nodes will send
their proposals to other nodes and collect proposals from
other nodes. Then nodes will vote according to certain rules
and send the voting results to other nodes. The nodes will
keep repeating this process until the voting results of all
nodes are the same, the specific algorithm flow is shown
in Figure 1. The BFT algorithm originally proposed by
Lamport et al. [16] can only address faults in distributed

FIGURE 1. PBFT consensus process.

FIGURE 2. The process of the PBFT algorithm.

environments, does not consider practical algorithmic run-
time performance, and requires exponential algorithmic time
complexity O(n2).

As shown in Figure 2, the PBFT algorithm needs to go
through a total of five phases, which are the REQUEST
phase and the PRE−PREPARE phase, the PREPARE phase,
the COMMIT phase, and also the REPLY phase, where the
peer-to-peer (P2P) communication will be initiated at the
PREPARE node and the COMMIT phase. Typically, a PBFT
system needs to be deployed to at least 3f + 1 nodes,
and can tolerate at most f malicious nodes with Byzantine
failures, and the whole system state is determined by 2f +
1 of these nodes. Compared to non-Byzantine systems, their
main problems are the longer time taken by the consensus
algorithm to determine the state, the more node resources it
takes up, and the possibility of errors accumulating over a
long period in the application leading to system crashes.

Compared to other consensus algorithms, the PBFT
consensus algorithm is considered ideal for federation chains
due to its advantages in security, efficiency, controllability,
and real-time performance. However, when there are too
many Byzantine nodes in the consensus network, even if
it does not affect the completion of the whole consensus
process, it will affect its consensus efficiency. At the same
time, since the consensus network of PBFT is static, it does
not support the dynamic change of nodes. If you want to join
a new node or quit a node, you need to reset the consensus
network, which is very inconvenient.

Aiming at the problems of low consensus efficiency of the
PBFT consensus algorithm, poor scalability, node signature
message structure occupying too much space, and difficulty
in applying to large-scale node access, an improved PBFT
consensus algorithm based on credit scoring and aggregated

10394 VOLUME 12, 2024



S. Tong et al.: Efficient and Scalable Byzantine Fault-Tolerant Consensus Mechanism

TABLE 1. Comparison of three types of blockchain.

TABLE 2. Comparison of different consensus algorithms.

signatures is proposed. The contributions of this paper are as
follows:

1) Design node credit scoring rules and node dynamic
join and node dynamic exit processes. Through the
node credit scoring rules to participate in the consensus
process node credit status evaluation, to avoid the evil
nodes affecting the consensus process, and effectively
improve the efficiency of consensus. In the original
consensus model, a coordination node is added, which
is responsible for realizing the function of dynamic
joining and exiting of nodes, and at the same time
combining with the node credit scoring mechanism to
eliminate the evil nodes in the consensus network.

2) The implementation of a BLS-based aggregated signa-
tures scheme reduces the size of the signature within
the node block during the consensus process, shortens
the signature time, and acts on the PRE − PREPARE
phase and COMMIT phase to reduce the number of
times their signatures are verified.

The rest of the paper is organized as follows. Section II
presents the related work. Section III presents the detailed
design scheme of the CA-PBFT algorithm. Section IV
experimentally analyzes the security and performance of the
algorithm. Section V summarizes this study and discusses
future research directions.

II. RELATED WORK
Consensus algorithms, as a core part of the blockchain,
can determine the nature of the blockchain and can enable
a foundation of trust to be established between different
nodes in the blockchain. To target the malicious nodes in
the consensus process, the PBFT algorithm appeared, which
was proposed by Castro et al. [17], the algorithm can still
guarantee the normal operation of the system in the face
of the existence of about 33% of the evil nodes in the
blockchain system, but it can’t guarantee the efficiency of
the consensus when large-scale nodes access the consensus
network. In response to some of the problems arising from
PBFT, such as the Byzantine general problem [16], research
scholars have conducted a large number of studies and
improved it. For example, Xu et al. for the PBFT algorithm
in which the primary node selection is unclear and the

communication complexity is too high, put forward a fuzzy-
set-based improved algorithm VS-PBFT, redistribute the
consensus process, use a consistent hash class consensus
algorithm to partition the nodes of the whole network,
and in each partition to make the primary node selection
to complete the global consensus, but there will be many
limitations in practical applications, and the effect needs
to be verified in real-world environments [18]. Wang et
al. proposed an improved creditworthiness-based PBFT
consensus algorithm (CPBFT), which introduces a credit
rating and a credit coefficient so that the probability of each
node being selected as a primary node is affected by its
past behaviors, and it is more likely that a reliable primary
node will be selected, but the number of nodes participating
in the consensus is too many, which leads to too much
complexity in communication [19]. Gan et al. combined
the characteristics of the CIOT with the PBFT algorithm
to propose an EIOT-PBFT multi-stage consensus algorithm,
which divides its consensus process into three stages: the
grouping stage, and the scoring stage, the consensus reaching
the stage. At the same time, to reduce the probability of view
changes, a single primary node is designed in the form of
a primary node group [20]. Lao et al. proposed a scalable
location-based consensus protocol, G-PBFT, which achieves
high consistency efficiency, low network overhead, and high
scalability through a location-based signer election and era-
switching mechanism [21].

In addition, Lei et al. proposed a weighted PBFT
cross-chain algorithm improvement for the problems of
low fault tolerance, low throughput, and high latency of
the traditional PBFT method, constructed a cluster-centered
blockchain-based cross-chain exchange model, changed the
role of the original consensus node, and proposed three
new node types, which are consensus service node and
cross-chain exchange node and application node [22]. Li et
al. proposed a new protocol Gosig, which designs a new
consensus protocol as well as the underlying Gosig network,
using a combination of transmission and aggregate signature
Gossip to achieve improved data transmission [23]. Na et al.
proposed an improved algorithm based on dual-primary
nodes (DPNPBFT) for the problem that PBFT is unsuitable
for large-scale node access. This algorithm sets two primary

VOLUME 12, 2024 10395



S. Tong et al.: Efficient and Scalable Byzantine Fault-Tolerant Consensus Mechanism

nodes to check and supervise each other to avoid the
centralization problem, and also reduces the communication
complexity of replica nodes, and has a higher fault tolerance
rate compared to the PBFT consensus algorithm [24]. Yang et
al. proposed a high fault-tolerant consensus algorithm NBFT
in response to the problem of ignoring the fault-tolerance
and democracy in the PBFT improvement algorithm, which
follows the blockchain decentralization and democratization
principles, using a consistent hash algorithm to group consen-
sus nodes, avoiding too much communication between nodes
to waste communication resources, reducing communication
complexity, and improving the expandability of the network,
at the same time, for the problem of fault-tolerance ability
of group consensus, node decision broadcasting model and
threshold counting model are proposed, and the nodes are
subjected to a joint failure analysis through the two models,
which makes the algorithm fault-tolerant upper limit is
greater than 1/3 [25]. Jiang et al. proposed a TB-PBFT
algorithm to reduce the probability of a malicious node being
selected as a primary node and improve the reliability of
the primary node by utilizing a comprehensive evaluation
model of the coalition chain. However, the failure-resistant
performance of the algorithm is affected when most of the
primary nodes are malignant nodes [26]. Zhang et al. pro-
posed a DBFT protocol based on a dual-response mechanism,
which allows replica nodes to respond deterministically to the
client twice, allowing for graceful performance degradation
in case of failure. While the dual response mechanism still
ensures good performance, at the same time it can lead
to inconsistency in speculative execution [27]. He et al.
proposed a PBFT based on a reputation mechanism, which
reduces the risk of a malicious node being selected as a
primary node through a reputation scoring mechanism and a
supervisory node mechanism, thus improving the reliability
of the primary node. However, there are some drawbacks
to this approach, such as the risk of centralization and the
possibility of adding additional system overhead [28].

