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ABSTRACT Wireless sensor networks (WSNs) deployed in remote areas face a challenge in uploading
the collected data to data centers due to limited network coverage. Unmanned aerial vehicles (UAVs) can
extend network coverage to remote WSNs by flying and communicating with WSN aggregator nodes to
collect data. UAV-assisted data collection systems need to be carefully developed to collect all data efficiently
while considering the UAV and WSN constraints. This paper provides an energy-efficient multi-UAV data
collection framework for WSNs. We formulate the data collection system as a problem that jointly optimizes
the system cost and energy consumption constrained by the communication power, UAV mission time, and
memory size. The problem is resolved over two steps: First, the location and number of aggregators needed
are determined using a triangulation-based K-means clustering that minimizes the number of aggregators
used and the system cost. Second, the dockstation position thatminimizes the energy consumption is obtained
using the gaining-sharing knowledge (GSK) optimization algorithm. The optimum UAV trajectory for each
GSK candidate solution is designed by solving a capacitated vehicle routing problem (CVRP) that combines
heuristic and metaheuristic solving techniques. Simulations show that our framework outperforms other
recent techniques by minimizing the overall system cost and energy consumption.

INDEX TERMS Unmanned aerial vehicles, wireless sensor networks, clustering, trajectory planning, energy
optimization, data collection.

I. INTRODUCTION
Wireless sensor networks (WSNs) are a trending research
area due to their usability in a wide range of applications,
including industrial, telemedicine, trafficmonitoring, disaster
recovery, and agriculture [1], [2]. One challenge WSNs face
is transferring the detected data to remote processing centers
in an energy-efficient manner to extend the lifetime of the
battery-powered sensors. Clustering is one of the most widely
usedWSNmanagement techniques [3]. In clustering, sensors
are separated into groups orchestrated by a cluster head (CH),
also known as an aggregator. During their operation, the
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CHs collect data from their associated sensors and transmit
that data to the surrounding station, referred to as cloud
stations. In WSNs implemented in rural areas, aggregators
may have difficulty in transmitting data since direct
communication between CHs and the cloud station might be
infeasible [4], [5].

Recently, unmanned aerial vehicles (UAVs) have attracted
the widespread attention of researchers in wireless
communications [6], [7]. In modern networks, the UAVs have
been suggested as a solution for extending coverage to remote
and rural areas either by serving as mobile base stations (BSs)
or by collecting data to a remote cloud [8]. This paper focuses
on WSNs that do not require real-time responses and can
tolerate data uploading to processing centers (remote-cloud)
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after UAVs reach their dockstation (charging station) by the
end of a data collection mission. The UAVs can fly and hover
over each aggregator to collect the data through the use of
high data rates wireless transmission such as millimeter wave
(mmWave) or free-space optical links [5], [9]. However, the
UAVs are constrained by various parameters such as battery
capacity, maximum flying speed, mission time, and memory
capacity. Several studies have investigated the optimization of
UAV trajectories and data collection schedules under a variety
of limitations in order to minimize the amount of overall
consumed energy. In this paper, additional optimization
factors, such as the transmission power of aggregators and
sensors, the flying speed of UAVs, and the placement of
aggregators and dockstation, were taken into account in order
to minimize the overall energy consumption of the data
collection process.

The integration of WSNs and UAV networks presents
a dynamic landscape of challenges and opportunities. The
key challenges include ensuring reliable communication
between sensors and UAVs in diverse and sometimes
harsh environments, managing the energy constraints of
both systems, and addressing security concerns inherent
in wireless communications. However, the potential
applications are vast and transformative. In agriculture,
these integrated systems offer precision monitoring of soil
conditions and crop health, optimizing resource usage.
Environmental monitoring benefits from UAVs swiftly
covering large areas to gather real-time data on ecosystems,
wildlife, and pollution levels. For search and rescue
operations, UAVs equipped with sensors enable rapid and
effective coverage of expansive terrains, aiding in locating
survivors. In disaster response, the seamless coordination
between WSNs and UAVs provides crucial information
on damage assessment, environmental conditions, and
survivor locations, enhancing overall response efforts. The
integration of WSNs and UAV networks thus holds promise
across diverse domains, offering innovative solutions to
longstanding challenges.

Energy-saving techniques for integrated WSNs and UAV
networks are crucial for extending operational time and
maintaining system functionality [10], [11]. One such
technique is sleep scheduling, where nodes selectively
deactivate during periods of inactivity, significantly reducing
power consumption. Implementing this in UAV networks
can be challenging due to the dynamic nature of UAVs
and the need for immediate responsiveness. Algorithms
must be designed to predict periods of low activity
without compromising the network’s ability to react to
sudden changes or requests for data. Another technique
is energy harvesting, which equips UAVs and sensors
with capabilities to extract energy from environmental
sources such as solar, wind, or vibrations. This can offset
energy usage but may add weight and complexity to the
UAVs [12]. Additionally, energy-efficient communication
protocols can minimize the energy spent on data transmission
by optimizing the routing of messages and reducing the

number of transmissions. However, these protocols must
balance energy savings with the potential increase in latency
and the need for reliable data delivery [13]. Adaptive duty
cycling, where the network’s activity levels are adjusted
based on current energy reserves and operational demands,
can also help conserve energy but requires sophisticated
management to avoid degrading network performance.
Overall, the implementation of these techniques involves
trade-offs between energy efficiency, reliability, and latency,
necessitating a holistic approach to network design and
management.

This research presents an innovative WSNs with a data
collection framework, which aims to minimize the overall
energy required by the system while considering all of
the constraints for data collecting UAVs that have been
previously discussed. To the best of our knowledge, this is
the first study investigating multi-dimensional optimization,
including dockstation placement, sensors power, and UAV
trajectories. The main contributions of the paper are
summarized as follows:

• We investigate large-scale heterogeneous WSNs,
in which sensors transmit their data to a nearby
aggregator, and multiple UAVs are employed to collect
data from all aggregators at the same time.

• We formulate a problem to minimize the overall
consumed energy and cost through optimizing the
placement of aggregators, the position of the dockstation,
the transmission power needed by aggregators and
sensors, and the UAV trajectories.

• A newly proposed triangulation-based clustering
technique is presented to minimize the number and
placement of aggregators, as well as the associated
sensors.

• The gaining-sharing knowledge (GSK) metaheuristic
and capacitated vehicle routing problem (CVRP)
algorithms are employed in order to determine the
optimal dockstation placement, transmission power, and
UAV trajectory.

