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ABSTRACT In the present era, energy issues are a significant concern, and the energy trading market is the
crucial sector to facilitate supply-demand balance and sustainable development. For better demand response
and grid balancing, vehicle-to-grid (V2G) technology is rapidly gaining importance in energy markets.
To narrow the gap between ideal V2G goals and actual applications needs, energy trading system has to
overcome the challenges of over-centralized structure, inflexible timeline adaptation, limited market scale
and energy efficiency, excessive feedback time costs, and low rate of economic return. To address these
issues and ensure a secure energy market, we propose a decentralized intelligent V2G system called V2G
Forecasting and Trading Network (V2GFTN) to achieve efficient and robust energy trading in campus EV
networks. Amultiple blockchain structure is proposed inV2GFTN to ensure trading security and data privacy
between energy requests and offers. V2GFTN also integrates energy forecasting functions for EVs with a
smart energy trading and EV allocation mechanism called SRET so that the EVs with driving tasks can
supply their extra power back to the grid and achieve higher energy efficiency and economic profit. Through
rigorous experimentation and compared with equivalent studies, V2GFTN system has demonstrated higher
economic profit and energy demand fill rate by up to 1.6 times and 1.9 times than the state-of-the-art V2G
approaches.

INDEX TERMS Energy trading, vehicle-to-grid, energy forecast, multi-blockchain.

I. INTRODUCTION
In modern society, energy is a fundamental concern that
impacts economic growth, environmental consequences,
renewable transition, and geopolitical stability [4], [5],
[6]. A reliable and efficient power supply is critical to
industry, transportation, and economic stability on a national
and even global scale [7], [8], [9]. Maintaining a stable
power supply system requires balancing electricity supply
and demand to avoid energy shortages or surpluses, and
an effective energy trading market is one of the most
effectiveways tomaintain supply-demand balance and ensure
energy security [10]. Energy trading markets connect energy
suppliers and consumers and encourage their competition,
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contributing to the efficient allocation of energy resources.
In addition to improving efficiency and reducing waste,
energy trading markets provide platforms for integrating
renewable energy sources into the energy mix, facilitating
a clean energy transition and industry innovation [11], [12].
Among all the technological advancements emerging in
energy commercialization, vehicle-to-grid (V2G) occupies a
significant position due to its potential to change how energy
sources and networks are managed [13]. In short, V2G is
a network that enables electric vehicles (EVs) to consume
energy from the grid and return excess energy to the grid
when needed.

V2G allows EV batteries to act as decentralized energy
storage during high-demand periods, which is critical to
reducing peak loads on the grid, aggregating solar and wind
sources, reducing infrastructure investment, and promoting
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demand response [14], [15], [16], [17], [18]. The increasing
number of EVs and EV users makes V2G a better solution
than expensive peak load power plants [19]. While V2G is
theoretically promising, its practical applications still face
challenges related to efficiency, system stability, market size,
incentive mechanisms, and consumer trust concerns. This is
partly because current V2G infrastructure and participation
in most regions have not reached the scale necessary to
support viable energy markets, even though an ideal V2G
network requires many EVs to contribute to flexible energy
storage and balancing. Limited economic incentives in many
areas exacerbate the situation, creating an urgent need for
new decentralized solutions that provide a desired financial
incentive for EV owners and energy consumers. In the
meantime, consumer acceptance based on trust is necessary
to promote the practical adoption and implementation of
V2G markets, so privacy and security of V2G commerce
also need to be improved [20]. Distributed databases,
particularly blockchain, operate through a consensus process
in a peer-to-peer network, eliminating the need for a
central administrator and allowing individuals to regain
control over their data. Introduced as a decentralized and
immutable distributed ledger technology, blockchain ensures
secure, authentic, and widely distributed data among network
peers. Its features, like absence of a central authority in
transactions, make it applicable across diverse domains,
including trading, AI, data security, and IoT integrity [21].
Innovative blockchain-inspiredmechanisms enhance security
in V2G operations [22]. However, despite its potential,
blockchain faces challenges, notably scalability concerns due
to block size and latency tradeoffs, slow block propagation,
and the risk of selfish mining strategies. Addressing these
challenges is crucial for evaluating its performance and
ability to manage trading data in various applications [23].
To accelerate the practical process of V2G trading,

recent work identifies several solutions, including optimizing
market participation mechanisms, developing flexible energy
pricing strategies, engaging in multiple markets, optimizing
battery management, establishing energy service contracts,
and reducing transaction costs [13], [24], [25], [26], [27],
[28], [29]. While these works help mitigate market access,
transaction barriers, and power system constraints, the
complexity and uncertainty of V2G markets are inevitably
amplified as more vehicle owners participate in market
competition. Uncertain market prices and demand make
predicting the optimal timing for charging and discharging
challenging. Besides, managing multiple energy markets
requires additional monitoring to maintain demand response
programs and prevent blackouts or brownouts during peak
periods. These additional transaction costs and management
fees can reduce the net economic returns of V2G trading,
especially for small V2G participants.

In summary, the existing methods mainly focus on refining
the bidding strategy to optimize profits for energy consumers
and managing the allocation of tasks for discharging electric
vehicles in parking lots. However, the remaining challenges

are as follows. Firstly, current methods of energy trading
primarily utilize parked electric vehicles as energy suppliers
and overlook the potential contributions of driving vehicles.
This approach limits the scope of available energy resources
as it does not take into account vehicles that are actively on
the move. Secondly, there is a significant gap in establishing
an efficient matching system. Existing systems do not
adequately pair energy consumers with appropriate suppliers,
leading to inefficiencies in the distribution and utilization of
energy resources. Thirdly, the integration of time constraints
into the energy trading process is not sufficiently detailed.
Previous methods assume a static scenario in which all EVs
are parked and available for task distribution. However, for
efficient energy management, the specific time period of
energy demand and the periods when EVs are either busy or
idle are crucial, especially in dynamic, real-world scenarios
where vehicle availability fluctuates.

To address the above gaps and realize the potential of
V2G technology, based on our previous work on V2GNet
[1], as shown in Fig. 1 and NoEV [2], we propose V2GFTN,
a smart campus V2G energy trading system for sharing EV
fleets based on energy consumption forecasting and multiple
blockchains. The architecture of V2GFTN is shown in Fig. 2.
Each college campus’s shared EV fleet is centrally managed
and dispatched by a campus control system (CS) to achieve
larger energy reserves and transactions. To keep privacy
and information security at a smaller scale, a blockchain of
energy exchanges (BoE) and a blockchain of EVs (BoEV) are
established for energy consumers and suppliers, respectively,
within the campus. In a single campus, the BoE and the BoEV
intersect through CS. We also establish a novel blockchain
of control systems (BoCS) to interconnect different campus
V2G networks. Detailed selection and trading algorithms
are also presented to accommodate different V2G scenarios.
In addition, we provide an efficient solution for V2G energy
trading, called the smart and robust energy trading algorithm
(SRET), to optimize EV charging and discharging strategies.
An energy forecast function based on the driving task data
and EV conditions is also implied by the V2GFTN. The main
contributions of this paper are summarized as follows:

• Our system consists of a multi-blockchain-based, cross-
cluster V2G energy trading framework consisting of
three key components: a blockchain for control systems
(BoCS), a blockchain for energy supplier electric
vehicles (BoEV) and a blockchain for energy exchanges
(BoE), which communicates with energy consumers.

• We proposed a Smart and Robust Energy Trading
algorithm (SRET) that is integrated into smart energy
management systems. This algorithm refines vehicle
charging and discharging strategies by adapting them
to market dynamics and specific user requirements.
In addition, the system deploys a predictive neural
network to forecast dynamic energy consumption of
EVs based on their driving tasks, which increases the
effectiveness of our charging and discharging strategies.
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FIGURE 1. Overview of a bidirectional energy supply and trading system V2GNet [1]. To ensure a secure and efficient energy market, the system takes a
virtual power plant as the control system of all the sharing EVs on a college campus, thus integrating a V2G aggregator and EV fleets in a
blockchain-based energy trading system. To facilitate a seamless transmission of energy requests and offers, V2GNet incorporates two distinct
consortium blockchains: the blockchain of energy exchanges (BoE) and the blockchain of EVs (BoEV).