III. CA-PBFT CONSENSUS ALGORITHM DESIGN
A. BLS AGGREGATED SIGNATURE SCHEME
The traditional PBFT consensus algorithmmainly consists of
three phases: PRE − PREPARE , PREPARE and COMMIT ,
in which the main process of the PRE − PREPARE phase
is that the primary node PriNode transmits and packages
the order of the transactions, as well as the message,
to each replica node RepNode in the consensus network and
broadcasts the PRE − PREPARE message to all the replica
nodes, and the number of communication times of this link is
(n − 1), where n is the total number of nodes in the current
consensus network; the main process of PREPARE phase is
that every replica nodes are required to broadcast PREPARE
messages to other nodes and verify the authentication status
of the packaged transactions to the remaining nodes, if the
verification passes, then the PREPARE message subsidiary
signature, the number of communications in this phase is

(n− 1)2; the COMMIT phase needs to verify that each node
broadcasts a COMMIT message for the other nodes with a
signature and that the number of communications is (n2− n).
From the above analysis, it can be seen that the main

communication resource consumption in the consensus
process of the PBFT algorithm exists in the two stages of
PREPARE and COMMIT . To avoid the phenomenon that the
number of communications in the PREPARE and COMMIT
phases increases with the increase of nodes by a very large
number of orders of magnitude, the BLS aggregated signature
scheme is designed. Based on the algorithm proposed by
BONEH [29], this scheme is a signature scheme based
on elliptic curves, which has the characteristics of high
efficiency, high security, and good scalability. By redesigning
the signature process, the signature structure of each node
in the consensus process of the CA-PBFT algorithm is
improved, and the communication complexity O(n2) is
reduced toO(n), which solves the problem that the consensus
network is difficult to access large-scale nodes. The use of
the BLS aggregate signature scheme makes the CA-PBFT
algorithm more efficient, secure, and scalable. The scheme
design is divided into six phases, namely, the aggregated
signature initialization environment phase, the construction
key phase, the public key aggregation phase, the node group
setup phase, the signature phase, and the signature verifica-
tion phase, whichwill be described in the following sequence.

1) AGGREGATE SIGNATURE INITIALIZATION ENVIRONMENT
PHASE
This scheme is built on a non-degenerate bilinear mapping
e : G1 ×G2→ Gt , where G1,G2,Gt are all groups of prime
order q, and g1 and g2 are the generating elements of G1 and
G2, respectively, and there are hash algorithms H0 such as
Equation (1) that allows the computed hash to be an element
of the groupG1, and hash algorithmsH1 makes the computed
hash value an element in the group Zq.

H0 : {0, 1}∗→ G1, H1 : {0, 1}∗→ Zq (1)

2) BUILDING KEYS PHASE
After passing the initialization environment, the bilinear
pair system parameter par is constructed according to
Equation (2), and each node RepNodei generates a unique
key pair according to Equation (3): private key PrivateKeyi,
public key PublicKeyi, and the public key is disclosed to the
consensus network, where i is used to calibrating the node’s
position in the consensus network.

par ← (q,G1,G2,Gt , e, g1, g2) (2)

PrivateKeyi
random
←−−−− (Zq),PublicKeyi← g2ski (3)

3) PUBLIC KEY AGGREGATION PHASE
Aggregation nodeAggNode by the current consensus network
non-primary node PriNode as well as nodes with node
status BLOCK , when the aggregation node receives the
unique public key transmitted by the nodes in the consensus

10396 VOLUME 12, 2024



S. Tong et al.: Efficient and Scalable Byzantine Fault-Tolerant Consensus Mechanism

FIGURE 3. Public key aggregation process for each node.

network, it performs the aggregation operation on the public
key, generates the aggregated public key AggPubKey by
Equation (4), and sets the position of each node’s serial
number in the system, statistically known as PublicKeyList ,
as shown in Equation (5). The public key aggregation process
for each node is shown in Figure 3.

AggPubKey←
n∏
i=1

PublicKeyH1(PublicKeyi,PublicKeyList)
i (4)

PublicKeyList = {PublicKey1,PublicKey2 · · · ,PublicKeyn}

(5)

4) NODE CLUSTER SETUP PHASE
All nodes are provided with the PublicKeyList , a list of public
keys published from the blockchain system, which contains
information about the node’s serial number position in the
current system. For each node, the authentication signature
parameter ui,j is generated for the user with serial number
j ∈ N , as shown in Equation (6).

ui,j← H2(AggPubKey, j)Prikeyi·H1(PubKeyi,PublicKeyList) (6)

Subsequently, each replica node RepNodei will make a
certified disclosure of the serial number of each node and
compute the signature parameter ui,i that is required for itself
in a private environment as shown in Equation (7).

ui,i← H2(AggPubKey, i)Prikeyi·H1(PubKeyi,PublicKeyList) (7)

Subsequently, each replica node collects the signatures of
other nodes on its serial number to get the set Ũı and adds its
parameter ui,j to arrive at the set Ui as shown in Equation (8).

Ũı = {ui,1, · · · , ui,i−1, ui,i, ui,i+1, · · · , ui,n},

Ui = {ui,1, · · · , ui,i, · · · , ui,n} (8)

Then a membership key MebKey can be calculated to
represent the node’s identity qualification within this group
and can be signed and verified within the group, the formula
is shown in Equation (9).

MebKeyi←
n∏
j=1

ui,j (9)

FIGURE 4. Flow of setting up groups for each node.

Up to this point, each replica node RepNodei has obtained
the public-private key pair (PrivateKey, PublicKey) and the
membership key PublicKeyi. All the nodes are verified by
Equation (10), if the verification passes, all the nodes are
honest, and if the verification fails, then it indicates that the
node is evil. Where, the membership key MebKeyi is the
signature attached to H2 (AggPubKey, i) by all nodes.

e(g2,MebKeyi) = e
(
AggPubKey,H2(AggPubKey, i)

)
(10)

After the key-building phase, each node gets a pair of
public and private keys and passes its public key PublicKeyi
to the aggregation node AggNode to generate the global
aggregation public key AggPubKey, and at the same time sets
the serial number of each node in it, and finally publishes
the aggregation public key AggPubKey and the public key
list PublicKeyList . At the same time, the nodes check each
other’s serial number in the system, sign to other nodes; and
transfer back to the original node; when the node receives
the reply from the other nodes, the group setup is performed,
along with the self-signature to generate the membership key
MebKeyi. At last, the nodes have generated the public and
private keys as well as the group key, then it can be signed and
verified freely. The specific flow of the aggregate signature
group is shown in Figure 4.

5) SIGNATURE PHASE
The node RepNodei uses its private key Privatekeyi andmem-
bership key MebKeyi to sign the message m of the current
round and forwards it to the current round of aggregation
node AggNode, and at the same time performs a H0 hash
computation of the message m and the global aggregation
public key AggPubKey as shown in Equation (11). The
pseudo-code for signing message m is as in Algorithm 1.

signi← H0(AggPubKey,m)Privatekeyi ·MebKeyi (11)

After completing the signature, node RepNodei sends the
public key PublicKeyi and signature signi to the aggregation
node AggNode for aggregation operation. The aggregation
node subgroup S is generated based on the signed nodes as
shown in Equation (12).

S = S+ 2i (12)

where the subgroup S statistics are performed in a bitwise
manner, with the initial value set to 0, starting from the lower
bit.

VOLUME 12, 2024 10397



S. Tong et al.: Efficient and Scalable Byzantine Fault-Tolerant Consensus Mechanism

Algorithm 1 Signing Algorithms for Message
Input:Message to be signed m
Output: Signature sign
1: (PrivateKey,PublicKey,MebKey,AggPubKey) :=

Setup();
2: h0:=Hash0(AggPubKey,m);
3: h0:=pow(h0,PrivateKey);
4: sign:=mul(h0,MebKey);

FIGURE 5. Specific process for signatures at each node.

Finally, the aggregation node can obtain the aggre-
gated public key AggPubKey and the aggregate signature
sign1 through the calculation of Equation (13), and at the
same time, generate the structure σ :=(AggPubKey,sign1,S)
to prepare for the subsequent signature validation session.
The pseudo-code for generating the structure σ is as in
Algorithm 2. The flow of the signature session is shown in
Figure 5. 

PublicKey1←
∏
j∈S

AggPublicKeyj

sign1←
∏
j∈S

signj
(13)

6) SIGNATURE VERIFICATION PHASE
In this phase, node RepNodei will carry out the verification
process, receive the structure σ from the aggregation node
AggNode, and verify the signature signa using the aggregate
signature public key AggPubKey, which indicates that the
verification passes and the signature is valid when and only
when the Equation (14) holds. The flow of the node signature
verification session is shown in Figure 6. The pseudo-code
for the validation phase is as in Algorithm 3.

e(H0(AggPubKey,m),PublicKey1)

· e

∏
j∈S

H2(AggPubKey, j)

 = e(sign1, g2) (14)

Algorithm 2 Algorithm for Structure Generation
Input: The signature set signSet of message m, the

signer public key PublicKeySe, the signer
serial number set S

Output: Structure σ

1: Struct σ : {PublicKeya,signa,subgroup};
2: if !chenckValid(σ ) then
3: return NULL;
4: end if
5: σ→subgroup:=S;
6: σ→PublicKeya→ Init();
7: σ→ signa→ Init();
8: for PublicKey ∈ PubLicKeySet do
9: σ→PublicKeya:=mul(σ →PublicKeya,PublicKey);

10: end for
11: for sign ∈ signSet do
12: σ→signa:=mul(σ →signa,sign);
13: end for
14: return σ ;

FIGURE 6. Signature verification process.