• The optimization problems have been solved subject
to mission time, maximum flying speed, UAV memory
size, and sensors power constraints.

• The system was tested under different area sizes and
different sensor densities to show the scalability of
the proposed framework in minimizing the system
energy.

The rest of the paper is organized as follows. Section II
discusses the previous works on UAV mission planning
and UAV data collection systems. Section III describes
the system architecture used and formulates the data
collection optimization problem. Section IV explains the
proposed approach to solve the data collection problem.
In Section V, the results of our work are displayed and
compared to other data collection optimization approaches.
Section VI concludes our work and discusses future
work.
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TABLE 1. UAV data collection literature review.

II. LITERATURE SURVEY
This section discusses approaches for optimizing UAV
mission planning that has been published in the literature.
The majority of mission planning studies fall within the
fly and communicate or fly-hover-communicate categories.
The fly and communicate requires the UAV to communicate
with users while it is in motion, and the challenge
is to determine the optimal time slots to schedule the
communication with each user. The challenge with the
fly-hover communication strategy is determining the optimal
hovering positions to service all users/sensors. Fly-hover-
communicate entails UAVs flying to a specific area,
hovering there, and communicating with users nearby to
collect data. All techniques based on fly-hover-communicate
employ multirotor UAVs capable of hovering, whereas
continuous motion techniques may employ multirotor
or fixed-wing UAVs. The following subsections include
in-depth descriptions of the two techniques as well as a review
of the relevant literature. Table 1 summarizes the UAV data
collection literature review.

A. FLY AND COMMUNICATE TECHNIQUES
Qin et al. [22] investigated a system consisting of multiple
fixed-wing UAVs that provide mobile edge computing
services to ground users under a predefined mission
schedule. Their research aims to minimize the energy
consumption of both UAVs and users by optimizing
UAV trajectory, communication bandwidth, CPU frequency,
UAV-user association, data uploading schedule, and user
transmission power. The optimization problem has been
subdivided into two subproblems, each solved using a
convex solver. Both problems are iteratively solved until
convergence occurs. Sun et al. [23] developed a UAV energy
optimization approach for a system similar to that described
in [22], but with an additional deadline constraint on tasks.
To solve the optimization problem, the researchers introduced
slack variables to the non-convex optimization problem and
solved the problem using a successive convex approximation
(SCA)-based algorithm. The problem formulated in [22]
and [23] both have the mission planning tightly coupled
with offloading decisions and CPU frequency, resulting in
solutions that are inapplicable in data collection scenarios

where offloading decisions and the CPU frequency of devices
are irrelevant.

Li et al. [14] introduced an approach to minimize the
mission time for a single multirotor UAV data collection
system. The time is minimized by optimizing the UAV
trajectory, the flying height, the UAV speed, and the
transmission schedule. The solution is obtained by solving
three problems in this order: determining the flying height,
optimizing the trajectory, and optimizing the velocity
and transmission scheduling jointly. Numerical techniques
determine the optimal flying height by solving a signal-
to-noise ratio (SNR) minimization problem. The trajectory
optimization is accomplished based on the following steps.
The order of data collection is determined by solving a
trajectory length minimization problem using the traveling
salesman problem (TSP) algorithm. The actual path of the
UAV is expressed as an ordered set of waypoints, where
the UAV moves from one waypoint to the next in a straight
line. These waypoints are determined by using convex
optimization techniques to solve a convex problem involving
minimizing the length of the UAV trajectory. The UAV
collects data from all users within its range at each trajectory
segment. The flying velocity and the transmission schedule
at each segment are obtained by solving mixed-integer
nonlinear programming problems using block coordinate
descent. The method introduced reduced the mission time
significantly. However, energy and memory constraints were
not considered. Although continuous motion-based data
collection achieves a higher energy-efficient, fly-hover-
communicate techniques are more practical [24] and have a
lower complexity [25]. As a result, a fly-hover-communicate
approach was adopted in this paper.

B. FLY-HOVER-COMMUNICATE TECHNIQUES
Wu et al. [15] suggested a trajectory planning method that
aims to optimize both the energy consumption and mission
time for a single UAV data collection system. The trajectory
is represented as a set of ordered hovering points. They use
an SCA-based algorithm to get the optimum hovering points.
The authors of [2] presented a data collection framework
to minimize the WSN energy and UAV travel time through
optimizing the position of aggregators, hovering points, and
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UAV trajectory. Aggregators are chosen using a center-biased
hybrid energy-efficient distributed (CBHEED) algorithm,
which is a modification to the HEED clustering algorithm.
Hovering points are defined as the points with the highest
received signal strength indicator (RSSI) for each aggregator
and are found using tabu search. The optimum trajectory that
minimizes the travel time and passes through all hovering
points is obtained by solving a TSP problem using a genetic
algorithm (GA). Wang et al. [16] considered a trajectory and
sensor uploading power optimization problem to minimize
the energy consumption of a WSN system with a single
data collecting UAV. The problem was broken down into
two sub-problems: a joint optimization of sensor power
and hovering points problem and a data collection order
problem. Given a serving order, the joint optimization of
sensor power and hovering point problem was solved using
a proposed algorithm based on SCA. Given the sensor power
and hovering points, the data collection order was reduced to
a TSP and solved using one of the TSP solvers. The optimum
values for sensor power, hovering points, and collection order
is obtained iteratively. All theworks discussed consider only a
system with a single UAV, which can only cover a small area
before needing to recharge. The UAV needs to do multiple
recharge stops to cover a large area, which is inefficient.
Therefore, a multi-UAV system is considered in this paper.

Ghdiri et al. [17] proposed a WSN data collection
framework with multiple UAVs. Their framework aimed
to minimize the WSN deployment cost and the energy
consumed by UAVs through optimizing the position of
data aggregators and the UAV trajectory. The aggregator
positions were determined using a constrained version of
the K-means clustering algorithm. Given the aggregator
positions, the UAV trajectory problem was modeled as a
capacitated vehicle routing problem with time windows
and solved using metaheuristics. The UAV trajectory was
constrained by the battery capacity of the UAV and the
time frame of each aggregator. The work in [17] ignores
memory constraints and does not consider optimizing the
energy consumption of aggregators as opposed to our work.
Shen et al. [18] discussed an algorithm to minimize the UAV
deployment and operation costs in a multi-UAV scenario.
UAV cost minimization was achieved through optimizing
the hovering points and UAV trajectory. The problem was
constrained by the battery capacity and memory capacity
of UAVs. The problem was broken into two sub-problems
solved iteratively until convergence was reached. The first
sub-problem is finding a trajectory given the hovering points.
The trajectory optimization was modeled as a capacitated
vehicle routing problem with time windows and solved using
an ant colony-based approach. The simplicity of modeling
multi-UAV trajectory planning using capacitated vehicle
routing problems inspired us to adopt a similar approach
for trajectory planning. The second sub-problem was finding
hovering points given the UAV trajectory, which was solved
using an SCA-based algorithm. This work only focuses on
the costs from a UAV perspective but does not consider how

to lower the energy consumption of IoT devices or minimize
the cost of aggregators as opposed to our work.

