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ABSTRACT Traffic-related pollution significantly contributes to environmental degradation. The escalating
demand for vehicles, coupled with consumer preferences for larger utility vehicles, poses a challenge to
achieving targeted carbon emission reductions in common fleet vehicles. To address the inefficiencies
in existing route planning methods, this paper introduces a novel eco-routing approach known as Visual
Eco-Routing (VER). VER is designed to understand the non-linear relationships between road scenes and
emissions data, providing a comprehensive insight into the real-time dynamics of roads and their influence
on vehicle performance characteristics. On-road experimental cycles are conducted to gather data, creating
a new dataset called the Vehicle Activity Dataset (VAD). To assess viability of the VER approach, a model
named VER-XGB based on eXtreme Gradient Boosting (XGBoost) is proposed. Performance comparisons
are made by individual training and benchmarking three selected models, both without VER association and
separatelywithVER association. The comparison reveals significantly lower prediction errors inmodels with
VER, with VER-XGB exhibiting enhanced reliability, yielding MAPE of 4.83% with VAD. Additionally,
an aggregate factor termed the emission factor is introduced to explore the correlation between emission
gases and distinct groups of visual features defined in the study. The analysis indicates a high correlation
between infrastructure features such as traffic signals and stop signs on the road and vehicle emissions.
Concluding the study, a qualitative examination is undertaken to evaluate the real-world applicability of
the model by predicting an eco-route for a given origin and destination pair. The MAPE for this route for
predictions from VER-XGB is found to be 6.21%, affirming the practical utility of the proposed VER-XGB
model in real-world scenarios.

INDEX TERMS Eco-routing, navigation, vehicle emissions, air pollution, extreme gradient boosting, road
scenes, smart mobility.

I. INTRODUCTION
The urban transportation is evolving, causing significant
ecological problems from undesired emissions and high
energy demands. With rapid rise in travel demand in recent
years, traffic issues are obstructing congestion reduction,
safety improvement, fuel efficiency, and emission reduc-
tion [1], [2], [3]. The World Health Organization estimates
the total vehicle number to grow up to 2.5 billion by 2050.

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Quan.

Transportation emissions pose a serious growing contribution
to air pollution, up to 30% of total CO2 emissions and Particle
Matter (PM) in the European Union (EU), with road transport
contributing 75% of that share [4], [5], [6]. The CO2 emission
targets for new vehicle sales established by the EU from
2020 to 2024 is 95gkm−1 [7]. This might be difficult to
achieve due to the shift in increase of attraction to Sport
Utility Vehicles (SUVs), and the low market penetration of
alternative propulsion technologies such as hybrid, plug-in
hybrid, electric, and fuel cells [8].
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The issues of related high energy demands and emissions
need to be addressed not only by improving vehicle efficiency
and developing alternative fuels but also by making roadway
travel more efficient. This can be achieved through improving
road infrastructures and deploying various Intelligent Trans-
portation System (ITS) technologies. One of the major hits in
ITS technology in the past years has been in the escalation
of navigation tools that provide route guidance for drivers.
Several internet-based navigational tools provide efficient
directions from any origin to any destination in the roadway
network. The shortest duration or shortest distance route is
usually calculated based on the typical vehicle speeds and
real-time road data.

In certain scenarios, the route with the shortest distance
or duration may indeed result in minimum fuel consumption
and emissions. However, there are instances where this
relationship can be reversed, especially in cases where
routes involve congested roads and substantial variations
in road gradients. The route with the shortest duration
might encompass longer distances, including road segments
with high speed limits, which typically leads to higher
fuel consumption and emissions compared to a more
direct route at moderate speeds. Conversely, the shortest
distance route might necessitate passage through excessively
congested areas, resulting in increased fuel consumption and
emissions.

This paper builds on a navigation concept called ‘‘eco-
routing’’, first introduced in [9], [10], and [11]. The aim is
to find a route that requires the least amount of fuel and
results in the least amount of emissions. The objective of this
paper is to present a Machine Learning (ML) approach using
real-world data collected from numerous driving cycles,
to enable selection of eco-routes when multiple routes are
available for a pair of origin and destination.