• Our approach also introduces two innovative energy
trading methods that streamline the entire process of
energy requests and offers. These methods facilitate the
efficient allocation of energy from EVs to consumers,
using both double- and simple-time-boundary strategies
for different trading scenarios.

The rest of this paper is organized as follows. Section II
discusses the related works on vehicle-to-grid energy supply
and trading, smart energy forecasting systems, and energy
trading systems based on multiple blockchain networks.
Section III presents the proposed V2GFTG, including
the energy trading process, data storage and transmission

across campuses based on multiple blockchains, the smart
and robust energy trading algorithm, and a data analysis
and energy forecasting function. Section IV provides the
performance evaluation of the proposed V2GFTN system.
In Section V and VI, some discussions and the conclusion
are presented.

II. RELATED WORK
This section presents the related works on vehicle-to-grid
energy supply and trading, smart energy forecasting systems,
and energy trading systems based on multiple blockchain
networks.
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A. VEHICLE-TO-GRID ENERGY SUPPLY & TRADING
Chen et al. [13] proposed an optimal V2G pricing strategy
using the Stackelberg game, setting EV users’ benefits
as game factors and creating EV users’ benefit models
with historical charging costs and inconvenience costs.
Gümrükcü et al. [28] introduced decentralized management
for urban charging stations, where EVs can access multiple
charger clusters, each controlled by an aggregator. Since
the work only prescribes daily schedules and power peaks
of aggregators to constrain the energy supply of grid-to-
vehicle and vehicle-to-grid services, it has difficulty dealing
with the natural immediacy and fluidity of EV interactions
in V2G scenarios. Huang et al. [29] formulated the V2G
scheduling problem as a constrainedMarkov decision process
and then developed a simulation-based primal-dual approach
to decompose the original problem into a continuous opti-
mization subproblem on the supply side and a discrete opti-
mization subproblem on the demand side. In the work [30],
a novel adaptive demand-side energy management frame-
work was developed by employing federated learning-based
privacy preservation for wireless charging V2G systems,
which learns the temporal evolution of energy consumption
of dynamic charging EVs in a distributed fashion and
exploits the reinforcement learning model for cost-saving
and reward maximization. Wan et al. [31] proposed V2GEx.
This privacy-preserving fair exchange scheme comprises an
extended blockchain that supports zero-knowledge funds,
a fair exchange smart contract based on the hash chain
micropayment mechanism, and a privacy-preserving protocol
for V2G under the universal composability model. Though
a simpler and more efficient scheme, Uni-V2GEx, was pro-
vided, the monetary costs of a complete V2GEx settlement
session are still relatively high in gas consumption, which
turns out to be one of the main shortcomings hindering
the application of these rigorous secure V2G schemes on
the public chain, especially in developing countries and
areas. Tao et al. [32] presented a data-driven matching
protocol for vehicle-to-vehicle energy management, utilizing
deep reinforcement learning for the long-term reward of the
matching action based on the formulated Markov decision
process. A matching optimization model is established and
converted into a bipartite graph problem to enhance the
computation efficiency. However, the number of EVs covered
in the energy framework is relatively tiny compared with
many vehicles needing short-term energy trading in current
communities and campuses.

B. SMART ENERGY FORECASTING SYSTEMS
The original hybrid deep learning algorithm in the work [33]
was developed to make a computer-assisted forecasting
energy management system, and a Hankel matrix is created
for processing gathered automatic metering infrastructure
load information by applying the Copula function. A robust
energy management system in work [34] with an inconsistent
energy supply aiming to minimize energy costs while

avoiding failing to satisfy energy demands was proposed
through an algorithm based on safe reinforcement learning,
which can effectively exploit short-horizon forecasts on
system uncertainties. Authors in [35] proposed an attention
temporal convolutional network built on stacked dilated
causal convolutional networks and attention mechanisms to
perform the ultra-short-term spatiotemporal forecasting of
renewable resources. In the work [36], the authors proposed
a spatiotemporal decomposition agent for the unbundled
smart meter based on artificial intelligence, which helps users
optimize their energy usage and helps distribution system
operators utilize building assets for grid operation. Deep
learning models can customize the energy usage strategy
developed for different users according to the different energy
users’ consumption habits. However, the uncertainty with
EVs is not addressed, and the nonlinearity in the time-series
data for the actual distribution grid operation is not fully
considered. Meng et al. [37] proposed a nonparametric
multivariate density forecast model based on deep learning,
which offers the whole marginal distribution of each ran-
dom variable in forecasting targets and reveals the future
correlation between them. Authors in [38] identified a hybrid
photovoltaic forecasting framework based on the temporal
convolutional network for enhancing hours-ahead utility-
scale PV forecasting. The formulated hybrid framework
consists of two forecasting models: a physics-based trend
forecasting model and a data-driven fluctuation forecasting
model. However, the above-mentioned strategies weremostly
adopted without containing a rapidly changing market.
Considering that the edge nodes inV2G networks are prone to
take swift vary through a few energy trading rounds, an hour-
ahead robust V2G energy forecast mechanism is essential to
achieve stable V2G marketing.

C. ENERGY TRADING SYSTEMS BASED ON MULTIPLE
BLOCKCHAIN NETWORKS
The work in [39] discussed a resource trading environ-
ment of mobile devices and proposed a novel intelligent
resource trading framework that integrates multi-agent deep
reinforcement Learning, blockchain, and game theory to
manage dynamic resource trading environments. However,
the formulated optimization problem in a multi-agent envi-
ronment is too complex and dynamic to solve directly
by any game, particularly for the industrial Internet of
Things. Guo et al. [40] proposed B-MET, a blockchain-based
system trading multiple energies by executing a designed
byzantine-based consensus mechanism that relies on nodes’
credit model to improve throughput and cut latency. In the
introduced credit model, a consensus is achieved by the sum
of voting nodes’ credits rather than their number. It is in
accord with intuition but needs further rigorous mathematical
derivation to prove its strict correctness. Zhao et al. [41]
proposed a secure intra-regional-inter-regional peer-to-peer
electricity trading system for EVs, where blockchain is
introduced to support transaction payments and data security.
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A trading prediction model based on ensemble learning was
introduced to maximize the regional overall social welfare,
and a super-modular game was taken to investigate neighbor
regions’ competition. One main limitation of the work is
the lack of transaction data protection in their Ethereum
module during the whole trading process, for the security
and privacy of transaction payments and data storage are
vital for integrating blockchain and energy trading systems.
Hua et al. [42] designed a novel blockchain-based peer-to-
peer trading architecture that integrates negotiation-based
auction and pricing mechanisms in local electricity mar-
kets through automating, standardizing, and self-enforcing
trading procedures by intelligent contracts. To analyze the
balance between decentralization and platform performance
in the controllable scenario of a smart grid, a fair and
efficient main/side chain framework was introduced in
the work [43] by exploring the scalability of blockchain.
Lin et al. [44] combined artificial intelligence, the Internet
of Things, and blockchain technology to create a vehicle-to-
everything power trading andmanagement platform to enable
multi-level power transactions for EV charging stations
around commercial buildings. Nevertheless, only 30 EV
charging piles were simulated in the evaluation part, far
from meeting rapidly increasing EVs’ charging/discharging
demands. The real-time supply and demand imbalance
caused by the high proportion of renewable energy also
poses a considerable challenge to blockchain-based learning
networks.

III. V2G FORECASTING AND TRADING NETWORK
This section presents the integrated architecture of the pro-
posed V2GFTN, focusing on an effective multi-blockchain
energy trading approach in V2G networks. The V2GFTN
system and its inherent SRET operational algorithms aim
to fulfill a larger number of energy requests, higher energy
demand, and better economic profit. These implicit objectives
and the outcomes highlight how our V2G system contributes
to maximizing operational energy efficiency and financial
returns while enhancing the overall stability and resilience
of the power grid. The section is divided into four parts:
1) Multi-blockchain-based V2G networks in V2GFTN;
2) Energy trading process in V2GFTN; 3) Smart and
Robust Energy Trading (SRET) algorithm for V2GFTN; 4)
Learning-enabled energy forecasting for EVs in V2GFTN.