Nguyen et al. [19] introduced a heuristic algorithm for
jointly clustering and planning data collection missions
in large WSNs to minimize the energy consumption and
extend the WSN lifetime. Their heuristic iteratively clusters
and plans the data collection mission until the UAV time
constraints are not violated. Their clustering algorithm is
based on constructing η-balanced Voronoi sets. For a given
set of cluster heads, the trajectory of the UAVs is determined
by solving a multiple TSP problem. Although their clustering
technique gives solid results for energy saving for WSNs,
they do not explore energy saving for cluster heads andUAVs.
Pan et al. [20] suggested a deep learning-based method for
multi-UAV trajectory planning to minimize the number of
UAVs used and the trajectory length of UAVs. The path
planning problem is modeled as a modification of TSP. The
TSP is solved using GA with the UAV energy consumption
as the fitness function. The output of the GA for different
scenarios was used to train a convolution neural network,
which is used later to plan the path of UAVs according to the
requirements of sensor nodes. The downside of this work was
that it ignored the memory and energy constraints of UAVs
by modeling path planning as a TSP problem. Khodaparast et
al. [21] studied collaborative energy-constrained multi-UAVs
data gathering systems. They used a deep reinforcement
learning (DRL) approach to determine the trajectory of UAVs
and the communication power of sensors that minimizes
the energy consumption of both UAVs and sensors. The
problem was modeled as three Markov decision processes
(MDP). The UAV trajectory and sensor power problems were
each solved using a deep deterministic policy gradient. The
scheduling of sensors to UAVs was solved using multi-agent
deep Q-learning. However, their work did not consider
memory constraints which are considered by our work. All
the mentioned works also did not consider optimizing the
dockstation position as opposed to our work.

III. SYSTEM MODEL AND PROBLEM FORMULATION
This section describes the two subsystems that make up the
overall system under study. The first subsystem is the sensor
network, which consists of heterogeneous sensing devices
and their aggregators. The second subsystem is the UAV-
Aggregator network, which has UAVs communicating with
the aggregators to collect data. Fig. 1 shows an overview
of the system and the interactions within each subsystem.
We also describe the communication model, the delay model,
and the energy model adopted. The notations that are used in
this section are listed in Table 2.

A. SENSOR NETWORK MODEL
We consider a WSN having N sensors randomly placed over
a given area of sizeG. The position of the sensors is given by
a vector m = [m1,m2, . . . ,mN ], where mi =

[
xmi , ymi , 0

]
is

the 3D Cartesian coordinate of sensor i. Sensors are assumed
to be heterogeneous, and therefore, the size of the data
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FIGURE 1. System overview.

sensed differs from one sensor to another. Due to the power
constraints on sensors, they send their measured data at a
particular time to a nearby aggregator. The symbol Si denotes
the amount of data generated by sensor i. The sensor i delivers
data to its associated aggregator using the transmission power
of Pi. The aggregator gathers and combines data from various
sensors before sending it to a UAV that collects data. Given
that different sensors generate data of varying sizes, it is
reasonable to expect that sensors that generate large amounts
of data will demand more power. The relationship between
sensor power and data size could be represented as Pi =
Pkbit × Si where Pkbit is the required power to transmit
1 kbit of sensor data. Assuming that the sensors communicate
with the aggregator using orthogonal channels, the maximum
communication distance between a sensor i and its associated
aggregator can be written as [17]:

d ith =

(
Pi

σ 2
i × γth

) 1
α

, (1)

where σ 2
i is the noise power of the channel between the

sensor and aggregator, γth is the minimum signal-to-noise
ratio needed to send the data successfully, and α is the path
loss exponent. Assuming the noise power is the same for all
ground-to-ground links, denoted by σ 2

G2G, we can reformulate
equation (1) to get the maximum communication threshold
distance for all sensors as follows:

dth =

(
Pkbit

σ 2
G2G × γth

) 1
α

. (2)

B. UAV-AGGREGATOR NETWORK MODEL
In order to collect the data from all aggregators, a set of
K identical UAVs will fly over the area and hover over
each aggregator for a specific period of time to collect the
data. UAVs are assumed to start the mission from the same
dockstation and to have identical properties following the
assumptions stated in [17]. The maximum mission time and

TABLE 2. Notations used.

the maximum memory capacity of the UAVs are denoted
by Tmax and Cmax respectively. The position of aggregators
is represented as a vector q =

[
q1, q2, . . . , qNag

]
, where

qj =
[
xqj , yqj , 0

]
is the 3D Cartesian coordinate of aggregator

j. The position of an UAV k at time t that flies at an altitude
H can be expressed as uk [t] =

[
xuk [t] , yuk [t] ,H

]
.
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Each UAV k is assigned to collect data from a given group
of aggregators, denoted by the set ϑk . The trajectory of the
UAV k mission must pass through all aggregators in ϑk .
Hence, we simplify the definition of the UAV trajectory to
be the aggregator positions placed in the order by which
they will be visited. The trajectory of UAV k is written as
Xk =

[
q(k,1), q(k,2), . . . , q(k,|ϑk |)

]
, where q(k,n) ∈ ϑk∀k , q(k,n)

is the position of the nth point that will be visited by UAV k
and |ϑk | is the size of set ϑk .