While numerous approaches exist, this paper presents a
new pragmatic approach named Visual Eco-Routing (VER).
VER takes advantage of visual features extracted from
road scenes to establish functional relationships between
Real Driving Emissions (RDE) data and GPS coordinates.
By analyzing the interactions between the road environment
and vehicle emissions, VER aims to offer a comprehensive
understanding of the real-world factors influencing eco-
routing decisions. To the best of our knowledge, no previous
studies have explored this approach, making VER a com-
pletely new solution in the field of eco-routing.

II. BACKGROUND
A. ECO-ROUTING
Studies have indicated that choosing different travel routes
for the same origin-destination pair can lead to notable
variations in fuel consumption and emissions produced [12],
[13], [14], [15]. Efforts have been in the past decade to
develop eco-routing navigation systems that find a route
that causes least amount of emissions and/or requires less
amount of fuel consumption [9], [10], [11], [16], [17]. It has
been demonstrated that these eco-routes are not always

the same as the shortest duration route [10], [11]. The
variability in fuel consumption and emissions resulting from
different travel routes for the same origin-destination pair
can be attributed to several factors. These factors include
the non-linear relationship between travel speed and vehicle
fuel consumption/emissions, specific characteristics of the
vehicle, features of routes being traversed, prevailing traffic
conditions, and behavior of driver. The complex interplay
among these variables contributes to the observed variations
in fuel consumption and emissions when different routes are
chosen [2], [9], [10], [18].

It is crucial to distinguish between eco-routing and eco-
driving and recognize their collaborative role in reducing
energy consumption andmitigating the environmental impact
of road travel. Eco-driving involves operating a vehicle in
a fuel-efficient manner and lowering emissions without any
focus on the safety of oneself and other road users. Therefore,
it is not advisable, for instance, to drive at lower speeds than
the prevailing traffic speed, to maximize fuel efficiency on
a freeway. Such a practice may compromise the safety of
other road users since speed variation has been identified
as a contributing factor to vehicle crashes [19], [20], [21].
On contrary, eco-routing builds based on historical, current,
and predicted characteristics of each available route and not
on the behavior of the driver.

B. EMISSIONS ESTIMATIONS
Cost factors of roadways are required to calculate the
energy/emissions of each available routes. Estimation of such
cost factors are based on several static and dynamic features
of each roadway link that are determined from the available
road and traffic information. Several tools are available [22],
[23], [24], [25], [26] to accurately estimate energy/emissions
from vehicles. However, these microscopic tools require a
extensive set of data recorded at high frequencies, which
in turn requires greater computing resources. Consequently,
for real-time applications such as navigation, these tools
may not be suitable. Alternatively, an adaptive approach that
estimates energy consumption or emissions as a function
of a set of dynamically available explanatory variables at
roadway link level, can be a more feasible and pragmatic
option.

Numerous research endeavors have been dedicated to
accurately predicting vehicle emissions. These methods can
be categorized into two main groups based on the data acqui-
sition method. The first category involves studies that gather
data through laboratory experiments, where vehicles are sub-
jected to standardized cycles. For example, Wang et al. [27]
constructed a Composite Line Source Emission (CLSE)
model using data from dynamo tests to explore emissions
under traffic-interrupted micro-environments. However, such
laboratory testing may not fully represent the complex
driving scenarios from real-world road conditions, leading to
potential estimation inaccuracies [28].

Other research approaches involve measuring instanta-
neous emission data and driving states using on-vehicle
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equipment called Portable Emissions Monitoring Systems
(PEMS) equipped with Global Positioning System (GPS).
Liu et al. [29] collected data from vehicles using PEMS and
Electric Low-Pressure Impactors (ELPI), revealing signifi-
cant differences between lab certification cycles and real test
cycles. Zhai et al. [30] employed data collected from PEMS
to predict average emissions for diesel-propelled transit
buses on roadway links, establishing a correlation between
average emission rates and link mean speed. Similarly,
Wang et al. [29] analyzed the influence of Vehicle-Specific
Power (VSP) for public buses in Beijing, indicating a positive
relevance of VSP to emission rates and fuel consumption
factors.

VSP serves as a road load model that assesses RDE trips
by considering the longitudinal dynamics of the vehicle on
a second-by-second basis. VSP takes into account various
factors related to the vehicle’s behavior and performance,
enabling a detailed evaluation of the road load during
real-world driving scenarios [7], [30], [31], [32], [33], [34].
In other works, researchers progressively focused on vehicle
emission characteristics on different road segments [35], [36],
[37], [38].

