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ABSTRACT As the world is pledged towards net zero carbon by 2050, the need for clean and efficient energy
transitions is more critical than ever. Optimizing the power grid transfer capacity is crucial for maintaining
grid stability and reliability. Ageing infrastructure, population growth, and revolutionary technological
developments increase the demand for grid modernization and resilience investments. Climate change
and natural disasters highlight the need for adaptive load-shedding schemes. The two possible ways to
optimize the grid are an ampacity increase or a voltage increase. While increasing voltage provides the
most significant rise in rating, it comes with high investment costs. Out of all the options available, dynamic
line rating (DLR) is the most efficient and cost-effective solution. This paper provides a comprehensive
review of the optimization of the grid transfer capacity using DLR. The review critically examines different
line rating methods, the DLR system, factors that need to be considered before DLR implementation,
and its advantages and disadvantages. Also, the review presents the real-world applications and case
studies, standards and regulations involved, and current approaches and challenges for implementing DLR
in Malaysia. Additionally, we highlight the most commonly used standards to calculate the conductor’s
ampacity for the steady-state and dynamic state. Moreover, this review work presents how DLR can advance
the grid’s flexibility, considering its significance for cleaner energy production in the future, challenges
related to wind energy power generation, and their mitigations. This work provides a shortcut path for
researchers and utilities to understand DLR and as a reference for future research to advance clean energy
in response to changing energy needs and climate conditions.

INDEX TERMS Dynamic line rating, grid optimization, grid flexibility, ampacity, clean energy.

NOMENCLATURE
IT Global solar radiation
Idc DC current
Kangle Wind direction factor
NRe Dimensionless Reynolds number
Nuβ Nusselt number
Nuδ Nusselt number
PJ Joule heat gain
PJ_F Joule heat gain for ferrous conductor
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PJ_NF Joule heat gain for non-ferrous conductor
PM Magnetic heating
Pc Convective cooling
Pcf Forced convective cooling
Pcn Natural convective cooling
Pi Corona heating
Pr Radiative cooling
Ps Solar heat gain
Pw Evaporative cooling
Qse Total solar and sky radiated heat intensity

corrected for elevation
Rdc DC resistance of conductor
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Ta Ambient air temperature

Tav Average temperature of aluminium strand layer

Ts Conductor surface temperature

kf Thermal conductivity of air at temperature Tfilm
kj Factor

qC Convection heat loss per rate unit length

qc1 Convection heat loss per rate unit length

qc2 Convection heat loss per rate unit length

qcn Convection heat loss per rate unit length

qj Joule heating

qr Radiated heat loss rate per unit length

qs Heat gain from sun

αs Solar absorptivity of conductor surface

εs Solar emissivity of surface

λf Thermal conductivity of the air

σB Stefan-Boltzmann constant

I Conductor current

A′ Projected area of conductor

D Outer diameter of conductor

Do Outside diameter of conductor

R(Tavg) AC resistance of conductor at temperature, Tavg
α Solar absorptivity

αc Linear temperature coefficient of resistance

ε Emissivity

θ Effective angle of incidence of the sun’s rays

ρf Density of air

I. INTRODUCTION
The electrical power grids are essential infrastructure for
modern power systems, enabling the delivery of electricity
from one location to another, thus allowing modern society
to function [1]. Power utilities are growing concerned about
enhancing the transmission lines’ capacity without resorting
to new constructions or structural alterations. The ageing
transmission line infrastructure significantly influences this
concern. Many transmission lines operate beyond their
intended lifespan, escalating the risk of power outages
due to equipment failure [2]. These ageing lines may
not be sufficient to support the demands of revolutionary
technological advancements and a growing population [3],
[4], [5], [6]. While the integration of renewable energy (RE)
sources, energy storage systems (ESS), and electrification
of transportation presents opportunities for power system
resilience, it also brings challenges, such as intermittent tech-
nologies and extreme weather conditions [7], [8], [9], [10].
Integrating these technologies with a growing population
further strains the capacity of ageing transmission lines [11].
Environmental factors, including climate change and natural
disasters, underscore optimizing grid transfer capacity. The
existing grid was not designed to withstand these factors,

and they can impact the carrying capacity of overhead lines
(OHL) [12], [13]. For instance, higher temperatures during
heat waves reduce the current-carrying capacity, resulting in
lower thermal ratings and increased thermal expansion [14],
[15]. Unpredictable weather phenomena such as flooding,
droughts, strong winds, and extreme heat cause significant
damage to the power system infrastructure and disrupt power
system resilience [16], [17], [18].