1) COMMUNICATION MODEL
The UAV receives data through a ground-to-air channel
that considers line-of-sight (LoS) links and non-line-of-
sight (NLoS) links. Therefore, the wireless channel path-loss
between UAV k and aggregator j at time t is expressed
by [22]:

lkj[t] = 20 log10

(√
H2 + dkj[t]2

)
+ (ηLoS − ηNLoS)× p

kj
LoS[t]+ 20 log10

(
4π fc
c

)
+ ηNLoS, (3)

where ηLoS is the line-of-sight connection loss, ηNLoS is
non-line-of-sight connection loss, fc is the carrier frequency,
and c is speed of light. dkj[t] is the horizontal distance
between UAV k and aggregator j at time t calculated by

dkj[t] =
√(

xj−xk [t]
)2
+
(
yj−yk [t]

)2. pkjLoS[t] is the line-of-
sight connectivity probability between UAV k and aggregator
j at time t is expressed by [22]:

pkjLoS[t] =
(
1+ a exp

(
−b× θkj[t]

))−1
, (4)

where a and b are environment constants and θkj[t] =
arctan

(
H/dkj[t]

)
is the elevation angle between UAV k and

aggregator j at time t . Given the path loss, the channel power
gain between UAV k and an aggregator j at time t is given
by [22]:

hkj[t] = 10−lkj[t]/10 . (5)

In data collection, UAVs hover over aggregators and therefore
the probability of the LoS link is much higher than the
NLoS link. Also, the UAV position is constant during data
collection, making the channel power gain between the
aggregator and the UAV constant and can be denoted by hkj.
In this case the data transmission rate from aggregator j to
UAV k can be expressed as:

Rkj = B log2

(
1+

Pag × hkj
σ 2
UAV

)
, (6)

where B is the total bandwidth of the channel, Pag is the
transmission power of an aggregator and σ 2

UAV is the noise
power of the ground-to-air channel.

2) DELAY MODEL
The required hovering time for the UAV to collect data from
an aggregator is affected by both the data transmission rate
and the size of the data to be sent. The size of data to be sent
by an aggregator j, denoted by Lj, is estimated as

∑N
i=1 Si

for all sensors associated with the aggregator j. The hovering
time required for UAV k to collect data from aggregator j can
be calculated as:

T hover
kj = Lj/Rkj , (7)

Given the trajectory of UAV k , we can calculate the total
distance of the UAV trajectory as:

Dk = ∥q(k,1) − q0∥ + ∥q0 − q(k,|ϑk |)∥

+

|ϑk |−1∑
n=2

∥q(k,n) − q(k,n−1)∥ , (8)

where q0 is the position of the dockstation from which all
UAVs should start and end their missions. The flight time of
a UAV k is given as

T fly
k =

Dk
vk

, (9)

where vk is the flying velocity of UAV k throughout the
mission. vk of anyUAV is constrained by themaximumflying
velocity of UAVs, denoted by vmax. The mission time of a
UAV k is the sum of the flight time, represented as T fly

k , and
total time spent hovering by UAV k , written as T hover

k .

3) ENERGY MODEL
In the system under consideration, the UAV propulsion
and ground-to-air communication are the two most energy-
consumption components. The communication energy
consumed by an aggregator j assigned to UAV k can be
calculated by:

E jcomm = Pag × T hover
kj , (10)

The total communication energy consumed by the system is
equal to the sum of communication energy consumed by each
aggregator, written as:

Ecomm =

Nag∑
j=1

E jcomm (11)

The energy consumption by the UAVs is attributed to
the propulsion power during the hovering and motion. The
propulsion power model for a rotatory-wing UAV is defined
as [17], [26]:

Pprop(v) = ξI

(√
1+

v4

4v40
−

v2

2v20

) 1
2

+ ξB

(
1+

3v2

Q2
tip

)

+
1
2
d0rρAv3 , (12)

where ξI represents the induced power, v0 is the mean rotor
induced velocity, ξB is the blade profile power, Qtip is the

9052 VOLUME 12, 2024



A. A. Amer et al.: Energy Optimization and Trajectory Planning for Constrained Multi-UAV Data Collection

tip speed of the rotor blade, d0 is the fuselage drag ratio, r
is the rotor solidity, ρ is the air density, and A is the rotor
disc area. The hovering power of the UAV is equivalent to the
propulsion power at a speed of 0, given as Phover = Pprop(0).
The total amount of energy spent by a UAV k is determined
as follows:

EkUAV = Pprop(vk )× T
fly
k + Phover × T

hover
k , (13)

The total energy consumption of UAVs is equal to the sum of
the energy spent by each individual UAV, expressed as:

EUAV =
K∑
k=1

EkUAV (14)

Therefore, the overall energy consumed by the integrated
UAV/aggregator networks is calculated as follows:

Etotal = EUAV + Ecomm (15)

C. PROBLEM FORMULATION
In this paper, our goal is to maximize the cost efficiency of
the system by optimizing both the sensor andUAV/aggregator
networks. For the sensor network, we aim to minimize
the cost of installing aggregators for ground-to-ground data
collection. This can be achieved by reducing the number
of aggregators used, denoted as Nag. However, we must
ensure that the quality-of-service in the links connecting
the sensors to the aggregators is not compromised. Hence,
we impose a threshold on the distance between the aggregator
and any associated sensor, as described by Eq. 2. There
are two key design parameters for the sensor networks:
aggregator positions and sensor-aggregator associations. The
sensor-aggregator associations are represented as a vector
β = [β1, β2, . . . , βN ], where βi =

[
βi1, βi2, . . . , βiNag

]
indicates the aggregator associated with sensor i and βij is a
binary variable indicating whether sensor i is associated with
aggregator j or not. To formulate this problem, we adopt the
formalization presented in [17] as follow:

min
q,β

Nag (16a)

s.t. βij∈ {0, 1} ∀ i (16b)

dij = ∥mi − qj∥≤ dth ∀ βij = 1 (16c)
Nag∑
j=1

βij= 1 ∀ i (16d)

where is the distance between sensor i and aggregator j, and
βij is a boolean indicating whether sensor i is associated with
aggregator j or not. Constraint (16c) assures that the distance
between an aggregator and any of its associated sensors
is within the maximum communication range to avoid
degradation in the quality-of-service of links connecting
aggregators and sensors. Constraint (16d) ensures that each
sensor must be associated with exactly one aggregator.
Hence, all sensor data is guaranteed to be collected.