Various studies have shown that vehicular emissions
are influenced by both current operating status and past
driving states. For instance, Qi et al. [39] developed a
regression model using the value and duration of acceleration
and deceleration to capture operating dynamics. Various
machine-learning techniques have been proposed to address
emission estimation problems. Jaikumar et al. [28] proved
the feasibility of an Artificial Neural Network (ANN)
model to estimate real-time emissions using PEMS data.
Wang et al. [40] extended this approach by building a
VSP-based ANN model to predict emission rates for urban
public buses with different fuel types. Pan et al. [41]
addressed the non-linearity issues by applying a Gradient
Boosting Regression Tree (GBRT) to predict emissions
for Liquefied Natural Gas (LNG) fueled heavy vehicles,
considering the time reliance and revealing significant
differences in exhaust components for LNG fueled heavy
vehicles compared to others.

However, hitherto-discussed models addressing time
dependence often utilize historical driving state data, such as
speed and acceleration, within only a limited time window
serving as inputs. This approach is simplistic and non-
adaptive, as not all past driving states significantly affect
current emission rates [42]. To address this limitation,
Sun et al. [37] introduced the Long Short-Term Memory
(LSTM) architecture, to account for adaptive forgetting
of past states at each time-step. The results showed
that LSTM contributed to a significant improvement in
precision compared to traditional models. LSTM and
its improved version gated recurrent unit (GRU), have
also been applied for time-series forecasting of air qual-
ity pollutants, demonstrating favorable predictive effects
[43], [44], [45].

Based on the above discussions, it is noteworthy that
various other significant existing factors for vehicle emissions
have not been fully considered and quantified in these
models. Different weather conditions can lead to changes
in operational resistance and gas density, subsequently
influencing driving patterns and emissions. Also, road
infrastructure, speed limits, time of day, maintenance works
or road incidents, agents on road, and traffic density can
trigger significant variations in vehicle emissions [46].

C. PROPOSED ECO-ROUTING APPROACH
Establishing functional relationships between collected road
scenes and emissions data for various road links provides a
holistic understanding of the real-time dynamics of the road
and how these dynamics influence the vehicle’s performance
characteristics. This comprehensive analysis offers valuable
insights into the interactions between the road environment
and vehicle emissions, enabling a deeper understanding of
how road conditions impact the vehicle’s efficiency and
emissions.

Figure 1 illustrates the architecture of the proposed
approach. The Vehicle Activity Data (VAD) encompasses
a diverse array of real-world scenarios with a substantial
volume of second-by-second data, to offer valuable insights
into vehicle operations during different driving cycles.

The VER model is designed to predict emissions based on
GPS coordinates, visual features from road scenes, and any
vehicle-specific data. Trained on the VAD, the model utilizes
historical information to generate emission predictions for
multiple possible routes. As shown in Figure 1, when a
request for routes between an origin-destination pair is
available, the routing algorithms generate multiple route
options for the journey.

The VER model then searches VAD to retrieve relevant
historical features associated with each of these routes. These
historic features are combined with visual features extracted
from live road scenes to predict emissions based on GPS
coordinates of the selected routes. Segments of routes that
are not associable with the data in the VAD are excluded
from historic features association and only the road scenes
are accounted.

III. VAD CONSTRUCTION
A. DATA COLLECTION
Vehicle operational attributes primarily depend on both
vehicle-specific parameters and operational environment
[32], [33], [47]. For this study, the data was collected in
Rouen, Normandy, France, to develop VAD. The data was
gathered from various driving cycles within the region,
using a popular multi-utility diesel vehicle. The vehicle
was equipped with a camera and PEMS to facilitate data
collection.

The field tests were conducted on various days during both
winter and summer seasons of 2022-23. Rouen, located on
the banks of the River Seine, has an estimated population of
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FIGURE 1. Proposed approach for eco-routing using VER Model.

over 0.47 million and encompasses a diverse range of road
conditions, including highways, urban areas, and rural roads
with flat and hilly zones. These conditions represent a typical
medium-sized city in EU. The yearly estimated per km cost
of driving in Rouen is 83kg CO2 emission and in rush hours,
time spent in congestion is 5h out of 15h of driving [48].