The first subsection outlines the overarching structure of
our proposed system, which includes a dedicated blockchain
for customers, another for electric vehicles and an over-
arching blockchain for managing control systems. The
second section then addresses the trading methods for
energy consumers (customers) and suppliers (EVs). The third
section presents the algorithm used to bring customers and
electric vehicles together to facilitate the allocation of energy
resources. In the fourth section, a method for predicting
the power consumption of electric vehicles is presented.
This approach aims to gain a more accurate understanding
of the status of electric vehicles, especially in terms of

FIGURE 2. Overview of the proposed V2GFTN with the blockchain of
campus control systems (BoCS), the blockchain of electric vehicles (BoEV),
and the blockchain of exchanges (BoE). The BoCS is where inter-campus
energy trading is planned and recorded, and each CS makes a node of the
BoCS. Besides, each campus’s CS works as an information mediator
between energy consumers and EV suppliers and as a blockchain
connection between the BoEV and BoE of each campus. Each BoEV
integrates the EVs and CS for a single campus, where the energy offer lists
(EVs to CS) and notification of discharge tasks (CS to EVs) are transmitted.
Each BoE integrates the energy exchanges and CS for a single campus,
where the energy request lists (exchanges to CS) and notifications of
chosen consumers (CS to exchanges) are transmitted.

battery information. This enhanced knowledge is crucial
for improving the efficiency of energy management and
maximizing the overall profit.

A. MULTI-BLOCKCHAIN-BASED V2G NETWORKS
The proposed V2GFTN blockchain network includes three
parts: a blockchain of electric vehicles (BoEV), a blockchain
of exchanges (BoE), and a blockchain of campus control
systems (BoCS), as shown in Fig. 2. According to the work-
flow of the proposed energy trading algorithms, we divide
the data storage and transmission into five parts: 1) Starting
the operation of BoE; 2) Starting the operation of BoEV; 3)
Preceding the operation of BoEV; 4) Preceding the operation
of BoE; 5) Operating BoCS.
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A detailed introduction of the proposed multi-blockchain
architecture is given in Fig. 3. A blockchain network is
a decentralized and immutable distributed ledger technol-
ogy that ensures secure, authentic, and widely distributed
data among network peers. It eliminates the need for a
central administrator, allowing individuals to regain control
over their data securely. The innovative multi-blockchain
mechanism cuts the length of each chain and its time cost,
helping to keep the privacy of peers. In summary, blockchain
technology provides a secure and decentralized way to store
and share data, making it an applicable solution for V2G
operations. Here we choose consortium blockchains for the
blockchain implementation, to avoid mining and cut time
and energy consumption within and across blockchains.
We take hyperledger fabric as a tool to integrate consortium
blockchain and Raft as an ordering service.

The starting operation of each BoE commences with any
of its energy exchange gathering and aggregating all energy
requests from its affiliated consumers. These requests are
then compiled into a comprehensive list encapsulated in
a transaction. Subsequently, this transaction is broadcast
across the BoE network, awaiting responses from other
exchanges operating within the network. Each exchange is
linked to a transaction pool. As transactions accumulate
within this pool, the exchange proceeds to dispatch them for
endorsement to a designated group of endorsing exchanges.
Upon successful endorsement, the transactions move forward
for ordering and packaging into a block facilitated by the
ordering organization. This block is then disseminated across
all energy exchanges for verification. Once the block’s
authenticity is verified, the CS of the campus linked to the
BoE proceeds to download the block, extract the associated
request lists, and consolidate these request lists to form
a comprehensive and combined overall request list. Each
transaction is authenticated by verifying the digital signatures
of its originators, ensuring the legitimacy of each exchange
within the BoEV, BoE and BoCS networks. In addition,
the integrity of the blockchain is maintained through
cryptographic verification, where the hash value of each new
block is compared to that of its predecessor to ensure a secure
and continuous chain. Crucial to the security of our network
is the use of consensus algorithms that enable agreement
between nodes on the validity of transactions, protecting
against tampering and strengthening the reliability of the
blockchain. These robust security protocols on the V2GFTN
network are critical to maintaining a secure, trustworthy
platform for energy trading, improving the resilience of the
system and promoting trust between participants.

The initiation of operation in each BoEV commences when
EV fleets within V2GFTN are informed of energy demands
by their respective CS. Each EV, upon receiving the informa-
tion, encapsulates its unique identity and energy-related data
into a transaction, broadcasting it across the network of its
BoEV. As the trading round progresses, every available EV
within the network generates its respective transaction and
shares it with others in the same BoEV. Once an EV collects

all transactions for the trading round, the EV compiles
these transactions and submits them for endorsement to a
designated group of endorsing nodes. After endorsement,
the transactions proceed to the ordering nodes, which are
meticulously arranged in a fixed sequence and packaged
into a new block. Subsequently, this newly formed block is
disseminated across all EVs within the BoEV for verification.
Upon successful verification, the CS linked to the BoEV
downloads each EV’s energy-related data and offers and
aggregates them to form a comprehensive offer list.

The preceding operation of each BoEV begins once the CS
completes the process of the planning phase. First, the CS
generates a result list with the help of SRET, encompassing
the selected EV suppliers. For an EV selected to supply
energy, specific details like its unique ID, predicted time
and energy consumption of driving tasks, and the quantity
of energy supplied are recorded on this list. Conversely,
the notation ‘‘unselected’’ is entered in the list if an EV
isn’t selected. This result list for the EVs is then securely
stored in a transaction from the CS end. Subsequently, this
transaction is presented for endorsement by the endorsing
EVs. Following endorsement, the transaction is encapsulated
into a block, systematically verified, and then downloaded
and permanently recorded by the EV nodes of the BoEV.
Upon completing this process, each EV within the BoEV
extracts the result list with corresponding energy trading
details from the block and discharges during the execution
phase accordingly.

The preceding operation in the BoE unfolds when SRET
generates the result list of chosen consumers. The unique ID
of each selected consumer and its vital trading details, such as
the energy supply duration, the energy trading price, etc. are
recorded in the result list. Following the compilation of this
result list for consumers, it is stored in a transaction within
the CS and then subjected to endorsement by designated
endorsing exchanges. Upon successful endorsement, the
transaction is packaged into a block, systematically verified,
and recorded within the exchange nodes of the BoE network.
Upon completion of the process, every exchange within the
BoE network extracts the result list containing the outcomes
for the selected consumers and their respective energy deals
from the downloaded block. Consequently, each exchange
retains the trading specifics regarding its consumers and
generates individual notifications accordingly. The notified
consumers must finish payment clearing by the end of the
execution phase.

The initial step in the BoCS begins once any CS completes
the process of the preceding operations in its BoE and BoEV.
When the result lists of chosen consumers and EVs are
generated and uploaded to BoE and BoEV, each CS packs
its unselected EV suppliers and consumers’ requests into a
transaction along with necessary energy details, as mentioned
above. The transaction is broadcast on the BoCS and then
sent to the transaction pool of each CS. Once enough
transactions are collected within any pool; the corresponding
CS will dispatch them for endorsement to a designated
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FIGURE 3. Overview of the proposed multi-blockchain architecture of exchanges (BoE), blockchain of EVs (BoEV), and blockchain of control systems
(BoCS). Each trading round performs the two-time operation in all these blockchains, respectively. Communication between consumers and exchanges
and the task of informing EVs to trade take place off the blockchain.

group of endorsing CSs. Upon successful endorsement, the
transactions move forward for ordering and packaging into
a block facilitated by the ordering organization. This block
is then broadcast across the BoCS for verification. After the
block is verified, each CS of the BoCS proceeds to download
the block, extracting the associated lists and consolidating
these lists into an overall request list and an overall EV
supplier list. Each CS then competes on working out all
the feasible trading plans across the two overall lists with
SRET and uploading the outcome in a transaction back to the
BoCS. Once a transaction is successfully endorsed, packaged
into a block, and systematically verified, the new block is
downloaded and permanently recorded by all the CS nodes
of the BoCS network. From the block, every CS within the
BoCS extracts the cross-campus energy trading outcomes and
notifies its related consumers and EVs about their trading
specifics accordingly.