B. NODAL CREDIT SCORING MECHANISM
To manage the nodes participating in the consensus process
in the current blockchain and reduce the probability of
Byzantine nodes being elected as primary nodes in the
consensus network, credit scoring rules are designed to divide
the node state and limit their functions in the consensus
process.

Credit scoring rules are defined as follows:
(1) Organization Orgiϵ{Org1,Org2, · · · ,Orgn}, where n

represents the number of organizations in the blockchain
participating in the consensus process. Organizations are vol-
untarily applied for by individual users or other institutions
and are certified and authorized by the consortium blockchain
system. Each organization Orgi also contains n nodes Nodeij.
(2) The primary node PriNodeij, where i indicates that it

belongs to the organization Orgi, j represents the position of
the node in the organization Orgi, and the other functions are
consistent with the functions of the primary node in the PBFT
algorithm.

(3) The replica node RepNodeij, where i indicates that it
belongs to the organization Orgi and j indicates the location
of its node in the organization Orgi, P2P communication is
used between nodes, and the nodes in the organization store

10398 VOLUME 12, 2024



S. Tong et al.: Efficient and Scalable Byzantine Fault-Tolerant Consensus Mechanism

the organization’s private key PrivateKey. For the judgment
of the node’s behavior, if the node maintains the normal
operation of the consensus process of the blockchain network
and produces blocks normally, it is an honest node; malicious
tampering with block data, blocking the consensus process,
and destroying the consensus protocol are bad nodes or faulty
nodes.

(4) The credit valueCij, where i represents the organization
to which it belongs Orgi, where j indicates the location of its
node in the organization Orgi. For the setting of credit value,
this study sets a total of five levels, Cmax is the maximum
available credit value of the node, Ctrust indicates that the
credit value range of the node has entered the trusted stage,
Cinit indicates the initial value of the credit value of the node
in the process of joining the consensus for the first time,
Cuntrust indicates that the current credit value of the node is
in the untrustworthy stage, and Cmin indicates the minimum
credit value of the node, and intends to enter the elimination
process. The credit value range is shown in Equation (15).

Cmin < Cuntrust < Cinit < Ctrust < Cmax (15)

Algorithm 3 Algorithms for Signature Verification
Input: Signed message m, structure σ

Output: Validation success or failure
1: if !chenckValid(σ ) then
2: return NULL;
3: end if
4: h0:=Hash0(AggPubKey,m);
5: e1:=pairing(h0,σ→PublicKeya);
6: h2Prod→Init();
7: for j∈σ→subgroup do
8: h2:=Hash02(AggPubKey,j);
9: h2Prod :=mul(h2Prod ,h2);
10: end for
11: e2:=pairing(h2Prod ,AggPubKey);
12: e3:=pairing(σ → signa,g2);
13: if mul(e1,e2)==e3 then
14: return TRUE ;
15: else
16: return FALSE ;
17: end if

(5) Credit reward and punishment rules: To enhance
the enthusiasm of the participating nodes in the consensus
process to improve the consensus efficiency and avoid
the evil nodes from affecting the consensus, rewards, and
punishments are made according to the contributions of the
nodes to the consensus process. The node reward equation
is shown in Equation(16), and the node penalty equation is
shown in Equation(17).

Cij = Cij + reward (16)

Cij = Cij − punish (17)

where Cij is denoted as the credit value of node j in the
organization orgi; reward is the reward score made by the
node in the link; punish is the penalty score that the node
received in that session.

(6) Credit recovery mechanism: To prevent the node’s
credit value from always being at a high level, even if it
has done evil many times in a row, it still cannot reduce
the possibility of it serving as the primary node, resulting
in the impact of the consensus process in multiple rounds,
the credit regression coefficient is set to avoid the node
being punished by too high credit value and still unable to
avoid it from joining the consensus after multiple rounds.
The credit recovery equation is shown in Equation (18) and
Equation(19).

Cij = Cij − [t/T ]× R (Cij > Cinit ) (18)

Cij = Cij + [t/T ]× R (Cij < Cinit ) (19)

where t represents the time from the last time the node
participated in the voting process to this participation in the
voting; T represents the average time constant for the node
to participate in a consensus; R stands for credit recovery
constant.

(7) Node credit status: Statusij where i is the location of
the node in the organization Orgi, and j is the location of the
node in the organization. According to different credit scores,
four statuses are designed, and the categories are shown in
Equation (20).

σ (Nodeij) = {Excellent,Good,Fair,Poor} (20)

In the formula, Excellent means that the node has not
participated in the generation of invalid blocks within a
period T , and has not affected the consensus efficiency, and
its credit value is in the range of Ctrust < Cij < Cmax . Good
means that the node has no behavior for some time has no
relationship with the generation of blocks, and its credit value
is in the range of Cinit < Cij< C trust ; Fair means that the
node participates in the generation of blocks at time T and
produces invalid blocks, affecting consensus, and its credit
value is in the range of Cuntrust < Cij < Cinit ; Poor indicates
that the node has participated in block generation within time
T and has continuously produced invalid blocks, and is ready
to undergo the elimination procedure, and its credit value is
in the range of Cmin < Cij < Ctrust . The node credit state
transition is shown in Figure 7.

Among them, there are four node states, and the node with
the Excellent state has all the functions of the node; The node
with theGood status is the node that has joined the consensus
network for the first time or has carried out credit-related
mechanisms, and only restricts the priority of its primary
node; Nodes in the Fair state are nodes that have no relevant
contributions to the current consensus process, and cannot
be elected as the main node in the consensus process; The
node in the Poor state is the node that intends to enter the
elimination process, and the primary node is not allowed to
be elected and the possibility of serving as a replica node is

VOLUME 12, 2024 10399



S. Tong et al.: Efficient and Scalable Byzantine Fault-Tolerant Consensus Mechanism

FIGURE 7. Node credit state transition.

reduced. Nodes in the Block state are deprived of all functions
and enter the elimination procedure, as shown in Table 3.

In the process of the traditional PBFT consensus algorithm,
the probability of each node becoming the primary node is
the same, and they all have the right to initiate consensus
and obtain consensus results. If the node to be selected
as the primary node is the evil node, the communication
resources of this round will be wasted, failing the consensus
process of the round and the failure of the consensus result.
At the same time, in the face of large-scale node access,
the traditional PBFT consensus algorithm will carry out P2P
communication in the PREPARE stage and the COMMIT
stage, which requires a lot of communication resources,
resulting in a sharp decline in the performance of the
consensus network. To improve the participation of honest
nodes in the consensus network and avoid the direct selection
of evil nodes to affect the consensus process, a voting
mechanism based on node credit score is designed, which
can increase the probability of nodes with higher credit scores
becoming primary nodes. The node credit scoringmechanism
is defined as follows:

(1) Voting
According to Figure 7 and Table 3, only the nodes with

the node status of Excellent , Good , Fair , and Poor have the
right to vote, and the nodes participating in the consensus are
selected among the above nodes. There are two options for
voting, for and against. In each voting session, each node can
vote for or against within the time parameter T .

(2) Voting nodes
Voting nodes can be obtained from Table 3, except for

nodes with a credit status of Block, they can participate in
the voting process and can increase their credit score through
voting.

(3) Voting results
The calculation of voting result will be calculated by the

credit status of the nodes participating in the voting and their
credit scores, as shown in Equation (21).

Resultij = Stateij × Cij +
N∑
k=1

n∑
l=1

Statekl × Votekl (21)

where Stateij is the credit state coefficient of the correspond-
ing node; Cij is the credit value of the node; N represents the

number of organizations participating in voting; n represents
the number of nodes in the organization that participate in
voting; Votekl is the vote value of the corresponding node,
which is set in this article, and the value is taken as 1 for
support and −1 for opposition.

(4) Rules for voting rewards and punishments
To prevent the malicious voting of the nodes participating

in the voting from affecting the consensus results, and to
restore the credit value of the nodes participating in the
voting, the following voting reward and punishment rules are
defined:

First, when a node with a node status of Poor participates
in the election of a primary node or a replica node and
is not successfully elected, all participating nodes that vote
against it in the consensus process will receive credit recovery
rewards.

Second, when the elected node successfully generates a
block, all participating voting nodes that vote for it will
receive credit recovery rewards.

Third, when the elected node does not produce a block and
becomes a bad node or a faulty node, the participating voting
nodes that oppose its support will receive credit penalties;
Instead, get credit rewards.

In the voting process, nodes with voting functions will
participate in this vote, and the voting result calculation
Equation (21) will be used to count the voting results of this
round.

In addition, improvements are made to the PBFT consen-
sus algorithm by adding a coordination node to its original
node type and establishing two tables in the coordination
node (we assume that the coordination nodes are trusted
and reliable secure nodes), respectively, the information table
of all nodes and the information table of consensus nodes,
and the newly added coordination node is responsible for
coordinating the detailed information of all nodes in the
entire consensus network as well as coordinating the dynamic
joining and exiting of nodes in the consensus network.