Therefore, implementing adaptive load-shedding schemes
in the grid [19] and grid optimization is crucial for
decarbonization and reducing greenhouse gas (GHG) emis-
sions [20]. Decarbonization involves avoiding developing
new transmission lines and reducing the use of non-
renewable resources [21], [22], [23]. This approach helps to
conserve forests for the right of way (ROW) and reduces
the consumption of metals in grid construction [24] and
fossil fuel usage in the energy sector. It can decrease GHG
emissions and solve the volatility of fossil fuel prices, hence
benefitting clean electricity scenarios [25]. Two possible
methods to optimize the grid are by increasing ampacity
or voltage. Increasing voltage offers the most significant
increase in rating, as it reduces the current load value,
thereby increasing the margin of ampacity limits. However,
this approach comes with high investment costs, requiring
changes in power grid components to accommodate higher
voltage levels and to reduce the corona effects. Also, this
approach is employed when the rating increase justifies the
significant investment expenses, as seen in countries like the
United States (US) and Germany [24], [26]. The alternative
option is to increase ampacity, which can be achieved through
various approaches described in Table 1.

Amidst this challenge, DLR is one of the appropriate
options. DLR is a system that involves monitoring and
modifying the rating of the OHL based on real-time weather
conditions and other factors [44], [45], [46], [47]. Previous
researchers and utilities have conducted several reviews
of DLR, but many have neglected important information,
failing to thoroughly address how DLR can optimize the
grid and advance grid flexibility. Previous reviews have
provided brief information on DLR technologies [8], [37] or
focused solely on specific aspects, such as DLR forecasting
techniques [48] or the application of DLR in wind power
integration [49] or DLR approach with additional flexibility
options [50].
This work aims to comprehensively review DLR technol-

ogy, which can enhance grid capacity and provide cleaner
energy. It provides valuable insights and understanding for
researchers and engineers in this field, with the ultimate
aim of offering a critical analysis of existing literature and
identifying areas for future research to advance clean energy
in response to changing energy needs and climate conditions.
The paper is structured into several sections, each with a
specific focus. The second section provides an overview
of OHL that explains the factors affecting line ratings and
their methodologies. In the third section, different line rating
methods are discussed. In the fourth section, the overview
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TABLE 1. Summary of methods used to increase ampacity for grid optimization.

of DLR system is presented. It includes the advantages and
disadvantages of DLR considerations, real case studies, and
relevant standards and policies to demonstrate the application
of DLR. In the fifth section, the implementation process
of DLR is explained. Section six describes how DLR can
improve grid flexibility and resilience, along with other
flexibility options. Section seven is the conclusion.

FIGURE 1. Factors influence conductor’s line rating.

II. OVERHEAD LINE CONDUCTORS
OHL conductors are vital in transmitting and distributing
electrical energy across vast distances. These conductors
come in various structures, diameters, and materials, which
are crucial factors in calculating the line rating of a
transmission line. Depending on its properties and intended
application, each type of conductor offers unique advantages
and disadvantages. The OHL conductors are divided into
two main groups: conventional and modified. Conventional
conductors are made of round wire strands of various mate-
rials, with a core wire and single or multiple-strand layers
according to the conductor size. Modified conductors are

upgraded versions of conventional conductors that improve
power transmission capacity under specific conditions [51].
The selection of conductor type for a transmission line can
significantly impact its line rating [52], [53], [54]. The line
rating is crucial for minimizing sagging while preventing
damage to the conductor and equipment due to excessive
temperature [55]. In practice, transmission lines are assigned
a rating based on the most demanding conditions, with a high
level of reliability [53]. Nevertheless, if the rating is set too
optimistically, it can lead to clearance violations [56], [57],
[58], sagging [24], conductor annealing [24], [59], [60], [61],
and elevated temperature creep [56], [61]. Figure 1 illustrates
that both weather and conductor conditions [62], [63], [64],
[65] affect a conductor’s line rating.