In our framework for V2G energy trading, we recognize
that practical vulnerabilities can arise in several areas,
requiring a comprehensive approach to security. First, the
communication channels between EVs, charging stations and
the power grid are exposed to the risk of cyber-attacks,
such as man-in-the-middle attacks that could disrupt the
accuracy of energy demand and supply data. In addition, the
integrity of the data within the trading platform is of great
importance; it is vulnerable to tampering, which could lead
to problems related to the business or energy distribution.
To protect against these potential attacks, our framework
includes advanced encryption for data in transit and at rest,
as well as strict access controls to prevent unauthorized
data modification. We also propose the implementation of
real-time monitoring systems that use anomaly detection
algorithms to immediately detect and respond to unusual
activity. Regular security audits will improve the system’s
defenses against emerging threats. By addressing these
vulnerabilities, our V2G energy trading system aims to offer
a secure and reliable platform for all stakeholders involved in
the energy trading process.

B. ENERGY TRADING METHODS AND PROCESS IN
V2GFTN
1) HOUR-AHEAD COMPREHENSIVE ENERGY TRADING
METHOD
The proposed energy trading process in V2GFTN can be
divided into the process on the campus power grid, a control
system (CS), and the process of sharing EV fleets. We denote
the process on the grid with CS as part A and the process on
EV fleets as part B. These two parts of the trading process
are illustrated in Fig. 4. We then describe part A (CS side)
and part B (EV side), respectively.

The V2GFTN system starts an hour-ahead energy trading
round on the CS side. A full V2GFTN trading round consists
of an hour-long planning phase and an hour-long execution
phase. During the planning phase, the system analyzes the
market conditions and risks, determines trading strategies,
and formulates the V2G trading plans. In the execution
phase, participants complete energy transactions and fulfill
contracts reached in the planning phase. Once CS has verified
that energy trading is available, CS informs all EVs at the
beginning of the planning phase to check their energy status.
The EVs not connected to the grid quit the trading round
directly, as their link-in time and energy supply to the grid
are unknown. For the EVs already connected to the grid, each
EV checks if it has future driving tasks. The EVs with driving
tasks will quit the trading round directly. For the rest EVs,
each EV checks if there’s enough remaining energy (RP) for
supply. The EV with enough RP sends its ID, the quantity of
RP, and the available period for discharge to the CS, while the
EVs without enough RP quit the trading round.

While the EVs respond to the CS, the energy consumers
also send their energy requests to the CS through energy
exchanges. Each request contains the consumer ID, energy
demand quantity, demand period, and a bid price per
energy unit. The CS then selects the best energy requests
and allocates EVs’ energy offers to them through the
SRET algorithm (see Section III-C). Once the CS obtains
the request selection results and the corresponding energy

VOLUME 12, 2024 8141



Y. Liang et al.: Robust V2G Energy Trading Method Based on Smart Forecast and Multi-Blockchain Network

FIGURE 4. Energy trading algorithm without the energy forecasting data for EVs in V2GFTN for both EV and CS sides. The CS side
begins from ‘‘Start A,’’ and the EV side begins from ‘‘Start B’’ at the planning phase of each energy trading round. The power grid
provides CS with a supply tariff, and the energy exchanges collect consumer energy requests and send them to the CS. The EVs also
evaluate their availability, and those available ones send their information to the CS for selection. Once the execution phase starts,
the selected EVs begin to discharge to the chosen consumers according to the trading contracts worked out by SRET in the planning
phase.

allocation, each consumer receives a notification from the CS
through their exchanges. Each selected EV receives discharge
instructions for its execution phase. The planning phase lasts
one hour to ensure that CS has enough time to choose the
most appropriate strategy and optimize the trading plan.
When the planning phase ends, the execution phase begins,
and all selected EVs stop charging and begin discharging
as instructed. When a selected EV finishes its discharge
task or runs out of energy, CS settles its payments with the
consumer of the request through energy exchange. When all
of CS’s payments are settled, the execution phase ends, and
the trading round also ends.

2) DYNAMIC PREDICTIVE ENERGY TRADING METHOD
In addition to the EVs already counted as available in the
original energy trading process, many EVs with driving tasks
through the energy trading rounds still have the potential to
provide energy to consumers. Using EV energy forecasting,
our system can utilize EVs with driving tasks. The proposed
energy trading process with energy forecasting for EVs
in V2GFTN is illustrated in Fig. 5. At the beginning of
each trading round, when CS is sure that energy trading is

available, it collects energy consumers’ energy requests from
the connected energy exchanges. It informs all EVs to check
their energy status for the next trading round. For the EVs
that are still busy with driving tasks and not connected to
the grid, each EV uses its forecast data models to evaluate
whether it can connect to the grid before the end of the
trading round. The EVs that cannot connect to the grid in
time leave the trading round directly. Meanwhile, the EVs
that can connect in time check whether their remaining power
covers the predicted energy consumed until they connect.
If the forecast result shows that an EV has no energy to
supply when it connects to the grid, it leaves the trading round
directly. Otherwise, the EV sends its ID, the predicted energy
supply amount, and the predicted connection time to the CS.

For the EVs already linked to the network, each EV checks
if it has future driving tasks during the trading round. During
the trading round, the EVs involved in a charging task stop
charging as soon as they are fully charged or have started their
assigned energy requirements for the trading round. The EVs
with future driving tasks that do not finish in time will exit
the trading round directly. Each EV involved in future driving
tasks that could finish on time checks if it has enough energy
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FIGURE 5. Energy trading algorithm with the energy forecasting data for EVs in V2GFTN for both the EV and CS sides. Since EVs can predict the energy
consumption of their driving tasks before and during each driving task, EVs with driving tasks can also trade and supply their excess energy according to
the prediction results.

to cover the estimated energy consumption of its driving task.
The EV exits the trading round if no energy is left after the
driving task. Otherwise, the EV sends its ID, the forecast
energy supply quantity, and the estimated time for the end
of the driving task (before the end of the trading round) to the
CS.

The linked EVs with no driving tasks also check to see
if they have enough energy available. EVs with sufficient
remaining energy send their ID and forecast energy delivery
amount to the CS, while EVs with no energy to supply quit
the trading round. The rest of the trading process is the same
as the original one. According to the collected data, the CS
matches the EVs’ energy offers to the consumers’ energy
requests via the SRET algorithm. The CS notifies the winning
requests and the corresponding energy allocation to each
consumer through their exchanges. And the selected EVs
discharge as scheduled. In the end, the payment is processed
through CS, and the trading round is finished.

C. SMART AND ROBUST ENERGY TRADING (SRET)
ALGORITHM FOR V2GFTN
This section presents an allocation algorithm for our energy
trading system called the Smart and Robust Energy Trading
(SRET) algorithm. The goal of the SRET algorithm is to
make the best use of the energy provided by the EVs to

achieve maximum profit through V2G energy allocation.
To provide the optimal energy allocation solution for the
most profitable energy requests, CS executes SRET after
data collection. CS goes through the request list to rank the
requests by reward and then sequentially satisfies them with
the EV list. Since each request and EV has a certain amount
of available period, we must consider temporal constraints.
Here, we define the qualification of temporal constraints in
SRET as time limits. Thus, SRET can apply different EV
selection strategies depending on the number of assumed time
limits.

1) REQUEST SELECTION STRATEGY
First, CS has to reorder the request list by the unit bid tariff
in descending order and the EV list by their remaining power
(RP) in descending order. The CS then starts allocating EVs
with the highest bid tariff for the request. Once the request’s
energy demand is fulfilled or skipped, CS begins allocating
EVs for the next request in the list until no more requests or
EVs are available.