Throughout the test, data from four distinct sources was
recorded for VAD. Real-time emission data for gases CO,
CO2, NO×, and HC was collected using PEMSLAB [49],
a PEMS unit developed by CERTAM. This unit also provided
geographic information and vehicle data, including longitude,
latitude, altitude, vehicle speed, ambient temperature and
humidity. Simultaneously, road scenes were captured as RGB
images at a rate of 1 frame per second with a resolution of
1920x1080, using the Intel RealSense D435 camera. The data
from these four sensors were synchronized at a rate of 1 hertz.
The instrumented vehicle used for the RDE cycles is depicted
in Figure 2.
To ensure consistency, all driving cycles were performed

by the same driver, with normal and relaxed driving behavior.
During the test, the vehicle’s HVAC systems were turned off,
and the driving cycles were conducted on non-rainy days
to facilitate good quality images. Weather conditions in the
operational environment were characterized using ambient
temperature measurements. The recorded range for these
operational data spans from 11◦C to 24◦C atmospheric tem-
perature and from 33% to 70% for humidity, encompassing

a wide spectrum of real-world scenarios in the test region.
Furthermore, origin-destination pairs for each driving cycle
are selected with consideration to include various types of
roads, and also that offer multiple route options, and represent
diverse driving scenarios commonly encountered in real-
world situations. Descriptive statistics of the collected data
are shown in Table 1.
Data cleaning methods were implemented to eliminate

abnormal data and outliers. Subsequently, the MinMaxScaler
was employed to scale all the data using the following
equation (1):

m =
(x − xmin)

(xmax − xmin)
× (max − min) + min (1)

Equation (1) transforms each feature x to a new value m
such that the minimum value of m is min and the maximum
value is max. All other values between the minimum and
maximum of x are linearly scaled to the range between
min and max based on their relative positions. This process
guarantees the standardization of all features to a common
scale, facilitating improved comparability and preventing the
dominance of any features.

B. VISUAL ROAD FEATURES FOR VAD
The performance of a vehicle and driver behavior is
significantly influenced by changes in operational road
environment characteristics. By capturing visual scenes from
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TABLE 1. Descriptive statistics of emission and ambient recordings in VAD used for VER model development.

FIGURE 2. Instrumented vehicle for VAD construction.

the driver’s perspective, a comprehensive understanding
of the operational environment can be achieved. Thanks
to the advancements in environment perception models,
particularly for road scenes, various interesting classes of
objects can be easily identified in real-time.

For this study, the features identified from road scenes are
classified into four groups of features.

1) OBSERVED FLOW FEATURES
The total count of vehicles, motorcycles, and bicycles
identified in each frame is aggregated and recorded as a
feature for the corresponding vehicle position.

2) SPEED LIMIT FEATURES
Speed limit traffic signs are detected and recorded as the
actual speed limit for the segment of the route in VAD until a
new speed limit sign is recognized.

3) INFRASTRUCTURE FEATURES
Traffic lights, tollbooths, pedestrian crossings, animal cross-
ings, stop signs, give-way signs, and school zone signs are
detected and grouped together to correspond to each segment
of the road. These features are deemed relevant for the next
200 meters of the route segment.
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4) INTERSECTION FEATURES
Traffic signs for road intersections, including roundabouts,
railway crossings, merge lanes, etc., are identified and
associated with each positional coordinate of the records.
These associations are considered only until traffic signs are
detectable in images.

C. VAD EVALUATION ZONES AND FEATURE ASSOCIATION
As VAD constitutes a historical dataset of vehicle activity,
the potential for recurring and updated data points exists.
Consequently, it becomes crucial to gather and arrange these
data points according to their relevance and association
principles. For instance, vehicles engaged in daily commutes
might traverse repeated segments of roads. These commutes
may accumulate updated information based on the time of
day and various incidents or events on the road. Effectively
associating this new information is essential to preserve its
relevance while considering it collectively.