Weather conditions affect the line temperature and line
rating, which can cause line to elongate and sag. The wind
is a significant factor in determining line rating by having
a powerful cooling impact on the conductors regardless of
the ambient temperature [52], [53], [56], [66], [67]. The
fluctuation in wind speed along the span’s length and the site
conditions like trees or building structures pose a challenge
in practical applications. Several management strategies have
been developed to mitigate the variability of wind data by
neglecting wind direction, determining mean wind speed and
defining upper and lower boundaries [56]. Solar radiation
can be measured if the value is volatile due to varied
cloud cover. The absolute varying maximum values can be
easily determined by relying on diurnal variation according
to location, date and time of day. The solar radiation
influence is typically negligible and can significantly raise
the conductor temperature at low current values during low
wind speed [52].

Ambient temperature significantly impacts the ampacity
since it can influence both convective and radiative cool-
ing [52], [53]. Generally, a line can be rated at higher capacity
during winter because of its ability to dissipate more heat
due to low ambient temperature [56]. Rain is another weather
factor that can considerably affect line rating. However, it is
often disregarded in line with standards because modelling
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FIGURE 2. Range of line rating methodologies [72].

heat loss rate requires multiple more significant parameters.
For the DLR systems, the impact of rain must be considered
to ensure accurate results [52], [68], [69], [70].

The conductor’s condition, such as the line current, sag,
tension, and surface properties, affects the line rating. Moni-
toring the transmission connections provides information on
the electric flow along the line, which remains relatively
uniform along the entire line length, with slight decreases
due to losses in the line resistance that result in conductor
heating. Although the line current is variable, efforts are
made to determine its limiting value while considering all
other relevant factors [53]. In order to determine line rating,
the factors of conductor sag and tension play a crucial role.
Conductor sag, the vertical distance between any point on
a conductor and a straight line between the two attachment
points, is determined by the mass per unit length of the
conductor, the tension, and the span length. It is possible to
determine the conductor tension by measuring the sag, which
can then be used to calculate conductor temperature [56].
It should be noted that the tension and sag are both affected
by the average temperature along the line, which means
that the critical span is not the one with the highest line
temperature [53].
The thermal radiation and absorption properties of a

conductor’s surface, emissivity and absorptivity are addi-
tional factors that affect the heat balance equation. Both
parameters change over time due to ageing [71], dust and
pollutants accumulation, and solar radiation exposure. Since
there is considerable uncertainty surrounding the precise
measurement of emissivity and absorptivity, manufacturers of
conductors typically assign conservative values for DLR. It is
worth noting that the changes in emissivity and absorptivity
are similar at low temperatures, but at higher temperatures,
the effect of absorptivity reduces on the heat balance
equation [55].

III. LINE RATING METHODS
In line with the IEEE 738 standard, grid operators in the
US use several line rating methodologies based on different
methods involving fixed assumptions or variable inputs [66].
Figure 2 illustrates the range of line rating methodologies
from the least dynamic to the most dynamic. Grid operators
must choose the appropriate methodology depending on
operational and environmental conditions to ensure a reliable
and efficient transmission line.

A. STATIC LINE RATING
Traditionally, the power sector calculates static line ratings
(SLR) based on worst-case weather conditions [73]. SLR
is the most straightforward and least dynamic line rating
methodology, which requires determining the worst-case
weather conditions over the whole line for an extended
period [56], [72], [73], [74], [75], [76], [77], [78]. SLR
depends on constant wind speed and ambient temperature
assumptions. Ideally, the worst weather scenario for line
transmission would be zero wind speed, the highest ambient
temperature, and the highest solar radiation. Figuring out
the highest ambient temperature and zero wind speed is
challenging. Hence, SLR represents a conservative line rating
rather than a worst-case scenario [78], [79], [80]. SLRmainly
represent the equipment manufacturer’s nameplate rating,
which usually assumes worst-case conditions and changes
when the value of SLR is updated. Consequently, SLRmay be
consistent over time [66], [72]. This rating simplifies equip-
ment specifications while providing a significant margin of
safety.