2) EV SELECTION STRATEGY WITH DOUBLE TIME
BOUNDARIES
Here, we present two types of allocation methods, taking
different timing strategies for EV selection. First, we take
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the strategy with double time boundaries, where the CS only
allocates the EVs that can fulfill a couple of each request’s
timing constraints. Given a requestRi, i ∈ N , the CS traverses
the EV list {EVk} , k ∈ M , and picks out EVs with proper
offer period to form a temporary EV list {ELi}, the EV number
in {ELi} is denoted by Mi. For Ri, only those EVs that start
energy supply earlier than the request’s start time and end
energy supply later than the request’s end time are taken
into {ELi}. When no EV meets the time boundaries, the CS
removesRi from the request list and allocates EVs for the next
request. Since the EVs in {ELi} are still listed in descending
RP order, the CS compares the RP of the first EV in the list
with the energy demand of Ri to check if any single EV can
fulfill Ri. When the largest RP of EVs in {ELi} is not less than
the energy demand of Ri, the EV with the least RP that can
fulfill the demand of Ri is selected. When the most extensive
RP of EVs in {ELi} is less than the energy demand of Ri, the
CS then sums up all EVs’ RP in {ELi} and compares it with
the energy demand of Ri. If the sum of RP is less than the
energy demand of Ri, Ri can’t be fulfilled by EVs in {ELi},
the CS skips Ri and moves on to allocate EVs for the next
request. If the sum of RP equals the energy demand of Ri,
all EVs in {ELi} are allocated to Ri and the CS moves on to
allocate EVs out of {ELi} for the rest requests. If the sum of
RP is larger than the energy demand of Ri, CS allocates EVs
along {ELi} sequentially to Ri until the entire demand of Ri is
met. To minimize the waste of EV energy, if more than one
EVmeets the left demand of the request, the EVwith the least
RP is selected.

3) EV SELECTION STRATEGY WITH SINGLE TIME BOUNDARY
We then present the strategy with a single time boundary.
In this EV selection strategy, CS allocates any EVs that can
fulfill a time constraint of each request. The energy supply
potential of an EV is decided by its RP and the available
time span for discharging. To calculate the potential energy
supply capacity of each EV, we take both its available energy
and the time span into consideration and denote the discharge
potential of EVk , k ∈ M as:

Hk = min(RPk ,PcTk )Tk (1)

Here RPk denotes the RP of EVk , Pc denotes the max output
capacity of charging stations, Tk denotes the time span when
EVk can supply energy.
When EVk is allocated to supply energy to a request Ri, the

discharge potential of EVk turns out to be:

H i
k = min(RPk − PiT ik ,Pc(Tk − T ik ))(Tk − T ik ) (2)

Here Pi denotes the average output demand of request Ri, and
T ik denotes the time span of EVk supplying energy to Ri.

To analyze the energy utilization efficiency of EVk , the
corresponding efficiency parameter is formulated as:

E ik =
Hk − H i

k

Hk
(3)

The larger E ik is, the higher ratio of energy in EVk could be
utilized when it is allocated to Ri.

Meanwhile, the fulfillment of requests’ energy demands
can also be taken as an indicator of EV selection to meet the
demand of each request with fewer EVs. And the fulfilling
rate of the energy demand of Ri by EVk can be formulated as:

Fki =
Hk − H i

k

Hi
(4)

The larger Fki is, the higher ratio of the energy demand of
Ri could be fulfilled by EVk . Here Hi represents the energy
demand capacity of Ri, and Hi is denotes by:

Hi = PiT 2
i (5)

To simplify the selection process, we only consider the
scenario involving requests from home users, so the average
output demands of requests are limited by Pi ⩽ Pc.
Compared with the selection strategy with double time

boundaries, in the strategy with single time boundary, the
{ELi} takes the EVs that start the energy supply earlier than
the demand start time of Ri or end the energy supply later
than the demand end time of Ri. This greatly enlarges the
number of available EVs in the {ELi}, yet more EVs are
not able to fulfill the demand of Ri alone, which makes the
selection procedure much more complicated. After {ELi} is
generated, the CS sums up the available energy for Ri within
as

∑Mi
k=1min(RPk ,PcT

i
k ) and compares it with the energy

demand of Ri. When the energy demand of Ri is larger, the
CS skips Ri and works on the next request.
When the CS wants to fulfill Ri with the least energy cost,

{ELi} is rearranged according to the efficiency parameter
E ik regarding Ri in descending order. The EVk1 with the
largest E ik is allocated to Ri during T ik1, and when EVk1 is
still able to supply energy, then its remaining power RPk1
and supply time span Tk1 in the EV list is updated with
RPk1−PiT ik1 and Tk1−T ik1. When Ri is not yet fully fulfilled,
RPk1 is eliminated from {ELi}, and the quantity and time
span of energy demand in Ri is updated accordingly. The CS
rearranges {ELi} again according to E ik in descending order
and takes the top performer. The procedure circulates until Ri
is fully fulfilled.

When the CS wants to fulfill Ri with the least number of
EVs, then during the selection procedure {ELi} is rearranged
by the request fulfilling rate Fki rather than the efficiency
parameter E ik . This selection mode generates more leftover
energy in the allocated EVs. Still, it can fulfill each request
faster, thus cutting down the circulation rounds for each
request and the overall time cost for V2G energy trading.

4) TIME COMPLEXITY OF THE SRET ALGORITHM
Here we present the time complexity of the SRET algorithm
in steps. The time complexity of request selection is O(N ).
In the EV selection strategy with double time boundaries, the
time complexity for CS to traverse EV list and form {ELi} is
O(NM ); the worst case time complexity for CS to allocate
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EVs for Ri is O(2Mi). The overall time complexity of the
SRET algorithm with the strategy of double time boundaries
is:

Td (n) = O(N + NM + 2NMi)

= O(3n2 + n) = O(n2) (6)

In the EV selection strategy with single time boundary, the
time complexity for CS to traverse the EV list and form {ELi}
is O(NM ); the time complexity for CS to calculate the {Hk}
is O(M ); the time complexity for CS to calculate the

{
H i
k

}
,{

E ik
}
, and

{
Fki

}
for Ri is all O(Mi). So the worst case time

complexity for CS to allocate EVs for Ri is O(M2
i + Mi).

The overall time complexity of the SRET algorithm with the
strategy of single time boundary is:

Ts(n) = O(N + NM +M + NMi + N (M2
i +Mi))

= O(n3 + 3n2 + 2n) = O(n3) (7)

D. LEARNING-ENABLED ENERGY FORECASTING
Accurate EV energy consumption forecasting is critical to
stabilizing the V2G network. It facilitates efficient power
distribution among interconnected units during peak demand
periods. Moreover, a campus charging station (CS) can
effectively utilize the overall energy schedule of a known EV
fleet to select an optimal real-time balancing strategy for the
energy demand side.

To meet the energy forecasting requirements, we use
a federated learning-based approach that aims to predict
power consumption accurately through an integrated neural
network, as introduced in detail in [2]. Considering a large
distributed vehicular network, the federated learning method
not only increases the efficiency of prediction models by
aggregating data from different nodes in the network but
also excels in handling non-IID (Independent and Identically
Distributed) and small datasets. This capability is particularly
important in environments where data is diverse and not
uniformly distributed. By utilizing both small and non-IID
data, the approach improves the accuracy and reliability of
power consumption forecasts. This enables more effective
management of energy resources and supports the optimiza-
tion of grid operations in response to real-time demand
fluctuations. The neural-network-based algorithm achieves
5.7% lower root mean square error (RMSE) compared to the
traditional energy forecast method. Besides, the robustness
of the federated learning algorithm has been proved against
model attacks up to 40% [2]. A simplified structure of our
learning-enabled energy forecasting component is shown in
Fig. 6. It should be noted that the architecture of the neural
prediction network is designed to be flexible, especially
concerning the hidden layers. The number of hidden layers
is not fixed, so the model can be adjusted and tuned to meet
specific prediction requirements. This flexibility ensures that
the model can be optimized for different use cases and adapt
to evolving requirements in power consumption prediction.