To facilitate this, the data in VAD undergoes further
grouping into evaluation zones based on GPS coordinates.
These Evaluation Zones (EZ) are characterized by an
experimentally determined fixed radius and a unique ID for
each zone. Any new features within a previously defined EZ
are consistently associated with the same EZ. In the case
of features with GPS coordinates outside the radius of a
historically defined EZ, a new EZ is established to encompass
them. This approach ensures the preservation of relevant
information while effectively organizing and managing the
dataset. For this study, the radius of EZ is configured to be
50 meters and to calculate great-circle distances d between
two GPS points the Haversine formula, as presented in (4),
is employed.

a = sin2
(
lat2 − lat1

2

)
+ cos(lat1) · cos(lat2)

· sin2
(
long2 − long1

2

)
(2)

c = 2 · atan2(
√
a,

√
1 − a) (3)

d = R · c+ (alt2 − alt1) (4)

where:

lat1, lat2 : Latitude of two coordinates (in decimal)

long1, long2 : Longitude of two coordinates (in decimal)

alt1, alt2 : Altitude of two coordinates (in the same in meters)

a&c : Intermediate calculation

R : Earth’s radius (mean radius = 6,371 km)

d : Haversine distance

IV. VER MODEL
A. VER-XGB
For this study, XGBoost is the proposed VER model for
predicting emissions for a route, based on features collected
from live road scenes and VAD. XGB stands for Extreme
Gradient Boosting and is a scalable tree-boosting system that

was first proposed by Chen and Guestrin [50] during 2016.
Boosting is an ensemble technique that creates new models
to adjust the errors made by existing models. This iteration
continues until no further improvements can be detected.
Gradient boosting is an approach that creates newmodels that
can predict residuals of previous models. XGBoost employs
a binary decision tree referred to as a Classification And
Regression Tree (CART) as its fundamental learner. Addi-
tionally, regularization is incorporated into the loss function
to enhance performance and mitigate overfitting [51]. The
loss function can be shown in equation(5).

L(y, ŷ) =
1
2

∑
(yi − ŷi)2 +

∑
ω(k) (5)

where the term L is a loss function to calculate the difference
between the actual value yi and the predicted value ŷi for
each sample i. The additional term ω is used to penalize
the complexity k of each model from each iteration. Mean
Squared Error (MSE) is selected as a loss function as this
implementation is essentially a regression problem.

A series of decision trees is used for regression. The
prediction for each data point is a weighted sum of the output
from these trees. This can shown in equation (6). I (xiϵRj)) is
a function to check if the data point xi falls in the leaf of Rj of
the tree.

ŷi =

∑
(yj × I (xiϵRj)) (6)

XGBoost uses two types of regularization namely, Lasso
(L1) and Ridge (L2). These control the complexity of the
decision tree. L1 regularization enables sparsity in feature
selection by adding a penalty term to the objective function
based on absolute values of the weights of the leaves γj, as in
equation (7). L2 regularization controls the magnitude of the
leaf weights by adding a penalty to the objective function
based on squared values of the weights of the leaves, as in
equation (8). ∑

(ωL1) =

∑
|γj| (7)∑

(ωL2) =

∑
(γ 2
j ) (8)

The overall complexity of each model from each iteration
is found by the combination of L1 and L2 regularization
terms. The overall objective function Obj(θ ) to be minimized
during the iteration includes both the MSE loss term and the
two regularization terms, as shown in equation (9).

Obj(θ) =
1
2

∑
(yi − ŷi)2 +

∑
(ω) (9)

Then at each boosting round, a new decision tree is created
to minimize the sum of weights of a data point w in the
loss function and regularization terms within each leaf Rj,
as equation (10). The optimization step finds the best feature
and threshold for splitting data points in a way that minimizes
the Obj(t) function for each decision tree t within each leaf.

Obj(t) =

∑
(wi × L(yi, γj)) +

∑
(ω) (10)
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FIGURE 3. Framework of VER-XGB model.

Gradient boosting is the core of XGBoost. As shown in
equation (11), the model is updated during each boosting
iteration t by fitting a decision tree to the negative gradient
g for each data point i of the objective function. This negative
gradient is used as the residual to fit a new decision tree,
which is added to the ensemble. The model is updated
by adding the output of the new decision tree, scaled
using learning rate η to the current prediction, as shown in
equation (12).

gti =
∂(

∑
(wi × L(yi, γj)))

∂γj
(11)

γj = γj + η ×

∑
(gti ) (12)

The learning rate controls the step size during the
optimization and helps to avoid overfitting. After the model
is trained and optimized, the prediction for a new data point
is obtained from the equation (13).