The coordination node, shown in Figure 8, does not
participate in the entire consensus process, but merely records
the status of the nodes in the consensus process at the time
of execution and receives request information from newly
joined nodes and nodes to be withdrawn. When there is a
proposed joining node, the node will send a request to the
current network node status table and synchronize the status;
when the node is proposed to exit, the coordination node will
broadcast the current network node status change information
to other nodes in the network.

The whole node information table and the consensus
node information table are shown in Table 4 and Table 5.
The members in the whole node information table include
the nodes currently participating in the consensus as well
as the nodes that will be eliminated in the future, and
their information mainly contains the node’s organizational
location, public key, credit value, credit status, etc.; whereas
the consensus node information table only contains the
information of the nodes that are participating in the current

10400 VOLUME 12, 2024



S. Tong et al.: Efficient and Scalable Byzantine Fault-Tolerant Consensus Mechanism

TABLE 3. Node state permissions.

FIGURE 8. Design of coordination node.

TABLE 4. All node’s information table.

TABLE 5. Consensus node information table.

consensus session, and the information is the same as that
in the whole node information table, except that the node’s
location in the process of the consensus network has been
redefined.

1) VIEW SWITCHING PROTOCOL
To ensure the consensus efficiency of the algorithm, when the
replica node RepNode suspects that the current primary node
PriNode is an evil node, or the credit score of the primary
node is too large leading to timeout and evil. The replica
node then enables the view-switching protocol to change the
selection of the primary node. The view-switching protocol
mainly includes the VIEW−CHANGE phase, NEW−VIEW
phase, andNEW−VIEW−ACK phase, and the view-specific
switching process is shown in Figure 9.
VIEW − CHANGE phase: in the current round view v,

if the replica node does not receive a response to the relevant
message from the primary node within the specified time
T , it is determined that the primary node is faulty and a
request for applying for a view-change is sent to prepare for
the change of the primary node. Entering into the view with
round v + 1, it simultaneously penalizes the primary node

FIGURE 9. View–specific switching process.

with credit and updates the credit value score of that node,
and at the same time encapsulates the VIEW − CHANGE
message≪ view− change, v, hlast , credit I >signature, I , c >

broadcasting to all the nodes of this consensus process, where
hlast is the height of the block confirmed in the most recent
round of this node, credit i is the node’s credit score for the
primary node PriNode after it was credit penalized, signature
is the signature of this node’s RepNodei for its encapsulated
message, i is the number of the node that encapsulated this
message in the consensus node’s information table, and c is
PRE − PREPARE message and COMMIT message for the
block generated by the height of the hlast node.
NEW − VIEW phase: when the new primary node

PriNode receives 2f identical VIEW − CHANGE messages
from different nodes, it verifies the consistency of its
view v as well as block height h. If they are consistent,
the NEW − VIEW message is encapsulated ≪ new −
view, v, hnext , credits, node >signature≫, and the new primary
node then enters into the round v+1 view and broadcasts the
NEW −VIEW message to the other nodes, hnext is the height
of the next generated block, and node is the list of all node
IDs participating in this aggregated signature.
NEW − VIEW − ACK phase: the primary node PriNode

that produces the next block will send a NEW − VIEW
message to each replica node and coordinator node in
the consensus network, and then the replica nodes and
coordinator nodes will verify the signature information in
the message. If the verification passes, the primary node’s
credit value score in the whole node information table and
the consensus node information table will be updated, and
the replica node RepNode encapsulates and sends a NEW −
VIEW −ACK message to the primary node of the next round
≪ new − view − ack, v, hnext , credits > signature, i >,
where i is the number of the replica node that sent the
NEW − VIEW − ACK message in the consensus node

VOLUME 12, 2024 10401



S. Tong et al.: Efficient and Scalable Byzantine Fault-Tolerant Consensus Mechanism

information table, and sending the NEW − VIEW − ACK
message indicates that the validation has passed and opens a
new round of consensus.

2) NODE DYNAMIC JOINING PROCESS
Preparation phase: since the consensus method in this study
is deployed in the consortium chain (permission chain) when
a new node applies to join the consortium chain, it first needs
to apply to join the node to be authorized to obtain its private
key, public key, and other information.

Application phase: when a new node applies to join, the
coordinating node will update the node’s node public key,
credit status, and credit score of that node in the information
table of all nodes, and at the same time synchronize the
information table of all nodes and the information table
of consensus nodes to the new node. The coordinating
node encapsulates and broadcasts a JOIN message to all
nodes participating in this consensus network in the format
of < join, i, id, ip,PublicKey, timestamp >signature, where
i is the number assigned to the new joining node in the
consensus node information table, id is the ID of the new
joining node in the whole node information table, ip is the ip
address of the new joining node, PublicKey is the BLS public
key of the new joining node, timestamp is the joining time of
the node, and signature is the signature of the coordinating
node on the JOIN message, which is used to verify the
authenticity of the joining message, and its BLS aggregate
signature method is described in the previous subsection.

Validation phase: when all the nodes in the consensus
network receive the JOIN message sent from the coordinating
node, they need to validate the message. If the validation
passes, then encapsulate and send a JOIN −REPLY message
in the format of≪ join− reply, i, id >signature, j > as well as
feed the node number j to the coordinating node to indicate
the agreement of the node to join the consensus process,
where j is the number in this consensus network of the replica
node RepNodej that sent the JOIN − REPLY message.

Acknowledgement phase: when the coordinating node
receives JOIN −REPLY messages from nodes accumulating
to 2f + 1, it constructs a JOIN − COMMIT message in the
format of < join − commit, i, id, node, v >, where node
refers to the list of information about the nodes that are
currently participating in the aggregation signature process,
and v is the next view serial number. Finally, the coordinating
node will encapsulate the JOIN − COMMIT message and
broadcast it to all replica nodes in this consensus process.
When all the nodes participating in the consensus process
receive the JOIN − COMMIT message, they will verify it,
and when the information is verified, the coordinating node
will add the node’s information to thewhole node information
table and the consensus node information table.

The node dynamic joining process is shown in Figure 10.

3) NODE DYNAMIC EXITING PROCESS
Application phase: the application withdrawal node encapsu-
lates the EXIT message < exit, id, ip, timestamp >signature

FIGURE 10. Node dynamic joining process.

and sends it to the coordinating node, where exit is the
node’s application exit message, id is the position of the
application exit node’s serial number in the consensus node
table, timestamp is the node’s application exit time, and
signature is the node’s signature on the EXIT message.

Verification phase: when the coordinating node receives
the EXIT message, it verifies the signature signature in
the message encapsulated in the EXIT message, and if the
verification passes, it encapsulates and sends theEXIT−REQ
message < exit − req, id, exitmsg >signature to the rest of
the nodes in the consensus network, where id is the serial
number position of the requesting exit node in the consensus
node table, and the exitmsg message contains the request
information of the proposed exit node. When the other node
Node in the consensus network receives the EXIT − REQ
message broadcast from the coordinating node, it verifies
the signature and exitmsg in the message. If the validation
is successful, the encapsulated EXIT − REPLY message
≪ exit − reply, id >signature, j > is sent to the coordinating
node to indicate its consent for the node to exit the consensus
network, where j is the number of the node that agrees to the
node’s exit.

Exit phase: the coordinating node starts to collect the
EXIT − REPLY messages broadcasted by the nodes in
the consensus network, and when 2f + 1 messages have
been collected, the coordinating node starts to construct
an EXIT − COMMIT message in the format < exit −
commit, id, node >signature, Where node is a list of ids
of all nodes participating in this aggregated signature for
subsequent signature verification. At the same time, it updates
the whole node information table, and consensus node
information table, changes the node status to Block , deletes
the relevant information of the node, including ID, etc., and
finally broadcasts the EXIT − COMMIT message to the
consensus network.

The node dynamic exit-specific process is shown in
Figure 11.

4) ELIMINATION OF LOW CREDIT VALUE NODE PROCESS
In each consensus process, if there is a faulty node or an evil
node, it will lead to the failure of this consensus, affecting
the consensus efficiency and wasting the communication
resources. At the beginning of each consensus, the entire

10402 VOLUME 12, 2024



S. Tong et al.: Efficient and Scalable Byzantine Fault-Tolerant Consensus Mechanism

FIGURE 11. Node dynamic exiting process.

FIGURE 12. Evil node elimination process.

consensus network is checked for the existence of nodes with
node credit status of Block , and their elimination process is
performed. The specific process of eliminating evil nodes is
shown in Figure 12.