In the integrated UAV/aggregator network, the goal is
to minimize the total amount of energy consumed by the

network during the mission. This goal can be achieved by
optimizing the UAV trajectories, aggregator transmission
power, and dockstation location. This minimization problem
can be formulated as follows:

min
X ,Pag,q0

Etotal (17a)

s.t. T fly
k + T

hover
k ≤ Tmax∀k (17b)∑

j∈ϑk

Lj≤ Cmax∀k (17c)

Pag≤ Pmax
ag (17d)

where X = [X1,X2, . . . ,XK ] is a decision variable
representing the set of all UAV trajectories. Constraint (17b)
ensures that the mission time for any UAV does not exceed
the maximum allowed mission time, while (17c) guarantees
that the total collected data size by any UAV does not exceed
the memory capacity of the UAV. Constraint (17d) limits the
value of Pag to Pmax

ag .

IV. PROBLEM SOLUTION
In this section, we discuss the problems that were presented
in (16a) and (17a), as well as the solutions that have been
proposed to address those problems.

A. AGGREGATOR PLACEMENT OPTIMIZATION
The primary objective of the placement problem is to
determine the optimal locations of aggregators and the
associated sensors that require the smallest number of
aggregators. This situation strongly matches the clustering
problem discussed and solved in [17] and [27]. The authors
in [27] performed K-means clustering repeatedly while
increasing the value of Nag until constraint (16c) was met.
In [17], the constraint (16c) was embedded as a part of sensor
association criteria in K-means to improve the clustering
performance. However, in both techniques, the aggregator is
located relative to themean position of the associated sensors,
which means that aggregators are placed in areas with a high
sensor density. In contrast, the sensors located outside of these
regions will require additional aggregators to cover them.

To overcome this problem,we propose a triangulation-based
clusteringmethod for determining the location of aggregators.
In this method, the positions of the aggregators and the
sensor associations are first determined by using common
clustering algorithms. The aggregator position is chosen to
be the cluster centroid. If the position of the aggregator for
a given cluster violates the communication range constraint
16c, a new aggregator location for that cluster is determined
by triangulation. If the new position of the aggregator
still violates the communication range constraint, we repeat
the clustering process with a larger number of clusters.
The clustering algorithm is terminated once the position of
aggregators in all clusters satisfy the communication range
constraint.

The triangulation technique is used in a variety of fields,
including wireless sensor networks [28], [29]. In geometry,
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FIGURE 2. Triangulation-based cluster aggregator placement.

triangulation is dividing a polygon into a set of triangles. For
triangles, a triangulation point is a point that is used to divide
a triangle into three sub-triangles [30]. Triangulation points
may have constraints that reduce their possible positions.
A valid position for a constrained triangulation point can be
found using geometric or heuristic approaches. In this paper,
we are interested in a triangulation point whose distance
to any vertex is less than or equal to dth. Assuming a
triangle with vertices V1, V2, and V3, a simple method to
find the desired triangulation point is to get the midpoint
M = (V1 + V2)/2 between V1 and V2 and then move the
point V3 along the line V3M for a distance equal to the
maximum allowed value. Fig. 2 illustrates the process of
placing an aggregator for a cluster utilizing the proposed
triangulation-based methodology. This approach involves the
use of triangulation techniques to determine the optimal
location for the aggregator within the cluster.

In order to form a triangle, V1 and V2 are chosen to be
the two sensors furthest away from each other. The third
vertex is the sensor furthest away from the midpoint M . The
triangulation-based clustering is performed iteratively while
increasing Nag similar to [17] and [27]. The implementation
of triangulation-based clustering is shown in the Algorithm 1.

B. GAINING-SHARING KNOWLEDGE (GSK)
OPTIMIZATION ALGORITHM
Gaining-sharing knowledge (GSK) is a human-related
metaheuristic introduced by Mohamed et al. [31] and is
inspired by how humans exchange knowledge over their
lifetimes. In [31], GSK required fewer function evaluations
than other metaheuristics, such as genetic algorithms and
particle swarm optimization, to achieve equivalent or better
results.

GSK aims to find the best combination of decision
variables for a given problem. The algorithm utilizes a pool
of candidate solutions (population) denoted by gi, i =
1, 2, . . . ,Npop, where Npop is the population size. Each
candidate solution has different combination of decision

Algorithm 1 Triangulation-Based Clustering
Input : dth, G, m
Output: β, q
set Nag=

(
G/ (dth × 2)2

)
− 1 ;

while dij > dth for any βij = 1 do
set Nag=Nag + 1;
apply K-means clustering with K = Nag ;
for each cluster do

if ∥mi − centroid∥ ≤ dth ∀i ∈ cluster then
continue ;

get points V1, V2, and V3 from cluster ;
if ∥M − V3∥ > dth then

move point V3 towards M for dth units ;
set cluster centroid = point V3 ;

else
set cluster centroid = M ;

variables expressed by gi = (gi1, gi2, . . . , giD) whereD is the
problem dimension. The quality of each solution is assessed
by the ability of the solution to minimize a user-defined
objective function. Hence, the problem solved by GSK can
be defined as:

min
gi

f (gi) . (18)

where f (gi) is the value of the user-defined objective function
when candidate solution i is applied. The objective function
should relate to the value being optimized. In the case of
system energy minimization, f (gi) is equal to the value of
Etotal if candidate solution i was applied.

The algorithm consists of two stages: the junior gaining
and sharing stage and the senior gaining and sharing stage.
The junior stage represents the early years of a person’s life
where they exchange knowledgewithin a small network, such
as family. However, they occasionally exchange knowledge
with random people due to curiosity. The algorithm executes
the junior knowledge exchange by sorting the population
according to the objective function. Then, each solution i
exchanges knowledge with the nearest best solution, the
nearest worse solution, and a random solution. The nearest
best solution, the nearest worse solution, and the random
solution are denoted by gi−1, gi+1, and gr , respectively.
The equation for knowledge exchange in the junior stage is
expressed as follows:

gnewij =


gij + kf ×

(
g(i−1)j − g(i+1)j + grj − gij

)
if f (gi) > f (gr )

gij + kf ×
(
g(i−1)j − g(i+1)j + gij − grj

)
if f (gi) < f (gr )

(19)

9054 VOLUME 12, 2024



A. A. Amer et al.: Energy Optimization and Trajectory Planning for Constrained Multi-UAV Data Collection

where kf ∈ [0, 1] is known as the knowledge factor and it
controls the amount of knowledge to be transmitted to each
candidate solution.