FIGURE 3. Illustration of DLR relative to AAR and SLR [83].

Assume the actual rating is always more prominent than
the SLR would be wrong. According to studies by the
power industry, many power lines safely operate at 130%
of their static-rated capacity for 90% of the year, as shown
in Figure 3 [3], [73], [81]. SLR causes transmission lines
to underutilize, restrict their full potential and raise their
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operation costs [56], [74], [77], [82]. While these assump-
tions are conservative, there are cases wherein the actual
ratings based on actual conditions are less than SLR, exposing
conductors to the potential for thermal damage or increased
sagging [56], [76], [77]. This situation may be catastrophic
to the power system, resulting in blackouts owing to
over-congestion [77].

B. SEASONAL LINE RATING
Seasonal line ratings are comparable to SLR but differ
between assumptions regarding summer and winter ambient
conditions [66], [72]. Summer ratings generally apply
between May and October, while winter ratings apply from
November to April. Seasonal line ratings are widely used
because of significant weather pattern differences between
seasons in various countries [66], [72]. The weather patterns
change significantly between seasons in numerous countries.
For instance, according to records from the United Kingdom
(UK) Meteorological Office, for more than 100 years, the
change in temperature between summer and winter has been
around 10◦C in normal conditions, resulting in a current
difference of approximately 73A for a 400 kV standard OHL
thermal rating [78].

C. AMBIENT-ADJUSTED RATING
Ambient Adjusted Ratings (AAR) are more dynamic than
the traditional SLR and seasonal line ratings, as they vary
more frequently, ranging from daily, hourly, to even every
15 minutes [3], [66], [72]. Precise ambient temperature
forecasts are crucial for successfully implementing AAR
since they strongly rely on them. Although AARmay suggest
higher available capacity during lower temperatures like the
winter and overnight hours, they often overestimate this
capacity due to fixed wind speed assumptions [66]. Thus,
adjusting the wind values in parallel with the temperature
is essential to avoid significant risks when implementing
AAR [3], [66]. Several transmission owners and AAR
vendor utilizes relevant ambient temperature data from
online weather monitoring service to calculate updated line
ratings based on temperature forecasts. The National Oceanic
and Atmospheric Administration (NOAA) ratings have also
applied this approach of temperature forecasting to update
line ratings [72].

D. DYNAMIC LINE RATING
DLR is the most advanced and complex method of trans-
mission line rating [82]. It considers ambient factors such as
weather conditions, solar radiation, line tension, and photo-
spatial sensors. This method enables the DLR to use real-time
measurements to determine the thermal rating of the line,
which varies dynamically with each new measurement [27],
[66], [75], [78], [83], [84], [85]. DLR evaluates the worst-case
weather conditions for the next 5 to 15 minutes [3], [56], [72].
The detailed overview of the DLR system will be discussed
in the following section.

IV. OVERVIEW OF DYNAMIC LINE RATING SYSTEM
DLR systems are installed at different spans along the
line, especially for long lines, to collect and analyze
data on conductor and weather conditions [27], [53]. This
system optimizes grid capacity when wind speeds are
high during cooler weather and night while maintaining
an appropriate risk level [66]. Studies indicate that wind
speed significantly impacts DLR, with higher wind speeds
resulting in a considerable increase in DLR [66], [78],
[86], [87]. DLR can be divided into two types, which are
Ambient-Adjusted (DLR-AA) and Real Time Monitoring
(DLR-RTM). DLR-AA only considers real-time variations
in ambient temperature, while DLR-RTM considers real-
time ambient temperature and effective perpendicular wind
speed in the transmission line [48], [88]. Despite the volatility
and unpredictability [89], DLR provides an advanced,
accurate, and reliable method for rating transmission
lines [56].
Noteworthy, before implementing DLR, several factors

must be considered. Firstly, the transmission line should
be inspected to determine its current state before applying
any feasible strategies. It is necessary to evaluate electric
and magnetic fields, as they can affect conductor sag and
line ampacity [90]. The conductors must always maintain
an appropriate distance from buildings, objects, and people
or vehicles passing beneath and near the line. Installing
tensionmonitors requires proper coordination and scheduling
as it requires a line outage. Implementation, maintenance,
and calibration costs are intensive [56]. Cybersecurity is
a growing concern, as DLR technologies rely on wireless
communications, which makes them exposed to denial-of-
service attacks [76], [91], [92], [93], [94]. Transmission line
selection for DLR implementation is crucial, as lines can be
selected based on their average load levels or past constraint
issues [95], [96], [97].