The neural network is tailored for energy in different
travel scenarios and predicts the energy demand for a single

FIGURE 6. Overview of the multi-layer neural network for energy
consumption forecast in V2GFTN. The input layer contains 13 input
features, including start time, weekday, temperature, rainfall, humidity,
wind speed, latitude, longitude, gender, age, driving duration, EV model,
and EV age. The number of hidden layers is flexible. The output layer has
one output neuron for power consumption prediction.

trip from a starting city to a given destination. Each city
within the trip route is characterized by its latitude and
longitude. The trip is divided into numerous segments, and
the power consumption for each segment is predicted and
then aggregated to estimate the total energy consumption of
an EV driving task.

Several parameters are considered to predict the energy
consumption for each section: the start time of each section,
the prevailing weather conditions (humidity, rainfall, temper-
ature, and wind speed), the geographic coordinates (latitude
and longitude), relevant user information (age, gender, and
model of the EV), and the total driving time. The neural
prediction network is activated when the electric vehicle
starts the respective driving section. This allows it to predict
energy consumption in real-time for the planning phase of
V2GFTN trading rounds. A more detailed understanding of
this methodology can be found in the work [2].

E. ANALYSIS OF RESPONSE TIME
For a consumer participating in the energy trading round,
we define the response time as the time from when the
consumer submits the energy request until it receives the
notification about the energy supply. For the whole system,
we define the response time as the time from when the first
consumer submits the energy request until the last consumer
receives the notification about the energy supply.

In the BoCS there is a group of control systems {CSk} , k ∈

Ncs, Ncs is the number of CS in the BoCS. In each BoE,
we consider a group of exchanges {Ei} , i ∈ Nex , Nex is the
number of exchanges in BoE. An exchange Ei contains a
group of active consumers

{
Cij

}
, j ∈ N i

req, N
i
req is the number

of consumers. Also, the group of EVs in the BoE is denoted
by {EVi} , i ∈ N k

ev, N
k
ev is the number of EVs in the BoEV of

CSk . We divide the entire response process into six phases: 1)
Request Collection and List Preparation in BoE; 2) Energy
Allocation in the CS; 3-1) First Time Notification in BoE;
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3-2) Consensus Processing of BoCS; 4) Energy Allocation in
BoCS; 5) Second Time Notification in BoE.

1) REQUEST COLLECTION AND LIST PREPARATION IN BOE
In the BoE of CSk , the time of a request’s transmission
between a consumer Cij and the exchange Ei is denoted
by t ijc_e. t

ij
c_e includes the information transfer time and

relative transmission latency. The timeEi receives all requests
depends on the latest consumer. The corresponding time t ic_e
is formulated as:

t ic_e = max(t i1c_e, t
i2
c_e, · · · , t

iN i
req

c_e ) (8)

The collection of requests is then organized into a request
list by the exchange Ei. Here we denote the average time cost
for blockchain nodes to process a single request as treqprcs, so the
corresponding time for request listing t il is formulated as:

t il = treqprcs × N i
req (9)

We denote the data size of a single request as Sreq,
and the variable transaction capacity per transaction as Ctx .
According to the overall data size, Ei divides its request list
and stores the data into minimum transactions. The number
of transactions involved is formulated as:

N boe,i
tx = ⌈

N i
req × Sreq
Ctx

⌉ (10)

For a single transaction
{
TXj

}
, j ∈ N boe,i

tx , the average time
for its endorsement in BoE is denoted by tboe,kendo . And for Ei,
the time to send the transactions to the ordering organization
of BoE and finish ordering and block packing is denoted by
tboe,ko ; the time to broadcast the block to BoE is denoted by
tboe,kbcst ; the time to verify the block in BoE is denoted by tboe,kver ;
and the time to record the block in all BoE nodes is denoted
by tboe,krec .
Therefore, the total time for uploading request list of Ei to

BoE is:

t iu_ex = N boe,i
tx × tboe,kendo + tboe,ko + tboe,kbcst + tboe,kver + tboe,krec

(11)

The time cost for exchange Ei in Phase 1 is denoted by:

t i1 = t ic_e + t il + t iu_ex (12)

The time cost for all exchanges in the BoE ofCSk to upload
their request lists is:

T k1 = max(t11 , t
2
1 , · · · , t i1, · · · , tNex1 ) (13)

2) ENERGY ALLOCATION IN THE BOE
After all the request lists are recorded through BoE, the CSk
starts to allocate energy with the proposed SRET algorithm.
The time cost of the SRET depends on the following factors:
1) The time cost for blockchain nodes to process a single
block tblkprcs; 2) The total number of energy requests in BoE
N total,k
req ; 3) The time to traverse the available EV list tktraverse;

4) The time to filter EVs based on time boundaries tkfilter ; 5)
The time to allocate EVs tkallocate.

To give out their specific definition, we denote the
mathematical expectation of fulfilling a request in one trading
round of CSk by pk , the average number of EVs required to
fulfill a request in CSk by qk , and the number of requests in
the BoE of CSk by:

N total,k
req =

Nex∑
i=1

N i
req (14)

The time to traverse the available EV list tktraverse can be
denoted by:

tktraverse = ck1pk × N total,k
req × N k

ev (15)

ck1 is a constant representing the average time for CSk to
process each EV in the EV lists.

The time to filter EVs based on time boundaries tkfilter can
be denoted by:

tkfilter = ck2pk × N total,k
req × N k

ev (16)

ck2 is a constant representing the average time forCSk to check
each EV against the energy requests’ time boundaries.

The time to allocate EVs tkallocate can be denoted by:

tkallocate = ck3pkqk × N total,k
req (17)

ck3 is a constant representing the average time for CSk to
allocate V2G tasks to a single EV.

We denote the time cost of CSk in this phase by:

T k2 = tblkprcs × Nex + tktraverse + tkfilter + tkallocate (18)

tblkprcs is the time cost for blockchain nodes in V2GFTN to
extract data from transactions in a single block.

3) ENERGY TRADING DIVERSION
The requests that are fulfilled in the BoE allocation byCSk go
with the process in Phase 3-1 and those unfulfilled requests
go with the process in Phase 3-2 to Phase 5

a: FIRST-TIME NOTIFICATION IN BOE
In BoE of CSk , the number of selected requests with fulfilled
demand in Phase 2 is denoted by N s,k

req , and the number of
remaining requests with unfulfilled demand is denoted by
N r,k
req . We can give out N s,k

req by:

N s,k
req = N total,k

req × pk (19)

So N r,k
req can be formulated as:

N r,k
req = N total,k

req − N s,k
req (20)

We denote the data size of a single allocation result by
Sallocate, so the CSk divides the list of allocation results into
the minimum transactions of:

N cs_ex
tx = ⌈

N s,k
req × Sallocate

Ctx
⌉ (21)
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The time cost forCSk to upload the allocation result to BoE
is:

tku_cs = N cs_ex
tx × tboe,kendo + tboe,ko + tboe,kbcst + tboe,kver + tboe,krec

(22)

The time cost for consumer Cij to receive the notification
in Phase 3-1 is denoted by:

t ijn = tku_cs + tblkprcs + t ijc_e (23)

The time cost for all selected consumers in the BoE of CSk
to receive their first-time notification is:

T k3−1 = max(t11n , · · · , t
1N 1

req
n , · · · , t ijn , · · · , tNex1n ,

· · · , t
NexN

Nex
req

n ) (24)

b: CONSENSUS PROCESSING OF BOCS
Once the Phase 2 comes to an end, the CSk uploads the
information about remaining requests and EVs in its BoE
to BoCS. The number of remaining requests N r,k

req is given
in Phase 3-1, and the number of remaining EVs N r,k

ev is
formulated as:

N r,k
ev = N k

ev − pkqk × N total,k
req (25)