The senior stage describes the late years of a person’s
life, where humans have enough experience in differentiating
between good and bad people and have the ability to exchange
knowledge with the appropriate people outside their small
network. Therefore, updates are done by classifying the
population into three categories according to their objective
function value: best, middle, and worst. A solution exchanges
knowledge with a random individual from the top (100 ×
p)% solutions from each category, where p ∈ [0, 1]. The
best, middle, and worst chosen for knowledge exchange are
denoted by gbest, gmid, gworst. The equation for knowledge
exchange in the senior stage is expressed as follows:

gnewij =


gij + kf ×

(
g(best)j − g(worst)j + g(mid)j − gij

)
if f (gi) > f (gmid)

gij + kf ×
(
g(best)j − g(worst)j + gij − g(mid)j

)
if f (gi) < f (gmid)

(20)

where gij represents the value of dimension j of solution i.
The value of a dimension is only updated in the junior

and senior stages if a randomly generated number is less
than the knowledge ratio kr . As a result, kr determines the
amount of knowledge passed from one generation to another.
The algorithm runs for IGSK iterations (generations) and
returns the solution with the lowest objective value across
generations, written as gglobal. The notations GSK uses are
described in Table 3.

TABLE 3. GSK notations.

C. SYSTEM ENERGY OPTIMIZATION
To solve the energy optimization problem described by
Equation (17a), we suggest using the GSK metaheuristic.
However, the multi-dimensionality of the problem due to the
coupling between UAV trajectories,colorblue denoted by X ,
and the values of Pag and q0, makes the problem challenging.
Therefore, we follow a two-level optimization approach to
decouple the variables and reduce the complexity of the
problem. The outer optimization level uses GSK to optimize
the values of Pag and q0, hence gi for this problem has a
dimension D = 2 and a candidate solution can be written
as gi =

(
q0[i],Pag[i]

)
. The random value of Pag is restricted

between 0 andPmax
ag to satisfy constraint (17d). The inner level

is UAV trajectories optimization.
The inner level optimization is the problem of finding

the optimum trajectory for data collecting UAVs, given the
value of Pag and q0. In the data collection model, all UAVs
are assumed to have identical ground-to-air channels, and
all UAVs collect data only while hovering over aggregators
directly. Therefore, the propulsion energy of hovering over
an aggregator j is the same for any UAV k . Given that Pag is
also the same for any aggregator, the energy consumed for
the communication between any aggregator and any UAV
is the same. Hence, the inner optimization problem can
be reduced to finding the set of trajectories that minimize
EUAV constrained by Cmax and Tmax. The discussed UAV
trajectory optimization problem matches the definition of
CVRP description with the addition of a mission time
constraint. The CVRP is a problem that seeks to find the
optimal paths for multiple vehicles, such that all paths
begin and end at the same point (dockstation) and that a
single-vehicle visits each client. The total demand of clients
along any path is constrained by the vehicle capacity [32]
(similar to constraint (17c)). The objective of the problem
is to minimize the total lengths of all paths and thus the
energy/fuel cost. The CVRP problem has both heuristic
and metaheuristic solutions in the literature that can be
used to determine the optimal trajectories for any candidate
solution [33]. There are also software CVRP solvers that
implement heuristic or metaheuristic solutions. One example
is the OR-Tools [34] developed by Google. OR-Tools allows
defining customized constraints to the problem. Moreover,
OR-Tools offers an option that allows the best metaheuristic
to be used and allows the developer to set a timeout period,
colorbluerepresented with Ttimeout, for solving the problem
to avoid running for long periods of time. We used OR-
Tools as recommended by [17] but we added a capacity
constraint on the vehicles to simulate the memory capacity
constraints described in (17c). Algorithm 2 shows how the
two-level optimization method works to get the optimum
q0,Pag pair value (colorbluerepresented by gglobal) and the
optimum trajectories (colorbluedenoted by Xglobal) for this
q0,Pag pair.

D. COMPLEXITY ANALYSIS
Line 1 generates Npop candidate solutions, therefore its
complexity is O(Npop). Line 2 is O(IGSK) and line 3 is
O(Npop). Line 4 is O(Ttimeout) because OR-Tools take at most
Ttimeout seconds to get the routing solution for the CVRP
problem. The complexity of line 5 is O(Nag) to calculate
the communication energy consumed by each aggregator and
sum them to get Ecomm. For EUAV in line 6, we need to the
sum of hovering times of all UAVs and the sum of flying
times for all UAVs. The total hovering time was already
calculated to get Ecomm, hence we only need to calculate the
total flying time of all UAVs. To calculate the flying time of
all UAVs we need to know Dk for each UAV. For UAV k ,
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Algorithm 2 Dockstation Placement and
Transmission Power Optimization Using GSK
Input : p,kr ,kf ,Npop,IGSK
Output: gglobal,Xglobal
generate random Npop pairs of q0,Pag ;
for IGSK iterations do

for i = 0 −→ Npop do
Calculate X [i] and T fly

k for each UAV k using
OR-Tools using q0[i],Pag[i];
Calculate Ecomm using (10);
Calculate EUAV using (13);
f (gi) = Ecomm + EUAV;

Perform junior knowledge exchange;
Perform senior knowledge exchange;
for i = 0 −→ Npop do

if f (gnewi ) < f (gi) then
gi← gnewi ;
f (gi)← f (gnewi );

if f (gi) < f (gglobal) then
gglobal← gi;
Xglobal← X [i];
f (gglobal)← f (gi);

Dk can be calculated by summing the distance between each
two consecutive nodes along the trajectory of the UAV. For
one trajectory, the number of segments contained is equal to
the number of nodes it passes through which is the served
aggregators plus the dockstation. Hence, for all trajectories
where each aggregator is contained in one trajectory only, the
total number of segments considered is Nag + K . Therefore,
the complexity of line 6 isO(Nag+K ). Line 7 is an assignment
which is O(1). Lines 8 and 9 are O(1) since both junior and
senior stages consist of only assignments and if statements.
10 is O(Npop) similar to line 3. Lines 11 − 17 are all
O(1) similar to lines 8 and 9. Therefore, the complexity of
Algorithm 2 is O(IGSKNpop(Ttimeout + Nag + K )).