A. ADVANTAGES AND DISADVANTAGES
DLR technology provides several technical, economical and
environmental advantages to the power system. Regarding
technical advantages, it can improve reliability by estab-
lishing thermal limits for transmission lines dynamically,
especially during summer and informing relay settings,
increase efficiency of the generation resources [56]. Also,
DLR technology may boost transmission system situational
awareness by providing real-time information about the
current-carrying capabilities of the conductor and detect-
ing risks like transmission icing and conductor galloping,
enhance power security concerning failures of transmission
or generation components [52] as more electric-delivery
alternatives must be aided during a disruption to mitigate load
interruptions and facilitate recovery and restoration after an
event [73], [76].

Economically, DLR provides numerous advantages,
including reducing production and congestion costs [52],
[56], [98], deferring capital costs [56], [99] and optimize
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asset utilization by providing access to the market for wind
generators, reducing wind power curtailment [52], [73],
[75], allowing a fast introduction of RE plants [24], [73],
[100]. This technology can significantly benefit transmission
owners incorporating wind generation as DLR can increase
the rating of transmission lines as wind speed increases,
reducing the need for costly interconnection facilities. Also,
DLR can reduce the volatility of electricity prices, couple
electricity markets [101], enhance the mean connection
capacity between various locations of the power system,
increase the percentage of low-carbon, and low-marginal-cost
electricity consumed [52].
In terms of environmental advantages, DLR technol-

ogy can reduce the resource usage and energy footprints
associated with these processes [24] by minimizing the
need for a large number of metals in constructing and
replacing conductors as the weight of an ordinary OHL
conductor alone reaching 817 kg/km and increasing for
wider sections. In addition, DLR helps to prevent the
destruction of forests that would otherwise be necessary to
accommodate new power lines in the environment, which
can act as a carbon sink. These advantages are summarized
in Figure 4.

FIGURE 4. Advantages of DLR.

Aside advantages, DLR technologies have some limita-
tions related to reliability, accuracy, and price among vendors.
Due to slow regulatory approval processes, regulatory envi-
ronments may not stimulate transmission-owning companies
to invest in DLR implementation [73]. Also, the accuracy
and reliability issues of the technology can arise from
measurement and modelling flaws, malfunctioning devices,
unreliable mathematical models, and weather forecasting
errors [76], [102], [103]. DLR implementation requires
operational knowledge and experience [52], [76], [104],
[105], significant implementing cost, reducing the thermal
headroom [76], sensor placement, forecasting challenges,
limiting elements, and automation and data coordination [72].

Nonetheless, DLRs remain an attractive option for reducing
transmission congestion and optimizing the use of transmis-
sion capacity.

B. CASE STUDIES
DLR technology has been available for an extended period,
but widespread implementation has been limited. Several
prominent small-scale studies of DLR have been conducted,
and commercial devices that measure the effects of line rating
have been evaluated. These general case studies are included
in Table 2 along with a summary of the experience and
country or state that used that method. Table 2 indicates
that many countries are interested in implementing DLR
systems for enhancing thermal capacity and reducing con-
gestion, commonly using temperature sensors andmonitoring
systems. Different countries prioritize different applications
of DLR, such as the US focusing on reducing congestion
and enhancing transmission capacity, while the UK and Spain
emphasize RE transition. These case studies are a helpful
reference for other countries planning to implement DLR
systems, including Malaysia, which is currently exploring
DLR. AsMalaysia’s DLR system deployment status is still in
the preliminary phases, further research is necessary before
fully integrating the system into the country’s power grid.
In 2014, an Adaptive Load Shedding Scheme (ALSS) was
implemented to assess and maintain safe load levels on
power transmission lines. The scheme is a sophisticated
framework that relies on the Real-Time Analysis and Predic-
tion (RTAP) application within the Tenaga Nasional Berhad
(TNB) Wide Area Intelligent System Framework [106].
Two Lindsey sensors are installed on the 275 kV Pantai
Remis-Ayer Tawar lines. The sensors are installed in each
line to measure the ground clearance, and the data is
sent to the SMARTLINE cloud server through satellite
communication [86], [107].