We denote the data size of a single EV by Sev, and the
CSk divides the list of remaining requests and EVs into
transactions of:

N bocs,k
tx = ⌈

N r,k
req × Sreq + N r,k

ev × Sev
Ctx

⌉ (26)

For a single transaction
{
TXj

}
, j ∈ N bocs,k

tx , the average
time for CSk to finish its endorsement in BoCS is denoted by
tbocs,kendo . The average time cost for nodes to process data of a
single EV is denoted by tevprcs For CSk , the time to send the
transactions to the ordering organization of BoCS and finish
ordering and block packing is denoted by tbocs,ko ; the time to
broadcast the block to BoCS is denoted by tbocs,kbcst ; the time to
verify the block in BoCS is denoted by tbocs,kver ; and the time
to record the block in all BoCS nodes is denoted by tbocs,krec .
The total time for uploading remaining requests and EVs

of CSk to BoCS is:

T k3−2 = treqprcs × N r,k
req + tevprcs × N r,k

ev + N bocs,k
tx

×tbocsendo + tbocso + tbocsbcst + tbocsver + tbocsrec (27)

4) ENERGY ALLOCATION IN BOCS
When all nodes in BoCS upload their remaining requests
and EVs, each CS starts to allocate energy with the SRET
algorithm and competes on block packing. Besides the
aforementioned parameters, the time cost of the SRET onCSk
also depends on the following factors: 1) The total number
of remaining energy requests in BoCS N r

total_req; 2) The total
number of remaining EVs in BoCS N r

total_ev; 3) The time for
CSk to traverse the available EV list tr,ktraverse; 4) The time for
CSk to filter EVs based on time boundaries tr,kfilter ; 5) The time

to allocate EVs tr,kallocate.

Similar to Phase 2, we denote the mathematical expecta-
tion of fulfilling a request in one trading round on BoCS by
p′, the average number of EVs required to fulfill a request in
BoCS by q′. The total number of remaining energy requests
in BoCS N r

total_req is:

N r
total_req =

Ncs∑
k=1

N r,k
req (28)

The total number of remaining EVs in BoCS N r
total_ev is:

N r
total_ev =

Ncs∑
k=1

N r,k
ev (29)

The time to traverse the available EV list in BoCS is:

tr,ktraverse = ck1p
′
× N r

total_req × N r
total_ev (30)

The time to filter EVs with time boundaries in BoCS is:

tr,kfilter = ck2p
′
× N r

total_req × N r
total_ev (31)

The time for CSk to allocate EVs in BoCS is:

tr,kallocate = ck3p
′q′

× N r
total_req (32)

In BoCS, the CSk divides the list of allocation results into
the minimum transactions of:

N cs
tx = ⌈

p′
× N r

total_req × Sallocate

Ctx
⌉ (33)

The time cost for CSk to upload its allocation result back
to BoCS is:

tku_bocs = N cs
tx × tbocs,kendo + tbocs,ko + tbocs,kbcst

+tbocs,kver + tbocs,krec (34)

We can then give out the time cost of CSk to finish V2G
allocation for BoCS as:

tk4 = tblkprcs × Ncs + tr,ktraverse + tr,kfilter + tr,kallocate + tku_bocs (35)

The time cost for BoCS to finish its cross-campus energy
allocation in Phase 4 is denoted by:

T4 = min(t14 , · · · , tk4 , · · · , tNcs4 ) (36)

5) SECOND-TIME NOTIFICATION IN BOE
After CSk records the block of allocation results from BoCS,
it transfers the information from the block and uploads it to
its BoE. The time cost for the action is:

tk5 = tblkprcs +
N cs
tx t

boe,k
endo

Ncs
+ tboe,ko + tboe,kbcst + tboe,kver + tboe,krec

(37)

In the BoE ofCSk , the time cost for consumerCij to receive
the notification in Phase 5 is denoted by:

t ij5 = tk5 + tblkprcs + t ijc_e (38)
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The maximum time cost for data transmission between a
consumer and an exchange in BoE of CSk can be formulated
as:

tkc_e = max(t11c_e, · · · , t
1N 1

req
c_e , · · · , t ijc_e,

· · · , tNex1c_e , · · · , t
NexN

Nex
req

c_e ) (39)

The time cost for all selected consumers in BoCS to receive
their notification in this phase is:

T5 = tblkprcs + max(t1c_e + t15 , · · · , tkc_e + tk5 ,

· · · , tNcsc_e + tNcs5 ) (40)

6) SUMMING UP OF RESPONSE TIME
In summary, the response time for all energy consumers in
the BoE of CSk to finish trading with EVs of CSk and receive
first-time notification is:

T resp,k1st = T k1 + T k2 + T k3−1 (41)

For a consumer Cij in the BoE of CSk , the response time
to finish trading with EVs of CSk and receive first-time
notification is:

T resp,k,ij1st = T k1 + T k2 + t ijn (42)

The response time for all energy consumers in the BoCS
to finish trading with EVs in BoCS and receive second-time
notification is:

T resp2nd = max(T k1 + T k2 + T k3−2) + T4 + T5 (43)

For a consumer Cij in the BoE of CSk , the response time
to finish trading with EVs in BoCS and receive second-time
notification is:

T resp,k,ij2nd = max(T k1 + T k2 + T k3−2) + T4 + t ij5 (44)

The response time for all V2GFTN consumers in one
trading round is:

Tr = max(T resp,11st , · · · ,T resp,k1st , · · · ,T resp,Ncs1st ,T resp2nd ) (45)

IV. EVALUATION
This section delves into validating the effectiveness and
economic efficiency of our proposed energy forecasting and
trading system.

A. EVALUATION METHODOLOGY
For an in-depth comparative analysis and to show what
the proposed V2GFTN system achieves, we compare the
system with the V2GNet system as proposed by [1]
and an action-based incentive scheme as offered by [45].
Furthermore, to provide insights into the broader applicability
of our proposed trading methods and strategies, we also
simulate a series of experiments with the SRET in the
V2GFTN platform. In the simulation, we considered two
key strategies for timing constraints and ranking EVs: one
with double time boundaries and the other with a single

time boundary. This comparative evaluation illuminated the
strengths and weaknesses of the methods and allowed us
to evaluate their relative merits and optimize them using
objectives and rationales.

We conducted experiments using different combinations
of request numbers (200, 400, and 600) and EV numbers
(from 60 to 270, with increments of 30) for the scenarios
described below. The EVs were categorized into three groups
based on their operating state: Idle, Charging, or Driving.
The idle EVs are initially connected to the grid and have
no charging or discharging duties at the beginning of the
trading round. Charging EVs are connected to the grid and
engaged in charging or discharging tasks at the beginning of
the trading round. Still, their charging tasks are completed
by the end of the trading round, making them eligible to
participate in energy trading. Conversely, driving EVs are
on the road for driving tasks at the beginning of the trading
round. Nonetheless, as the trading round concludes, they can
finalize their ongoing tasks, connect to the grid, and actively
participate in energy trading. Further specifics regarding the
configuration can be found in Table 1.
We consider four indicators: 1) Number of fulfilled

requests; 2) Energy demand fill rate; 3) Total economic profit;
4) Total time cost. The meaning of each indicator is as
follows:

• Number of fulfilled requests: the number of energy
requests fulfilled by V2G trading in a trading round.

• Energy demand fill rate: the percentage of the total
energy demand from all energy requests that are fulfilled
by EV suppliers’ energy offers in a trading round.

• Total economic profit: the overall profit paid for EV
suppliers from energy consumers over a whole energy
trading round.

• Total time cost: the amount of time needed to allocate
energy for all available requests in the planning phase of
a trading round.

We also carry out simulations to evaluate the time cost
of a whole trading round of the proposed V2GFTN system,
including the given multi-blockchain architecture. The time
cost ratio of each phase we pointed out in III-E is calculated.
In the simulation, we separated the energy consumers by
whether they finished V2G trading from their affiliated BoE
and got the first-time notification or finished V2G trading
from the BoCS and got the second-time notification. Further
specifics regarding the configuration for the above simulation
can be found in Table 2.