V. SIMULATION RESULTS AND DISCUSSIONS
A. SIMULATION SETUP
We should first explore a sensor distribution technique to
validate our approach and the developed algorithms across a
range of sensor densities. The Homogeneous Poisson point
process (HPPP) is a two-dimensional distribution that has
been successfully used to represent the behavior of cellular
users [35] and sensor nodes distributed over a geographical
area [36]. The HPPP adopts the assumption that users/sensors
intensity is consistent throughout the area, which does not
take into consideration variances in population or necessary
sensory data between different areas. To address this issue,
the number and positioning of sensors are determined using a
mixed Poisson point process (MPPP). The MPPP divides the
overall area into smaller sub-areas and generates a random

sensor intensity for each sub-area, expressed by the notation
λ. While the sensors within each sub-area are distributed
using the HPPP with an intensity value equal to the λ
generated [37]. The value of λ generates using a gamma
distribution with shape kγ and a scale θ = µλ/kγ , where µλ

is the mean intensity per square meter. Therefore, the system
will be evaluated at three densities (low: µλ = 2.5 × 10−5,
medium: µλ = 5× 10−5, and high: µλ = 10× 10−5). Fig. 3
illustrates an example of MPPP distributed sensors at low,
medium, and high mean densities, as well as the aggregator
and dockstation placement resulting from Algorithms 1
and 2 at the three mean densities for a (10 × 10) km
area.

The system was developed using the Java Standard Edition
13 programming language, using OR-Tools to solve the
CVRP problem. The simulations were conducted on a
computing system consisting of a single processor Intel Core
i5, which is equipped with four cores running at a clock
speed of 1.6 GHz. The amount of traffic at each sensor
Si is generated using a continuous uniform distribution in
the range [100, 1000] kbits following the sensor information
volume found in [24] and [38]. After clustering is applied to
the sensor network, the size of the data Lj at each aggregator
is obtained. The UAV parameters used in the simulation are
retrieved from [17]. To evaluate the system, three alternative
area sizes, G, were used: 10 × 10 km, 15 × 15 km, and
20 × 20 km. Thus, the system was tested under six which
involved the use of all possible combinations of µλ and
G. This approach was adopted to ensure that the system’s
performance was evaluated comprehensively across a range
of conditions.

Small UAVs typically have a limited flight time of 10-
30 minutes, which is determined by the capacity of their
batteries [39]. In order to reduce the cost of the system, UAVs
with lower battery capacities are preferred. However, the use
of UAVs with shorter flight times (e.g., 10 minutes) may not
be sufficient to cover large areas, such as those measuring
15 × 15 km and 20 × 20 km. To address this issue, we have
increased Tmax to 900 s and 1200 s for areas of 15×15 km and
20 × 20 km, respectively. This modification has been made
to ensure that the CVRP can be solved effectively. If UAVs
with high battery capacity cannot be deployed, the large area
can be divided into smaller sub-areas, where each sub-area
has its dockstation to enable UAVs with small battery
capacities to cover all aggregators. The optimization problem
is then solved for each sub-area independently. However, this
will incur extra costs for installing additional dockstations.
The parameters used in the simulation are summarized
in Table 4.
Given that the number of aggregators to be visited is

relatively low (as seen in Table 5) and that Java is faster than
Python, the CVRP problem can be solved with Ttimeout =

1 sec. From the complexity analysis in section IV-D and
the values of Ttimeout, IGSK, and Npop we can conclude that
the algorithm can get the optimum dockstation position and
transmission power for a given aggregator distribution within
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FIGURE 3. Output of aggregator placement and dockstation placement
given by Algorithms 1 and 2 at different values of µλ.

2 minutes. This time delay is acceptable when taking a
one-time decision such as dockstation placement.

TABLE 4. Simulation parameters [17], [31].

B. SIMULATION RESULTS
To evaluate the validity of the proposed methodology and
algorithms, we study the effect of Pkbit, G and µλ on
UAV power consumption. Fig. 4 illustrates the UAV power
consumption when various combinations of Pkbit, G and µλ

values are used. Each redult in the figure is further labelled
with the average number of UAVs required, denoted by K ,
at each Pkbit, G, and µλ. For a given sensor distribution, the
value of K is an integer number; however, because the sensor
distribution and traffic change from one trial to another, the
trajectories and number of UAVs required also change with
each trial. We calculate the average value of K throughout all
simulation trials for comparison purposes. The results show
that as the value of Pkbit increases for a given G and µλ, the
value of K reduces, and therefore the amount UAV power
consumed decreases as well. These results are consistent
with the fact that increasing Pkbit increases the value of dth
implying that a smaller number of aggregators can service the
same number of sensors. Reducing the number of aggregators
enables the CVRP solver to find shorter trajectories and cover
all aggregators using fewer UAVs. Additionally, It can be
observed that the UAV power decreases as G decreases for
a given µλ and Pkbit. This observation is justified since the
increase in the coverage area leads to the use of additional
UAVs in order to cover all aggregators within the time
constraint. As a result, as the number of UAVs increases,
the overall power consumed by UAVs increases. As well as,
the overall power consumed by UAVs could be increased by
raising µλ for a given value of Pkbit and G.

The number of aggregators for the same G is nearly the
same for different values of µλ as observed in Fig. 3. The
increase in the number of sensors with higher µλ means that
more sensors are associated with a single aggregator, which
leads to an increase in the amount of traffic collected by each
aggregator Lj. The increase in Lj increases T hover

kj which also
increases the energy consumed by the UAVs or the number of
UAVs,K , to satisfy the memory constraints. In our remaining
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simulations, the value of Pkbit for a certain µλ, G is chosen
using Fig. 4 as the value of Pkbit at which the UAV power
reaches a steady value. For example, the Pkbit for G = 10 ×
10 at µλ = 1× 10−4 is 3 µW.
In order to demonstrate the effectiveness of triangulation-

based clustering in terms of reducingNag, we simply compare
the number of aggregators obtained by our approach to
those provided by other algorithms. The average number of
aggregators is calculated over 5000 different random trials,
where the placement and traffic of sensors are determined as
described in section V-A. The value of Nag does not differ
significantly for different µλ at the same value of G. Hence,
the comparison was carried out at µλ = 2.5 × 10−5 for
different values of coverage area G. Referring to Fig. 4, the
values ofPkbit were 3, 4.5 and 4µWforG = 10×10, 15×15,
20 × 20, respectively. For the purposes of comparison, the
following five alternative clustering methods are taken into
consideration:

1) Triangulation-based K-means (TK-means) described in
Algorithm 1

2) Triangulation-based hierarchical agglomerative
clustering (THAC), which replaces the K-means in
Algorithm 1 with hierarchical agglomerative clustering
(HAC) [40]

3) Triangulation-based Gaussian mixture model (TGMM),
which replaces the K-means in Algorithm 1 with
Gaussian mixture model (GMM) [41]