It is important to note that there may be unique challenges
and considerations for implementing DLR in Malaysia,
such as climate and geography. The country experiences
hot and humid weather throughout the year since it is
located in the tropical region, with variations in ambi-
ent temperature and rainfall [108], [109]. Malaysia faces
increasing energy demand driven by population growth,
digitalization, electromobility, and sector coupling [110].
Hence, the Generation Development Plan for Malaysia states
the need for new thermal and RE plants to meet the growing
demand. The influx of RE sources poses stability concerns
that can be addressed by integrating a battery energy storage
system (BESS). Malaysia’s commitment to reducing carbon
emissions and transitioning to a green economy adds to the
significance of DLR implementation. The government aims
to achieve a 31% RE capacity mix by 2025 and become
a carbon-neutral nation by 2050. The current SLR system
in Malaysia’s grid causes operational constraints, leading
to the underutilization of available capacity [111], [112],
[113]. Studies have shown that integrating DLR with line
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TABLE 2. Case studies summary of DLR implementation worldwide.

TABLE 3. Available standards and policies for DLR.
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temperature sensors and weather monitoring can optimize the
grid up to 30% spare capacity [107].

C. STANDARD AND POLICIES
During the design process, policies and standards provide
a framework that ensures compliance with specific criteria,
regulations, and safety requirements. These standards and
policies establish guidelines and best practices that must be
adhered to in the design and implementation of a system,
thereby ensuring that the final product meets the necessary
quality standards. They aim to increase the transmission
system’s reliability and efficiency while ensuring the energy
sector’s security and independence [114]. Although there
are existing policies and standards for DLR, the guidelines
may need to be more comprehensive to assist utilities and
researchers in a more precise direction for the safe and
effective implementation of this technology. It is essential to
acknowledge that improvements can be made as technology
progresses and further research is conducted. As such, a list
of available policies and standards for DLR of conductors is
presented in Table 3.

V. DYNAMIC LINE RATING PROCESS
The process of DLR implementation involves line iden-
tification, sensing and monitoring, communication, com-
puting and forecasting and data validation, as shown
in Figure 5.

FIGURE 5. DLR system overview.

A. LINE IDENTIFICATION
In the DLR process, the first step is identifying the
transmission lines that will be monitored and controlled. This
step is critical in determining the efficiency of the DLR
system. The selected line should be the most critical location
along the transmission line where the load is high [148]
and weather conditions are challenging [149], [150]. The
single line along the transmission line may vary in terrain,
geographical location, and weather conditions [53], [151].
Thus, it is crucial to choose the right critical line [152].
Choosing an uncongested line can have consequences that
affect the market activity and reduce cost-effectiveness. The
DLR system is also not beneficial if the lines are limited by

voltage, stability, or substation [72]. Once the critical spans
have been identified, monitoring and sensing equipment can
be installed in these locations [153].

B. SENSING AND MONITORING
DLR’s monitoring and sensing component involves using
sensors to measure the line rating parameters of the
transmission line. The sensors collect the data and transmit
them to the control system, which is used to calculate the real-
time conductor’s ampacity or temperature [154], [155], [156].
The sensors allow continuous monitoring of the transmission
line, which can provide early warning of potential issues that
could impact line performance. Direct and indirect are the
two main types of monitoring techniques used in DLR [27],
[157], [158]. The distinction between these two techniques
varies depending on the source. Several consider sag
monitoring a direct method, but most consider any method
that monitors transmission line characteristics as a direct
method [53].
The direct monitoring technique is based on observing

the limiting element of the line, such as conductor sag,
line tension, conductor clearance to ground, or conductor
temperature [37], [53], [76]. These systems usually depend
on a different monitoring system to calculate line ratings [37].
Direct monitoring technique offers excellent accuracy and
precision [159], but the installation is complex, and high
maintenance costs are associated with adequately covering
all spans or segments of a line. The industry monitors
line sag, line tension, and conductor temperature for DLR
measurement [160].
The indirect methods rely on monitoring ambient weather