B. EVALUATION RESULTS
As shown in Fig. 7, the number of fulfilled requests increases
for all four strategies as the number of electric vehicles
increases, with the V2GFTN strategies having a much higher
number of fulfilled requests compared to the action-based
incentive scheme and the V2GNet system. As the number of
EVs increases, the average growth rate of fulfilled requests
for the single time boundary strategy, double time limit
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TABLE 1. Configuration for the V2G trading simulation.

TABLE 2. Configuration for the time analysis simulation.

strategy, action-based incentive scheme, and V2GNet system
are 0.901, 0.889, 0.526, and 0.531, respectively. Accordingly,
the number of fulfilled requests is most significant for the
single time boundary strategy, outperforms the double time
boundary strategy by 0.41% to 5.37%, outperforms the
action-based incentive scheme by 40.68% to 71.84%, and
outperforms the V2GNet system by 48.24% to 100.93%.
On average, the single-time boundary strategy outperforms
the double-time boundary strategy, the action-based incentive
scheme, and the V2GNet scheme by 2.46%, 65.09%, and
74.45%, respectively.

To validate the effectiveness of V2GFTN, we present a
comprehensive comparison of trading strategies in which we
evaluate their impact on the energy demand fill rate, as shown
in Fig. 8. When the number of EVs in V2GFTN exceeds
the number of energy requests, almost all of the energy
demand can be met by double and single time boundary
strategies.With the number of EVs increasing from 60 to 270,

the energy demand fill rate’s average growth rate for single
time boundary strategy, double time boundaries strategy,
the V2GNet scheme, and the action-based incentive scheme
dropped by 61.95%, 65.81%, 44.79%, 2.48%, respectively.
On average, the single time boundary strategy outperforms
the double time boundaries strategy, the V2GNet scheme, and
the action-based incentive scheme by 1.34%, 44.66%, and
189.67%.

As shown in Fig. 9, when the number of energy requests
remains the same, the economic profit produced by all
four strategies grows with the increasing number of EVs.
On average, the single time boundary strategy outperforms
the double time boundaries strategy, the V2GNet scheme, and
the action-based incentive scheme by 1.29%, 44.75%, and
160.20%, respectively.

Table 3 shows the total time cost of an energy trading
round across four trading strategies. For the same number
of energy requests, the time cost of all four strategies in a
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FIGURE 7. Number of fulfilled requests evaluation. This experiment compares the number of fulfilled requests between trading strategies
of double time boundaries and single time boundary in V2GFTN (this work), V2GNet [1], and the action-based incentive scheme [45].
Different combinations of EV and request amount are used, as shown in Table 1.

FIGURE 8. Energy demand fill rate evaluation. This experiment compares the energy demand fill rate between trading strategies, focusing
on double time boundaries and single time boundary approaches within the V2GFTN, the trading strategy presented in V2GNet [1], and the
action-based incentive scheme [45]. Diverse combinations of EVs and request amounts were explored to ensure a robust evaluation across
a spectrum of scenarios.

trading round increases with the number of EV suppliers.
With the different number of EVs, the trading round time cost
is largest for the single time boundary strategy, exceeds the
double time boundary strategy by 0.97 to 4.45 times, exceeds
the V2GNet scheme by 0.06 to 11.77 times, and exceeds
the action-based incentive scheme by 2.62 to 12.33 times.
On average, the single time boundary strategy exceeds the
double time boundaries strategy, the V2GNet scheme, and the
action-based incentive scheme by 2.65-, 6.08-, and 7.56-fold,
respectively.

As shown in Fig. 10a, in a trading round 73.8% of the
time is consumed by blockchain-involved time cost, and
non-blockchain time cost only makes 26.2% of the overall

time cost. For the consumers taking the first-time notification
as in Fig. 10b, the time cost for Phase 1, Phase 2, and Phase
3-1 make 48.2%, 3.5%, and 48.3% of the overall time cost
of their V2G energy trading. For the consumers taking the
second-time notification as in Fig. 10c, the time cost for
Phase 1, Phase 2, Phase 3-2, Phase 4, and Phase 5 make
36.6%, 2.6%, 16.6%, 19.1%, and 25.1% of the overall time
cost of their V2G energy trading.

V. DISCUSSION
Through evaluation, we found once the number of EVs in
V2GFTN exceeds the number of energy requests, almost
all requests and their energy demand can be satisfied by
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FIGURE 9. Total profit evaluation. This experiment compares the total economic profit in trading strategies of proposed V2GNet [1], the
action-based incentive scheme [45], and both double time boundaries and single time boundary approaches within the V2GFTN. A wide
array of combinations of EVs and request amounts reveal nuanced insights into the relative performance of these trading strategies.

TABLE 3. The total time cost of an energy trading round across four trading strategies: 1) the action-based incentive scheme; 2) V2GNet; 3) double time
boundaries scheme within V2GFTN; 4) single time boundary scheme within V2GFTN.

FIGURE 10. Comparative analysis of time cost ratios in different scenarios.

the double- and single-time-boundary strategies, thanks to
the higher energy efficiency of SRET. When the number
of energy requests is regulated, all four strategies’ energy

demand fill rate increases as the number of EVs increases.
The energy demand fill rate of V2GFTN strategies is much
higher than that of the other two. Still, the growth rate of the
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demand fill rate of all strategies decreases as the number of
EVs increases, which should be caused by the intensifying
trading competition between EVs and the relative deficiency
of ideal requests with high demand and profit.

The V2GFTN strategies show higher total profit compared
to the action-based incentive scheme and V2GNet scheme.
When the EVs outnumber the energy requests, the profit
growth stalled for nearly all profitable requests are fulfilled
by the strategies with double time boundaries and single time
boundary.

As for trading time cost, the time cost of a strategy with
a fixed number of EVs is similar for different requests. The
main reason is that the selection and allocation of EVs are
the central part of the trading strategies, so the total time
cost correlates more with the number of EVs. Although the
V2GFTN strategies take more time, since the planning phase
in the hour-ahead V2G trading round takes one hour, the
single-time boundary strategy has enough time to determine
the best energy trading plan. Even if the number of EVs is
too high for the single time boundary strategy to complete
the planning, the V2GFTN can seamlessly switch to the
double time boundaries strategy. When it comes to specific
time analysis, the multi-blockchain processing time makes
the most of the overall time cost of V2GFTN. And getting
notifications from cross-campus V2G trading on the BoCS
takes more time than from V2G trading within a single
campus from the CS. This is because the BoCS takes extra
time to upload and download the data of the remaining EVs
and requests.

VI. CONCLUSION
In this study, we proposed V2GFTN, a blockchain-based
network that facilitates smart V2G energy trading by
efficiently sharing electric vehicles using a neural network
to predict energy consumption. To establish a secure and
feasible energy trading workflow for energy requests, offers,
and allocations, we first developed a multi-blockchain-
based energy trading system. This innovative, cross-cluster
architecture provides the foundation for secure energy trading
transactions. In the auction models, supported by intelligent
energy management systems, the introduced SRET algorithm
adapts to time constraints and consumer demands and
optimizes vehicle charging and EV selection strategies.
SRET considers both double and single time boundary
strategies, ensuring efficient energy allocation and high utility
for commerce. A forecasting technique based on neural
network data analysis to predict the energy consumption
of EVs while driving is also introduced, contributing to
more informed charging and trading strategies for driving
EVs and expanding the pool of available EV suppliers.
Through a comprehensive set of simulation experiments and
evaluations, our study demonstrates the superior performance
of the proposed SRET algorithm inV2GFTN. Comparedwith
the action-based incentive scheme and V2GNet mechanism,
our SRET algorithm achieves improved energy fulfillment
and generates higher profits, highlighting its potential to

revolutionizeV2G energy trading. In our futurework, we plan
to work on a real-time scenario and integrate multiple
distributed renewable energy resources into V2GFTN to
create a more scalable and comprehensive trading network.
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