4) Triangulation-based spectral clustering (TSpectral),
which replaces the K-means in Algorithm 1 with
spectral clustering [42]

5) Constrained K-means clustering introduced in [17]

The results of this comparison are presented in Table 5.
Similar to the results in [17], THAC clustering showed
worse performance than TK-means clustering. Additionally,
the TK-means performed much better than TGMM and
TSpectral clustering algorithms and therefore it was adopted
as the clustering technique for Algorithm 1. Although
constrained K-means successfully minimized Nag compared
to K-means based clustering presented in [27], TK-means
successfullyminimized the number of aggregators for various
coverage area, G, up to 20% compared to constrained
K-means proposed in [17].
We compared the total energy consumption of applying

TK-means with GSK optimization framework with the total
energy consumption of two other methods to evaluate the
efficiency of our proposed framework in terms of minimizing
the total energy consumption of the system.Onemethod is the
offline data collection method presented in [17]. The other
method utilizes the proposed TK-means clustering, but with
fixed values for Pag and q0 and gets the UAV trajectory by
solving the CVRP problem. The fixed values for Pag and
q0 are 15 dBm, and the midpoint of the area, respectively,
similar to the values used in [17]. The latter model is used
to present the energy saving gained by utilizing GSK for
optimizing the values of Pag and q0.

FIGURE 4. UAV power consumption and K versus Pkbit at different values
of G and µλ.

Fig. 5 shows the total energy consumption given by each
algorithm at different values of G and µλ. At µλ = 2.5 ×
10−5, the values of Pkbit used were 3, 4.5 and 4 µW for
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TABLE 5. Average Nag for each algorithm with various coverage area, G,
values.

FIGURE 5. Total energy consumption at different G and µλ.

G = 10 × 10, 15 × 15 and 20 × 20, respectively. For
µλ = 1×10−4, the values of Pkbit used were 3, 2.5 and 2µW
for G 10× 10, 15× 15 and 20× 20, respectively. The results
show that the TK-means with GSK optimization framework
consumes the least amount of energy across all areas and
sensor densities and decreases the energy consumption by
up to 13.25% compared to [17].

Additionally, it is demonstrated that the proposed Pag and
q0 optimization are more effective at smaller µλ. Applying
the GSK optimization after TK-means reduced the total
energy consumed for G = 10 × 10, 15 × 15 and 20 ×

FIGURE 6. UAV trajectories for G = 10 × 10 at different µλ.

20 by 2.00%, 4.72% and 3.81%, respectively, compared
to utilizing TK-means alone. At a low µλ value, it is
more feasible that sensors concentrate at specific patches
while leaving others nearly empty. In this scenario, locating
the dockstation near densely populated areas is preferable.
At largeµλ, approximately all sections contain sensors, so the
best dockstation location is near the center of the area, as seen
in Fig. 3. Since the fixedPag and dockstation technique places
the dockstation at the midpoint of the area, the difference
between the optimized method and the fixed value method
at large µλ values is only the aggregator power.

As can be shown, the approach described in [17] and
the proposed TK-means with fixed Pag and q0 perform
similarly at G =10 × 10 at both high and low sensor
densities and at G =15 × 15 at low sensor density. At the
mentioned G and µλ values, the difference between Nag
calculated using TK-means and constrained K-means is not
significant. Therefore, the energy consumed by visiting extra
points is compensated in [17] by moving aggregators towards
the dockstation to shorten the trajectories. Nonetheless,
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FIGURE 7. UAV trajectories for G = 20 × 20 at different µλ.

executing GSK optimization for Pag and q0 provides
better energy savings compared to shifting aggregators
towards the dockstation by 1.30%, 4.21%, and 4.33%
for G =10 × 10 with low sensor density,G =10 ×
10 at high sensor density, and G =15 × 15 at low
sensor density, respectively. Additionally, splitting a 20 ×
20 area into four 10 × 10 areas and solving each
independently might yield lower energy consumption per
trip. However, the maintenance and deployment costs would
grow due to the increased requirement for dockstations
and UAVs.

Figures 6 and 7 illustrate the results of the placement
of aggregator positions, dockstations, and UAV trajectories
in various scenarios with different values of G and µλ.
The aggregators, dockstation, and trajectories of multiple
UAVs are represented by different colors. The figures
demonstrate that the algorithm successfully collects data
from all aggregators while ensuring that no aggregator
is accessed more than once. However, as the number of
UAVs required increases, the probability of having UAVs
with intersecting trajectories increases, as demonstrated in
Fig. 7b. The issue of ensuring that UAV trajectories do not
result in collisions was studied in [43]. Nonetheless, the
integration between our work and [43] remains a topic for

future research. These findings contribute to the scientific
understanding of the performance of the algorithm and
provide insights into the challenges that may arise when
scaling up the system.

VI. CONCLUSION AND FUTURE WORK
In this paper, we presented an approach to optimize
the energy consumption and cost of UAV-assisted WSNs
for data collection, considering the time and memory
constraints of UAVs. The problem was broken down
into two sub-problems. First, the number and position of
aggregators and the sensor-aggregator associations were
determined using triangulation-based K-means clustering to
minimize the number of aggregators used. The maximum
communication power-constrained this problem for sensors.
The results showed that triangulation-based K-means
minimized the number of needed aggregators compared
to other triangulation-based clustering algorithms found
in the literature up to 28.12%. Second, the dockstation
position, the aggregator communication power, and the
UAV trajectories are optimized on multiple steps. Using the
GSK optimization algorithm, a population of dockstation
position and aggregator power pairs are generated. For each
dockstation position and aggregator power pair, the optimum
UAV trajectory is designed by solving a CVRP problem, and
the total power consumed by the solution is calculated. The
GSK updates the population according to the total energy
consumption of each solution. The process is repeated for a
given number of generations, and the best solution across all
generations is returned. Results displayed that our framework
successfully minimized the energy consumption per mission
compared to other frameworks.

In the future, we will consider integrating our work with
a crash avoidance technique such that energy consumption
is still minimized. Other optimization factors such as UAV
speed and hovering positionswere not considered in this work
and can be explored in the future. In this paper, the data
collection framework considers non-real-time applications
which have relaxed time constraints and do not wait for
a response. To extend this framework to include real-
time application, connections to high-altitude platforms
(HAPs) need to be investigated.Moreover, balancing between
incoming real-time tasks and non-real-time tasks should be
considered to maintain a satisfactory quality of service for
such a system.
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