Preparation phase: before starting consensus, PriNode, the
primary node in the current consensus network, will check
the credit status in the information table of all nodes in its
network, and if it finds a node whose node’s credit status
is Block , it will start the process of eliminating the nodes
with low credit values, encapsulate the CLEAR message
< clear, v, id, ip >signature and broadcast it to the nodes
whose node credit status is not Block , where v is the current
view round number, id is the ID of the node whose credit
status is Block in the whole node information table, and
signature is the signature of the primary node for the CLEAR
message.

Verification phase: when a node in the consensus network,
except the node whose credit status is Block , receives a
CLEAR message from the primary node, it verifies whether
the information is correct or not, and at the same time verifies
the information table of all nodes of the participating nodes
whether the node’s credit status is Block or not, and if the
verification is successful, then it constructs a CLEAR −
REPLY message ≪ clear − reply, v, id, ip >signature, j >

and broadcasts it to the primary node, where j is the number of
the signature of that node in the consensus node’s information
table.

Elimination phase: in the case of CLEAR − REPLY
messages from 2f + 1 different nodes, verify whether the
message is authentic or not. If the verification passes, the
verified signatures are aggregated through BLS aggregation
signature and the encapsulated message CLEAR−COMMIT
message < clear − commit, v, id, ip, node >signature is
broadcast to the nodes in the consensus network whose

FIGURE 13. CA-PBFT algorithm consensus process.

node status is not Block and to the coordination nodes.
When the node that receives this message passes on its
verification, it updates the consensus node information table
and completes the eviction status.

C. ALGORITHMIC CONSENSUS PROCESS
The CA-PBFT algorithm maintains the consensus process of
the traditional PBFT algorithm and requires an initialization
environment configuration before proceeding to the consen-
sus session, first of all, it is necessary to initialize the cryp-
tographic environment of the aggregated signature scheme
par , the parameters of each node’s public-private key and
aggregated public key (PrivateKeyi,PublicKeyi,MebKeyi).
The CA-PBFT algorithm consensus process is shown in
Figure 13.
PRE − PREPARE phase: the primary node PriNode will

pack the set of transactions T = {T1,T2, · · · Tmax} that exists
in the transaction pool into the block Block, and at the same
time broadcast the PRE − PREPARE message ≪ pre −
prepare, v, n,H , d, creditPN >SPN ,B >, where creditPN is
the node authentication information, which contains the block
Block’s PRE − PREPARE message and marks the serial
number as n, the height of the block Block is H , and d is
the block Block digest, namely the block hash value.
PREPARE phase: the backup node RepNodei enters the

PREPARE state and sends a PREPARE message to the
primary node PriNode. At the same time, RepNodei executes
the sign function and attaches the signature si as well as the
node information state credit i, which encapsulates and sends
the PREPARE message < prepare, v, n,H , credit i, i >Si
to a primary node PriNode. The primary node PriNode
performs signature verification, node information state table
verification of PREPARE messages from different replica
nodes, and counts the set S of that replica node. When the
number of verified PREPARE messages reaches 2f + 1,
the collected signatures and corresponding public keys are
then aggregated to generate the structure σprepare in that
round, and at the same time construct the PREPARE message
< prepare, v, n, σprepare, creditPN >PN . And broadcast the
PREPARE message to other backup nodes based on the node
information in creditPN .
COMMIT phase: backup node i enters theCOMMIT phase

and replies to the primary node PN to confirm the COMMIT
message, which is in the format < commit, v, n,H , credit i,
i >Si . When the primary node receives a COMMIT message
with the same 2f + 1 Hash values, view number v, and node
information creditPN , it aggregates the collected signatures

VOLUME 12, 2024 10403



S. Tong et al.: Efficient and Scalable Byzantine Fault-Tolerant Consensus Mechanism

and the corresponding public keys and generates a signature
structure σcommit for the round, which is encapsulated and
stored in the COMMIT message, with the message format
< commit, v, n,H , σcommit , creditPN ,PN >SPN . Finally,
an acknowledgment message is broadcast to the backup node
based on the local node information table.
Reply phase: after the backup node receives the COMMIT

message from the primary node, the backup node adopts
the same verification rules as in the PREPARE phase to
test whether the COMMIT message is legitimate or not.
Passing the test means that the block Block is recognized
by the consensus network, and the backup node starts to
execute the transaction operation in the block Block . When
the transaction is finished, the result is fed back to the client,
when the client receives f + 1 the same results from different
nodes, it means the request is completed, otherwise, it means
failure.

IV. SECURITY AND PERFORMANCE ANALYSIS
A. SECURITY ANALYSIS OF AGGREGATE SIGNATURE
SCHEMES
1) SECURITY MODEL
The digital signature designed in this scheme defines security
as the aggregate signature scheme in a game that is said to be
secure if the saboteur holds themaximum attack resources but
is unable to reach the sabotage. That is, the saboteur cannot
make an existential forged message attack. The verification
process of the aggregate signature scheme is as follows:

Set up saboteur A and defender C . There exist n signature
members {U1,U2,U3, · · · ,Un}, of which there exist l
signature members that are manipulated by the saboteur A
and that can generate l signature member signatures, where
1 ≤ l ≤ n.
Step 1: defender C runs the initialization algorithm par ,

generates the relevant parameters params, and sends the
published parameters to saboteur A.
Step 2: saboteur A initiates a hash value query, and

defender C may manipulate the hash random predictor to
respond to saboteurA request, or saboteurA creates amessage
digest mi as input, and defender C manipulates the signature
random predictor to respond to a portion of the signature
content in the digest mi.

Step 3: when the saboteur has initiated multiple queries,
the aggregate signature structure σ ∗ is output for the
message m∗, where m∗ is not part of any of the inputs
in the non-partial signatures in item 2. If σ ∗ passes the
verification of the messagem∗ sent by the signature members
{U1,U2,U3, · · · ,Un}, it is determined that the saboteur A
attack is successful.

As a result, under a stochastic prediction model, there
exist n signature membersU1,U2,U3, · · · ,Un, and saboteur
A gains control of l signers and can select messages for
imitation under unrestricted conditions, and in polynomial
time t , launch up to qH Hash queries and up to qs
partial signature queries to the defender. Assuming that the

saboteur A achieves a probability of success of ε under
((n, l), qH , qs, ε), the scheme is not sufficiently secure,
otherwise the scheme complies with the security setting.

2) SECURITY VERIFICATION
Assume that the signers {U1,U2,U3, · · · ,Un} have and have
only one honest signer, U1, and that the disruptor has the
maximum attack capability, and that the disruptor can gain
control of n− 1 signers. Let the generating element of group
G1 be P. The computational Diffe − Hellman problem on
group G1 is defined as (aP, bP) ∈ G1, and defender C uses
the saboteur A as a subroutine to output the value of abP.

Step 1: defender C runs the initialization algorithm to
generate the additive cyclic group G1 and the multiplicative
cyclic group G2, as well as the bilinear mapping e : G1 ×

G1 → G2, which generates the system parameters par =
{G1,G2, e, q,P,H1,H2,H3}.

Step 2: defender C uses list L1 to record H1 values.
Saboteur A inputs signature member L and user public
key PublicKeyi(1 ≤ i ≤ n), and defender C queries
list L1. If there exists a record in L1 that is the same
as (L,PublicKeyi, ai), it responds to ai to saboteur A.
Alternatively, challenger C arbitrarily chooses ai ∈ Z∗q and
saves (L,PublicKeyi, ai) to L1 and responds ai to saboteur A.

Step 3: saboteur A sends message mi, defender C checks if
(mi,L,P,Wi) information exists in list L2, if it exists, then
sends Wi to saboteur A. Otherwise, defender C randomly
chooses ci ∈ Z∗q and calculatesWi = ci(bP)∈G1, and records
(mi,L,P,Wi) in list L2, and returnsWi to defender C .

Step 4: in the case of determining the set of signature
members L, saboteur A uses the public key PublicKeyi, the
signature orderDi, and the defender C inquires whether there
exists the corresponding record (Di,PublicKeyi,Vi) in the list
L3, and if it exists returns to the saboteur A. If it doesn’t
exist, then the defender C randomly chooses the Vi ∈ Z∗q and
records (Di,PublicKeyi,Vi) in the list L3, and returns the Vi
to the saboteur A.

Step 5: saboteur A inputs user Ui, and if Ui ̸= U1,
then defender C randomly selects PrivateKeyi ← Z∗q ,
calculates the public key PublicKeyi = PrivateKeyiP, obtains
(Ui,PrivateKeyi,PublicKeyi), stores it in the list S, and
returns PrivateKeyi to saboteur A. If Ui = U1, then defender
C orders PublicKey1 = aP, resulting in (U1,PrivateKey1),
which is stored in list S.
Step 6: saboteur A records user Ui’s partial signature

result in list P. Saboteur A inputs user Ui and his public
key PublicKeyi, and verifies whether

(
Ui,PublicKeyi

)
is a

valid signature for message mj. When Ui ̸= U1, defender C
queries table L1 for (L,PublicKeyi, ai), L2 for (mi,L,P,Wi),
L3 for (Di,PublicKeyi,Vi) and also S for the private key
PrivateKeyi, and computes Ui’s signature on the part of mj,
Signi = (Vi + aiPrivateKeyi)Wi, and returns Signi to the
saboteur A. When Ui = U1, exit the partial signature query
and return failure.