ŷi =

∑
(γj × I (xiϵRj)) (13)

B. IMPLEMENTATION
Many studies have shown that past driving states and live
operational conditions will affect vehicle emissions [30],
[31], [34]. In this study, historical data from the VAD were
selected to address the location and time dependence because
the values in the VAD vary according to the previous driving
patterns and various features detected from the road scenes.
Essentially, this is a regression problem while using the
factors such as these to predict emissions for a route.

The framework of implementation is illustrated in Figure 3.
Series data from PEMS and cameras is processed for creating
data points in VAD. The images from the camera represent
road scenes are used to detect various class of objects. Vehicle
specific data from PEMS and object detections from the road
scenes are synchronized based on feature association rules,
timestamps and GPS coordinates. Each type of feature listed
in Figure 3 is stored in VAD according to the recording
order. Furthermore, these data points in VAD are grouped into
evaluation zones based on the evaluation zone association
rules. All the yellow blocks in the figure represent the defined
rules discussed in Section III-C. The VER model, based on
XGBoost, combines all the features in VAD to fully capture
the nonlinear relationships and predict emissions for each
GPS coordinate along routes for an origin and destination
pair.

V. RESULTS AND DISCUSSION
A. MODEL DEVELOPMENT
This section details the VER-XGB model-building process.
For model encoding, VAD is split as 80% of the data for
model training and the remaining 20% for testing.

For the construction of the optimal version of the
VER-XGB, the parameters listed in table 2 are experimen-
tally estimated for the purpose of this study. The effect of
change in each parameter on model performance can be
summarized as follows:

• learning_rate: Controls the step size during optimiza-
tion. A smaller learning rate necessitates more boosting
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FIGURE 4. Analyzing VAD data and model estimations to find correlation
between various categories of visual features and emission factor.

rounds but often enhances generalization. Opting for
lower values may bolster accuracy, albeit at the cost of
increased training time.

• max_depth: Determines the maximum depth of a tree.
Deeper trees can capture more intricate relationships in
the data. As the value increases, the model becomes
deeper and computationally more resource-intensive.

• n_estimator: Represents the total number of boosting
rounds. While augmenting the number of trees may
enhance performance, there exists a point of diminishing
returns. Excessive trees can lead to overfitting.

• min_child_weight: Specifies the minimum sum of
instance weight (hessian) required in a child. Higher
values imply increased regularization, preventing the
splitting of nodes with low weights and more instances.

• gamma: Dictates the minimum loss reduction necessary
to make a further partition on a leaf node. An increase
in values introduces effective regularization and avoids
splits that do not significantly reduce loss.

• colsample_by tree: Represents the fraction of features
(columns) to be randomly sampled for each tree.
An increase in this value introduces additional random-
ness, potentially improving generalization.

B. MODEL VALIDATION
To assess the effectiveness of the VER-XGBmodel, two addi-
tional state-of-the-art models are considered. The primary
objective of this study is to evaluate the feasibility of the
VER approach. Consequently, results were obtained using
all three models independently of the VER association. This
implies that visual features derived from camera data were not
considered for these models. The selected models and their
functions are outlined below:

1) XGB: XGBoost, a high-performance gradient boost-
ing algorithm, sequentially combines weak learners,
primarily trees, employing effective regularization to
prevent overfitting. A XGB estimator without consid-
ering visual features was constructed to quantify the
influence of PEMS data on GPS data for predicting
emissions.

2) GBDT: Gradient Boosting Decision Trees (GBDT)
is an ensemble learning method that constructs trees
sequentially to minimize residual errors. A GBDT
estimator is built without considering visual features
to assess the influence of PEMS data on GPS data for
predicting emissions.

3) SVR: Support Vector Regression (SVR) is a regression
technique leveraging kernel functions to capture com-
plex, often non-linear relationships. An SVR model
is constructed without considering visual features to
examine the influence of PEMS data on GPS data for
predicting emissions.

4) VER-XGB/GBDT/SVR: The aforementioned models
are separately reconstructed, this time considering
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TABLE 2. Parameters for VER-XGB with corresponding values for each cross validation split k . Bolded values are the calculated optimal values for
VER-XGB.

visual features generated from camera data. VER
versions of the models were built to quantify the
influence of various visual features and features from
PEMS data (as listed in Fig. 3) on GPS data for
predicting emissions.