Step 7: for the signature set {L = U1,U2,U3, · · · ,Un} and
the messagem∗, the disruptor A outputs the forgery result σ ∗.

10404 VOLUME 12, 2024



S. Tong et al.: Efficient and Scalable Byzantine Fault-Tolerant Consensus Mechanism

TABLE 6. Experimental hardware environment configuration.

If the above process is not terminated, the private key of user
U1 is not successfully submitted to the private key query list,
and σ ∗ has not been partially signed query, then σ ∗ forged
successfully. Saboteur A succeeds, then Equation (22) holds.

(σ ∗,P) = (c∗(bP,V1P+ a1(aP)+
n∑
i=2

(ViP+ aiPublicKeyi))

(22)

The defender C can calculate the partial signature result
σ1 ofU1 by looking up the list {L1,L2,L3, S,P} and the valid
signature result σ ∗ of the saboteur A. The result σ1 can be
obtained from the Equation (23).

σ1 = σ ∗ −

n∑
i=2

(Vi + aiPrivateKeyi)[c
∗(bP)] (23)

It also follows from the partial signature Equation (24).

σ1 = (V1 + a1(aP))c∗(bP) (24)

So defender C can calculate abP from Equation (25).

abP = (σ1 − c∗(bP))(a1c∗)−1 (25)

Therefore, if saboteur A can defeat the design with a great
advantage ε in polynomial time, then defender C can also
solve the CDH problem with the resources of saboteur A in
the same amount of time [30].

B. PERFORMANCE ANALYTICS
The system building and testing environment is mainly
realized through Linux virtual machine services. The specific
hardware and software version parameters and configuration
information are shown in Table 6 and Table 7. The
experiments implement PBFT, CPBFT [19], G-PBFT [21],
VS-PBFT [18], RB-BFT [28] and CA-PBFT algorithms,
and the experiments test the performance of the CA-PBFT
algorithm through the comparative analysis of the commu-
nication complexity, the signature construction efficiency,
and the signature verification efficiency, as well as the
comparison of the consensus delay, node joining consensus
delay, node exiting consensus delay, and the reliability. The
comparison of the above algorithms is shown in Table 8.

1) COMMUNICATION COMPLEXITY ANALYSIS
The traditional PBFT consensus algorithm process of three
phases always needs (2n2 − n− 1) times of communication,
from Figure 2, the communication complexity is O(n2),
where n is the number of nodes, in the combination of PBFT
improved algorithm after the aggregation of signatures, the

TABLE 7. Experimental software environment configuration.

FIGURE 14. Cryptographic product length.

algorithm process is shown in Figure 13, the number of
communication in the three phases is only (5n − 7), and the
communication complexity is only O(n).

2) ANALYSIS OF THE ACTUAL LENGTH OF CRYPTOGRAPHIC
ARTIFACTS AT VARIOUS STAGES
A comparative analysis of the relevant data generated at each
stage of the designed aggregate signature scheme, such as
the personal public and private key (Privatekey,PublicKey),
the membership key MebKey, the aggregated public key
AggPubKey, the personal signature sign, the structure σ and
the length of the signature generated without the use of this
scheme.

The experiment sets the member users to be 3, and makes 3
of them sign a message with aggregation, and S is set to
32 bits. The result is shown in Figure 14, in which each
element conforms to the curve definition, and the structure
body contains the aggregated public key, aggregate signature,
and subgroups. The length of the structure is significantly
smaller than the length of the non-aggregated signature,
which is only 67.77% of the length of the non-aggregated
signature.

3) SIGNATURE CONSTRUCTION AND VERIFICATION
EFFICIENCY ANALYSIS
A signature construction comparison test is conducted for
the Schnorr signature algorithm [31] and the signatures used
in this paper to obtain the signature construction time by
setting the time point to obtain the actual construction time of
the signature. This experiment tests the signature verification
time by setting different numbers of nodes to analyze the

VOLUME 12, 2024 10405



S. Tong et al.: Efficient and Scalable Byzantine Fault-Tolerant Consensus Mechanism

TABLE 8. Comparison with other algorithms.

FIGURE 15. Signature construction test.

impact of the number of nodes on the efficiency of the
signature construction of this scheme.

Figure 15 shows the construction time comparison between
Schnorr and the signature scheme used in this paper for
different numbers of nodes. From the figure, it can be seen
that the signature construction time increase of this scheme
is not as large as the increase of the Schnorr scheme in the
face of the increase in the number of nodes, and the overall
improvement in efficiency is about 16.6%.

For signatures, the importance of signature verification
efficiency is at the highest level, because in the consensus pro-
cess, the construction of the signature needs only once, while
the signature verification needs many times. For example,
if there is a Byzantine fault node in the consensus process, the
node needs to be put forward for the consensus process and
the signature verification phase needs to be carried out again,
so there is a signature construction and signature aggregation
and two signature verifications in the consensus process,
so the signature verification efficiency is a key factor that
affects the performance of the consensus algorithm. In the
Schnorr signature, the signer needs to calculate all the hash
values of all the signature messages before generating the
final signature value, while the signature scheme used in
this paper only needs to aggregate the public keys of all
the signature messages, and the aggregated public key and

FIGURE 16. Verify signature efficiency test.

the hash value of the message can be calculated once to
generate the final signature value, which greatly reduces the
amount of computation compared to the Schnorr signature
approach. When the number of signers is more than 50 or
so, the design scheme in this paper can achieve 1.49 times
faster signature construction speed than the Schnorr signature
scheme through the aggregation of signatures, which has
the best performance compared to the Schnorr signature,
as shown in Figure 16.

4) NODE DYNAMIC JOIN AND EXIT TEST ANALYSIS
In this experiment, by initially setting up a consensus network
of 4 nodes, the time trend of adding a new node into the
consensus network to participate in communication is tested
by adding nodes one by one. Simultaneous simulations of the
VS-PBFT algorithm and CA-PBFT algorithm are performed
and analyzed in comparison.

As can be seen from Figure 17, the difference between the
time taken to join nodes in the CA-PBFT and the VS-PBFT
is small in the initial stage, but with the increase in the
number of nodes in the consensus network, the time taken
by the newly joined nodes gradually increases and the nodes
gradually widen the gap during the process of node increase,
and the time taken decreases by an average of 24.47%, which
can be obtained from the fact that this algorithm makes

10406 VOLUME 12, 2024



S. Tong et al.: Efficient and Scalable Byzantine Fault-Tolerant Consensus Mechanism

FIGURE 17. Node dynamic join consensus test analysis.

a better improvement for the expandability, and it requires
fewer communication resources.

The number of nodes in the node dynamic exit test
starts with 3f + 2, i.e., the time taken by nodes to exit
the current consensus network is tested starting from 5 to
evaluate whether the node dynamic exit function meets the
performance expectations.

As can be seen from Figure 18, the difference in the
time taken to exit the nodes in the two algorithms is small,
but as the number of nodes in the consensus network
increases, the time taken to exit the nodes is proposed
to increase gradually, and the time taken by the present
improved algorithm decreases by an average of 10.57%
in comparison to VS-PBFT, which can be obtained from
the fact that the present improved algorithm has made a
better improvement for extensibility, and it requires fewer
communication resources.

5) RELIABILITY ANALYSIS
In the PBFT consensus algorithm, it is not possible to make
any processing action for the evil nodes in the consensus
network. In this paper, the improved algorithm can eliminate
the evil nodes in the consensus network by combining the
node credit scoring mechanism and adding the coordination
node to the model.

As can be seen from Figure 19, after 15 rounds of
consensus, the percentage of evil nodes in this improved
algorithm is maintained at around 3.56%. Among them, the
G-PBFT is always maintained at around 6% although it also
tends to decrease; the RB-BFT, although it is sometimes
lower, has an unstable trend; while the PBFT is always
inactive for the evil nodes within the consensus network,
and can not be eliminated and withdrawn from the process.
This proves that the node credit scoring mechanism of this

FIGURE 18. Node dynamic exit test analysis.

FIGURE 19. Reliability analysis.

algorithm can largely curb the evil nodes from influencing
the consensus network.

6) CONSENSUS LATENCY ANALYSIS
Consensus delay is the time delay required to reach consensus
among a group of nodes and is a measure of network
performance and running time of the consensus algorithm.
The delay calculation is shown in Equation (26).