For a fair comparison, all the models are built and
benchmarked on the VAD dataset. All essential parameters
of these models are experimentally calibrated to achieve the
best performance. For XGB, initiating the calibration process
involves fine-tuning the learning rate to obtain a balance
between training time and model accuracy. The number of
trees (n_estimators) is optimized through cross-validation
while avoiding the potential for overfitting. Tree-specific
parameters such as max_depth, min_child_weight, and
gamma are tuned experimentally to achieve an optimal
trade-off in model complexity. GBDT follows a similar
calibration approach to XGBoost.

In the case of SVR, a Gaussian Kernel is employed to
capture complex, non-linear patterns in VAD. Regularization
parameters and kernel coefficients (gamma) are then adjusted
through cross-validation to achieve optimal values.

During the calibration procedure for each model, the
parameter-tuning process employs a grid search technique,
systematically exploring a range of potential values. The
optimal value is determined through a 5-fold cross-validation
approach, ensuring a robust evaluation of model performance
across different subsets of the dataset. All models are
implemented using Python 3.11 environment.

To quantify the performance of each selected model, three
common evaluation metrics are used namely, Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), and Mean
Absolute Percentage Error (MAPE).Mathematically they can
be defined as in equations (14), (15), and (16).

MAE =
1
n

n∑
i=1

∣∣∣Yi − Ŷi
∣∣∣ (14)

RMSE =

√√√√1
n

n∑
i=1

(Yi − Ŷi)2 (15)

MAPE =
1
n

n∑
i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣ × 100 (16)

In these equations, Yi represents the actual values, Ŷi are
predicted values, and n ins the number of observations in the
VAD. Typically, a lower value of these evaluation metrics
indicates more accurate and dependable predictions derived
from the model.

C. EXPERIMENT RESULTS
The performance outcomes of the selected models bench-
marked on the VAD, are summarized in Table 3. Notably,
the proposed VER-XGB surpasses all other models across the
spectrum of three evaluation metrics. Particularly noteworthy
is the substantial performance enhancement observed across
all models with VER association. This observation under-
scores the significant impact of capturing visual information
that directly influences driver responses, thereby altering
vehicle operations. It contributes significantly to a more
refined understanding of the intricate relationships between
emission characteristics and location information when
accompanied by ambient data, for the prediction of emissions
for routes.

As indicated in Table 3, the average improvement in
MAPE across all three models for various emission gases
is 19.43% when VER is incorporated. Specifically, the
improvements in the prediction accuracy for individual
emission gases with VER association from all models are
25.25% for CO2, 23.98% for CO, 10.91% for HC, and
17.60% for NO×. This underscores a significant reduction
in prediction errors achieved by incorporating the pragmatic
visual features in conjunction with PEMS and ambient
data.

For a better understanding of the correlation among
different groups of visual features outlined in Section III-B,
an aggregate method called emission factor is devised. This
factor serves to quantify emission values in connection with
the various groups of visual features. Its defined as in
Equation (17):

ϵvf =

∑
(Evf )∑
(dvf )

(17)

Here, Evf represents the average emission values asso-
ciated with each category of visual features (vf ) in the
VAD, and dvf denotes the number of occurrences of the
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TABLE 3. Performance results of selected models for this study with VAD. The bold values are the best results reported.

FIGURE 5. Prediction of Eco-Routes for a RDE trip using VER-XGB model. The green colored pin is the
origin and the red colored pin is the destination. The Green plotted route is the predicted eco-route by
VER-XGB.

same group of vf . The emission factor estimated for various
models, for each emission gas and visual feature class are
illustrated in Figure 4. Notably, the highest emission factor
is observed for the infrastructure group, consisting of object
detection classes like traffic signals, stop signs, and school
zones. The second-highest correlation of emission values is
associatedwith the intersection group, which involves vehicle
maneuvers such as abrupt acceleration operations required
in roundabouts and when entering a freeway. Features such
as speed limits and observed flow characteristics exhibit
a relatively lower correlation with emission factors. This
phenomenon may be attributed to consistent flow patterns
or linear changes in patterns, coupled with the skill of a
professional driver to anticipate such variations and respond
gradually.