Tdelay = Tsend + Twait + Tconsensus + Tverify (26)

where Tsend denotes the time from the initiation of the trans-
action request by the block to the submission to the consensus
network to start the transaction; Twait denotes the time
consumed from the reception of the initiation request to the
entry of the consistency endorsement; and Tverify denotes the
time consumed by the node to verify the initiated transaction

VOLUME 12, 2024 10407



S. Tong et al.: Efficient and Scalable Byzantine Fault-Tolerant Consensus Mechanism

FIGURE 20. Consensus latency test.

and that the verification passes the write to the blockchain to
generate the block.

The delay size is generally closely related to the size of
the block size, when the block size is larger, the process
of triggering consensus will be more difficult, resulting
in a longer Twait ; if the block contains more transaction
information, it will also make the node verification in the
consensus process as well as the execution of the transaction
request time longer, resulting in a larger Tverify. For this
reason, we set fixed conditions for the experiment; and
conducted a comparative analysis test in the case of a block
size of 100tx.
As analyzed in Figure 20, when the nodes exceed a certain

size, the performance gap between CA-PBFT and PBFT,
CPBFT, G-PBFT, and RB-BFT in terms of delay is getting
bigger and bigger and occupies more and more advantages,
which proves that the algorithm effectively reduces the delay
of consensus bymaking improvements to the signature part of
the consensus process and making the signature structure of
the consensus process smaller, which compares with the time
required for G-PBFT and RB-BFT by about 5.8% and 4.3%
in the time required for consensus, respectively.

7) TRANSACTION THROUGHPUT ANALYSIS
The transaction throughput (TPS) performance metric is the
number of transactions that can be completed in a given time.
In the PBFT consensus algorithm, the transaction throughput
performance metric can be defined by the following two
factors:

Network Latency: The lower the network latency, the faster
messages are exchanged between each node, and the shorter
the transaction confirmation time is, thus allowing more
transactions to be completed.

Transaction size: the smaller the transaction size, the fewer
messages are exchanged between each node, and the shorter

FIGURE 21. Transaction throughput test.

the confirmation time for the transaction, thus allowing more
transactions to be completed.

This test experiment is only for the process from the
time the client sends a transaction request to the time
the transaction execution is completed and written to the
blockchain in Hyperleger Fabric. The throughput calculation
is shown in Equation (27).

TPS =
counttx

1t
(27)

where 1t is the Hyperledger Fabric definition time interval;
count tx is the number of valid transactions completed in the
Hyperleger Fabric within 1t .
In this experiment for transaction throughput, it is proposed

to set different numbers of nodes to compare and analyze,
according to the number of 3f +1, the number of nodes since
the beginning of 4, the transaction throughput test results are
shown in Figure 21.

As can be seen in Figure 21, the PBFT, CPBFT,
G-PBFT, RB-BFT, and CA-PBFT algorithms all show a trend
of decreasing transaction throughput as the number of nodes
in the consensus network increases. This is because when the
number of nodes increases, the communication complexity
in the consensus network becomes higher and higher due
to the P2P communication mode used in the blockchain.
Also, the throughput is related to the size of nodes in the
current consensus network. In the traditional PBFT consensus
algorithm, the communication complexity is O(n2), while
the communication complexity of the CA-PBFT consensus
algorithm is only O(n), which greatly alleviates the problem
of decreasing transaction throughput due to the large node
size of the consensus network, and ensures high transaction
throughput in the face of large-scale node access.

With the combined effect of the aggregated signa-
ture scheme and the node credit scoring mechanism, the

10408 VOLUME 12, 2024



S. Tong et al.: Efficient and Scalable Byzantine Fault-Tolerant Consensus Mechanism

transaction throughput of CA-PBFT is improved by about
14.47% and 9.8% over G-PBFT and RB-BFT, respectively.

V. CONCLUSION AND FUTURE WORK
In this paper, we propose an improved solution to the
problems of low consensus efficiency and poor scalability of
the PBFT consensus algorithm. By introducing a node credit
scoring mechanism, coordinating nodes, and a BLS-based
aggregated signature scheme, we have improved consensus
efficiency, solved the problem of poor scalability, and reduced
communication complexity to some extent. However, our
program still has some limitations and challenges. First, the
current node credit scoring mechanism is not yet perfect
in terms of credit rewards and penalties. For nodes with
too high credit value, they may be allowed to perform
multiple consensuses in case of jeopardizing the consensus
process behavior, resulting in a waste of communication
resources. To solve this problem, we need to design more
reasonable credit reward and punishment mechanisms in
future research to prevent abuse by malicious nodes. Second,
the introduction of coordination nodes may exacerbate the
centralization problem in the consensus network. To solve
this problem, we can consider designing a decentralized
coordination node election mechanism to ensure the decen-
tralized nature of the consensus network. Again, although
we have partially verified the security of the BLS-based
aggregated signature scheme,more in-depth security research
is needed before applying it to real enterprise scenarios.
Regarding the application scope of the improved algorithm,
we believe that it may be suitable for distributed systems that
require efficient consensus and scalability, such as finance,
IoT [32], [33], healthcare, and supply chains. However,
in practical applications, the algorithms need to be further
adapted and optimized according to specific scenarios and
needs. In addition, advanced security technologies based
on AI/ML have been widely used in future networks, and
these technologies provide us with new ideas to further
optimize our consensus mechanism by introducing AI/ML
technologies [34]. In addition to the improved methods
mentioned above, future research can also explore the use
of convolutional neural network (CNN) [35] to improve
consensus algorithms. Convolutional neural networks have
achieved remarkable results in the fields of image recognition
and pattern recognition, and have the advantages of parallel
computing and automatic feature extraction. Therefore, the
introduction of convolutional neural networks into consensus
algorithms is expected to improve the accuracy and efficiency
of consensus. How to effectively integrate these techniques
into the consensus mechanism still requires further explo-
ration and experimentation in our future research.

In conclusion, our improvement scheme provides a useful
attempt to address the limitations of the PBFT consensus
algorithm, but it still needs to be further improved and
refined in future research. We hope to provide more efficient,
secure, and scalable solutions for consensus algorithms for
distributed systems through our continuous efforts.

REFERENCES
[1] S. Nakamoto, ‘‘Bitcoin: A peer-to-peer electronic cash system,’’ Decen-

tralized Bus. Rev., Bitcoin, White Paper, Nov. 2008.
[2] T. Huynh-The et al., ‘‘Blockchain for the metaverse: A review,’’ Future

Gener. Comput. Syst., Jun. 2023.
[3] J.-S. Lee, C.-J. Chew, J.-Y. Liu, Y.-C. Chen, and K.-Y. Tsai, ‘‘Medical

blockchain: Data sharing and privacy preserving of EHR based on smart
contract,’’ J. Inf. Secur. Appl., vol. 65, Mar. 2022, Art. no. 103117.

[4] S. Kumar, B. Kumar, Y. Nagesh, and F. Christian, ‘‘Application of
blockchain technology as a support tool in economic & financial devel-
opment,’’Manager-Brit. J. Administ. Manag., Apr. 2022, pp. 1278–1746.

[5] F. Azzedin and M. Ghaleb, ‘‘Internet-of-Things and information fusion:
Trust perspective survey,’’ Sensors, vol. 19, no. 8, p. 1929, Apr. 2019.

[6] Q. Xia, E. Sifah, A. Smahi, S. Amofa, and X. Zhang, ‘‘BBDS:
Blockchain-based data sharing for electronic medical records in cloud
environments,’’ Information, vol. 8, no. 2, p. 44, Apr. 2017. [Online].
Available: https://www.mdpi.com/2078-2489/8/2/44

[7] R. Kumar, N. Marchang, and R. Tripathi, ‘‘SMDSB: Efficient off-chain
storage model for data sharing in blockchain environment,’’ in Machine
Learning and Information Processing. Singapore: Springer, Apr. 2021,
pp. 225–240.

[8] P. K. Wan, L. Huang, and H. Holtskog, ‘‘Blockchain-enabled information
sharing within a supply chain: A systematic literature review,’’ IEEE
Access, vol. 8, pp. 49645–49656, Mar. 2020.

[9] M. Jakobsson and A. Juels, ‘‘Proofs of work and bread pudding protocols,’’
in Proc. Secure Inf. Netw. Commun. Multimedia Secur. IFIP TC6/TC11
Joint Workshop Conf. Commun. Multimedia Secur. (CMS). Boston, MA,
USA: Springer, Sep. 1999, pp. 258–272.

[10] F. Saleh, ‘‘Blockchain without waste: Proof-of-stake,’’ Rev. Financial
Stud., vol. 34, no. 3, pp. 1156–1190, Feb. 2021.

[11] D. Larimer, ‘‘Delegated proof-of-stake (DPoS),’’ BitShare, White Paper,
2014, vol. 81, p. 85.

[12] D. Ongaro and J. Ousterhout, ‘‘In search of an understandable consensus
algorithm,’’ in Proc. USENIX Annu. Techn. Conf. (USENIX ATC),
Jun. 2014, pp. 305–319.

[13] M. Castro and B. Liskov, ‘‘Practical Byzantine fault tolerance,’’ in Proc.
OsDI, vol. 99, 1999, pp. 173–186.

[14] W. Zhong, W. Feng, M. Huang, and S. Feng, ‘‘ST-PBFT: An optimized
PBFT consensus algorithm for intellectual property transaction scenarios,’’
Electronics, vol. 12, no. 2, p. 325, Jan. 2023.

[15] M. Vukoli, ‘‘The quest for scalable blockchain fabric: Proof-of-work vs.
BFT replication,’’ in Proc. Int. Workshop Open Problems Netw. Secur.
Cham, Switzerland: Springer, May 2016, pp. 112–125.

[16] L. Lamport, R. Shostak, andM. Pease, ‘‘The Byzantine generals problem,’’
ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, Jul. 1982.

[17] M. Castro andB. Liskov, ‘‘Practical Byzantine fault tolerance and proactive
recovery,’’ ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–461,
Nov. 2002.

[18] G. Xu and Y. Wang, ‘‘Improved PBFT algorithm based on vague sets,’’
Secur. Commun. Netw., vol. 2022, pp. 1–7, Mar. 2022.

[19] Y. Wang, Z. Song, and T. Cheng, ‘‘Improvement research of PBFT
consensus algorithm based on credit,’’ in Proc. Int. Conf. Blockchain
Trustworthy Syst. Singapore: Springer, 2020, pp. 47–59.

[20] B. Gan, Y. Wang, Q. Wu, Y. Zhou, and L. Jiang, ‘‘EIoT-PBFT: A multi-
stage consensus algorithm for IoT edge computing based on PBFT,’’
Microprocess. Microsyst., vol. 95, Nov. 2022, Art. no. 104713.

[21] L. Lao, X. Dai, B. Xiao, and S. Guo, ‘‘G-PBFT: A location-based
and scalable consensus protocol for IoT-blockchain applications,’’ in
Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), May 2020,
pp. 664–673.

[22] L. Lei, L. Song, and J. Wan, ‘‘Improved method of blockchain cross-chain
consensus algorithm based on weighted PBFT,’’ Comput. Intell. Neurosci.,
vol. 2022, pp. 1–9, Aug. 2022.

[23] P. Li, G.Wang, X. Chen, F. Long, andW. Xu, ‘‘Gosig: A scalable and high-
performance Byzantine consensus for consortium blockchains,’’ in Proc.
11th ACM Symp. Cloud Comput., Oct. 2020, pp. 223–237.

[24] Y. Na, Z. Wen, J. Fang, Y. Tang, and Y. Li, ‘‘A derivative PBFT blockchain
consensus algorithm with dual primary nodes based on separation of
powers-DPNPBFT,’’ IEEE Access, vol. 10, pp. 76114–76124, 2022.

[25] J. Yang, Z. Jia, R. Su, X. Wu, and J. Qin, ‘‘Improved fault-tolerant
consensus based on the PBFT algorithm,’’ IEEE Access, vol. 10,
pp. 30274–30283, 2022.

[26] W. Jiang, X. Wu, M. Song, J. Qin, and Z. Jia, ‘‘Improved PBFT algorithm
based on comprehensive evaluation model,’’ Appl. Sci., vol. 13, no. 2,
p. 1117, Jan. 2023.

VOLUME 12, 2024 10409



S. Tong et al.: Efficient and Scalable Byzantine Fault-Tolerant Consensus Mechanism

[27] J. Zhang, Y. Rong, J. Cao, C. Rong, J. Bian, and W. Wu, ‘‘DBFT:
A Byzantine fault tolerance protocol with graceful performance degra-
dation,’’ IEEE Trans. Dependable Secure Comput., vol. 19, no. 5,
pp. 3387–3400, Sep. 2022.

[28] F. He, W. Feng, Y. Zhang, and J. Liu, ‘‘An improved Byzantine fault-
tolerant algorithm based on reputation model,’’ Electronics, vol. 12, no. 9,
p. 2049, Apr. 2023.

[29] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, ‘‘Aggregate and verifiably
encrypted signatures from bilinear maps,’’ in Proc. EUROCRYPT, 2003,
pp. 416–432.

[30] I. Shparlinski, ‘‘Computational Diffie–Hellman problem,’’ in Encyclope-
dia of Cryptography and Security, H. C. A. van Tilborg and S. Jajodia,
Eds., Boston, MA, USA: Springer, 2011, pp. 240–244.

[31] C. P. Schnorr, ‘‘Efficient signature generation by smart cards,’’ J. Cryptol.,
vol. 4, no. 3, pp. 161–174, Jan. 1991.

[32] J. Du, C. Jiang, E. Gelenbe, L. Xu, J. Li, and Y. Ren, ‘‘Distributed
data privacy preservation in IoT applications,’’ IEEE Wireless Commun.,
vol. 25, no. 6, pp. 68–76, Dec. 2018.

[33] A. Khalil, N. Mbarek, and O. Togni, ‘‘Fuzzy logic based security trust
evaluation for IoT environments,’’ in Proc. IEEE/ACS 16th Int. Conf.
Comput. Syst. Appl. (AICCSA), Nov. 2019, pp. 1–8.

[34] J. Du, C. Jiang, J.Wang, Y. Ren, andM. Debbah, ‘‘Machine learning for 6G
wireless networks: Carrying forward enhanced bandwidth, massive access,
and ultrareliable/low-latency service,’’ IEEE Veh. Technol. Mag., vol. 15,
no. 4, pp. 122–134, Dec. 2020.

[35] G. Muhammad and M. Alhussein, ‘‘Security, trust, and privacy for the
Internet of Vehicles: A deep learning approach,’’ IEEE Consum. Electron.
Mag., vol. 11, no. 6, pp. 49–55, Nov. 2022.

SHIHUA TONG is currently pursuing the Ph.D.
degree in education with Southwest University.
He is a Professor with the Chongqing College
of Electronic Engineering and a Master’s Tutor
with the Chongqing University of Posts and
Telecommunications and a model of Teaching
and Educating People in Chongqing. He presided
over/researched more than 40 provincial and
ministerial scientific research projects. He has
published more than 40 academic papers, more

than 70 authorized patents/soft works, five monographs, and two popular
science books. His research interests include education and teaching reform,
embedded and artificial intelligence, network security, and blockchain.
He was the Winner of the Outstanding Teacher Award from the National
Huang Yanpei Vocational Education Award. In recent years, he has won one
(first prize) and one (second prize) for national teaching achievements; one
special prize, two (first prize), and two (second prize) for provincial and
ministerial teaching achievements; one (second prize) for the Chongqing
Science and Technology Progress Award; and one (first prize) for
the Chongqing Excellent Education and Scientific ResearchAchievements.

He was selected for the Chongqing High-Level Talent Special Support
Program (Famous Teacher) and the Chongqing University Excellent Talent
Support Program. He was the Chongqing University Innovation Research
Group Leader, the Chongqing Famous Teacher Training Program Famous
Teacher Studio Leader, the Vice Chairperson of the Chongqing Youth
Scientific Quality Research Association, the Chongqing Vocational Educa-
tion Evaluation and Certification Expert, the Chongqing Smart Community
Construction Consulting Expert, and Chongqing Technical Education Expert
Think Tank Expert.

JIBING LI is currently pursuing the degree in elec-
tronic information with the School of Automation,
Chongqing University of Posts and Telecommuni-
cations. He has participated in one national key
research and development program project and
one major/key project in Chongqing Municipality.
He has disclosed two invention patents and applied
for one soft work. His research interests include
blockchain technology, information security, and
cryptography technology.

WEI FU is currently a Professor with the
Chongqing University of Posts and Telecommu-
nications, the Director of the Chinese Society
of Automation-Chongqing University of Posts
and Telecommunications, and an Observer of
the National Standardization Technical Committee
for Intelligent Buildings and Residential Digi-
tization (SAC/TC426). She presided more than
one national scientific and technological major
special project, two sub-projects of the national

863 project, and observer. She also presided more than five major/key
projects in Chongqing and more than 20 general projects in Chongqing.
She has published more than ten papers, 15 SCI/EI retrieved papers,
20 authorized invention patents, and nine utility model patents. She has
co-edited three textbooks and two monographs. Her main research interests
include the Internet of Things technology, smart cities, smart healthcare,
blockchain technology, and wireless sensor networks and their applications.

10410 VOLUME 12, 2024