These results align with the conventional knowledge
regarding carbon emissions from internal combustion vehi-
cles. Carbon emissions exhibit a direct correlation with
irregular traffic flow patterns and situations requiring sudden
speed changes to adhere to road design regulations. However,
comprehending the characteristics of HC and NO× emissions
proves more challenging due to substantial variations in
values estimated by different models. Notably, among
these models, the proposed VER-XGB demonstrates greater

stability and reliability in predictions compared to the true
values in VAD.

VI. CONCLUSION
This paper introduces an innovative approach for the selection
of eco-friendly routes based on vehicle emission data and
various classes of object detection extracted from road scenes.
Initially, a novel dataset called VAD is developed, using
an industrial PEMS unit and a RGB camera installed on a
common diesel vehicle. An innovative method termedVER is
devised from the VAD to identify diverse factors influencing
vehicle emissions. For this investigation, a VER model based
on XGBoost is constructed and experimentally validated.

The VAD was built from RDE cycles conducted in Rouen,
reflecting traffic patterns typical of a medium-sized EU
city. Using VAD, the proposed VER-XGB model underwent
benchmarking against other state-of-the-art models, includ-
ing iterations without the VER association. The outcomes
showed that the inclusion of VER significantly enhanced
emission predictions across all models. Notably, VER-XGB
yielded the most favorable results for all four selected
emission gases.

Furthermore, the VER-XGBwas employed in the selection
of eco-route during the planning of RDE cycles. Figure 5
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depicts the route planning undertaken before our final RDE
cycle. The route highlighted in the snippet of OpenStreetMap
in green is an eco-friendly route predicted by VER-XGB,
while the red route represents a ‘non-eco-route’ or alternative
route, as illustrated in Figure 1. From the data collected from
this RDE cycle, the MAPE for the total predicted emission
values fromVER-XGBwas 6.21%. The net emissions for the
green plotted route were 2.35 g/s lower than those for the red
plotted route. The green route exhibited a reduction in travel
time duration by 7mins with an increase in total distance of
4.5 kms compared to the red route. This finding highlights
the validation that eco-routes may not always align with the
shortest-distance routes.

To generate routes between a origin and destination pair,
the Google Maps API was utilized. The route coordinates
provided by the API were associated with data points
in VAD based on experimentally defined EZ, as dis-
cussed in Section III-C. The qualitative and quantitative
results derived from this study underscore the capability
of the proposed approach for the practical application of
eco-routing.

While prior studies have showcased the extent of predict-
ing vehicle emissions based on features such as weather,
typical commute routes, driver behavior, and traffic density,
none have delved into the potential patterns embedded in road
scenes and their correlation with vehicle emissions. Our find-
ings can provide theoretical guidance for developing more
effective eco-routing techniques by understanding the real
operational attributes that drivers respond to, subsequently
altering vehicle behavior.

ABBREVIATIONS
CO2 Carbon dioxide.
XGBOOST eXtreme Gradient Boosting.
CO Carbon monoxide.
HC Hydro Carbons.
NO× Nitrogen Oxides.
EU European Union.
SUV Sports Utility Vehicle.
ITS Intelligent Transport Systems.
ML Machine Learning.
VER Visual Eco-Routing.
RDE Real Driving Emissions.
GPS Global Positioning Systems.
LSTM Long Short-Term Memory.
CLSE Composite Line Source Emissions.
GPS Global Positioning System.
PEMS Portable Emissions Monitoring Systems.
ELPI Electric Low-Pressure Impactor.
ANN Artificial Neural Network.
VSP Vehicle Specific Power.
ANN Artificial Neural Network.
GBRT Gradient Boosted Regression Tree.
GBDT Gradient Boosting Decision Trees.
LNG Liquefied Natural Gas.
GRU Gated Recurrent Unit.

VAD Vehicle Activity Dataset.
XGB Extreme Gradient Boosting.
CART Classification And Regression Tree.
SVR Support Vector Regression.
MAE Mean Absolute Error.
EZ Evaluation Zones.
PM Particle Matter.
ML Machine Learning.
MSE Mean Square Error.
RMSE Root Mean Squared Error.
MAPE Mean Absolute Percentage Error.
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