conditions and using monitoring theoretical models to
calculate the sag [37], [53]. Installing weather stations at one
or multiple points along the line is necessary for indirect
methods, and typically, weather sensors are mounted directly
on the line’s pylons. A mathematical model determines the
conductor’s temperature and predicts the overload capacity
for specific periods [161], [162]. Implementing the indirect
method is simple [163] because the instruments are not
directly installed on the transmission line. According to
field tests, weather data measurement devices are cost-
effective and reliable, and special calibrations are unneces-
sary [37], [56]. The biggest limitation of indirect methods
is the uncertainty due to the varying nature of weather
quantities [37], [53].

Utilities need to decide the location of the sensors on
whether to use ground-based or line-based. Each approach
has its pros and cons. Line-based conductors offer more
precise and accurate information on line conditions compared
to ambient weather condition measurements. However, line-
based sensors have restrictions in their ability to extrapolate
data for unmonitored line spans. Line-based sensor instal-
lation and maintenance involve transmission line outages.
Ground-based sensors are easier to install and maintain but
have increased susceptibility to physical manipulation [72].
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TABLE 4. Summary of DLR monitoring technologies.

Table 4 compares the available monitoring technologies
regarding technique, location, and country that use the
technology.

C. COMMUNICATION
Effective communication is essential to the DLR process,
continuous data often stems from the need to invest in
sophisticated and reliable data acquisition and communica-
tion infrastructure. This includes sensor deployment, real-
time communication networks, data processing and storage,
remote monitoring and control systems, maintenance and
calibration [76]. The communication system must be reliable
and robust to ensure timely and accurate data transfer and
to avoid data drop out despite bad weather conditions or
challenging environments. Balancing these costs with the
benefits of improved system performance and reliability is
crucial for the successful integration of dynamic transmission
in renewable energy systems. Technological advancements
and increased adoption of dynamic transmission solutions
over time may also reduce costs.

Traditionally, the communication of transmission lines
mainly employs a wireless public network [170], [171],
and its communication modes mainly include general
packet radio service (GPRS), code division multiple access
(CDMA), and third generation (3G). The advantages of
wireless public network communication are low construc-
tion cost, simple deployment, and mature technology.
Nevertheless, the coverage is limited and vulnerable to
communication with low reliability and security. The reli-
ability of the data collected transmission is not guaranteed
since the communication system is challenging to repair

when it breaks down [171]. The communication chan-
nels can be used in DLR, for example, radio, cellular
network, satellite, fibre optics and physical media [76].
The development of communication technology is very
rapid with other technologies such as Zonal Intercommu-
nication Global-standard (Zigbee), Bluetooth, long-range
(LoRa), Narrowband-Internet of Things (NB-IoT) and
microwave that can be implemented in transmission line
communication [171], [172].
The communications requirement needs to be upgraded

as the number of measured parameters increases for sens-
ing and monitoring technologies. It becomes a critical
asset as utilities and system operators implement DLR
systems for control, dispatch, and market decisions. The
communication channel must comply with the NERC’s
Critical Infrastructure Protection standards to guarantee the
reliability of the DLR data, including the cybersecurity of
the overall systems. The selection of communication tech-
nology depends on several factors, such as distance, band-
width, monitoring approach, application requirement and
cost [76].

D. COMPUTING AND FORECASTING (ANALYTICAL
ENGINE)
Computing and forecasting play crucial roles in predicting
and regulating power flow in real-time. Advanced algorithms
and models are used to simulate the transmission system’s
behaviour and forecast the impact of environmental changes
on line ratings. This system allows the operators to judge the
power transfer limits and operational strategies accurately.
The forecasting techniques are employed to predict future
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FIGURE 6. DLR calculation process.

TABLE 5. The differences between IEEE and CIGRE standard.

events that may influence line ratings, which include weather
patterns and power demand. Forecasting allows the system
operator to foresee and manage potential issues before they
happen. Forecasting methods can be classified into stochastic
processes [173] and deep learning [174].

During this stage, the sensor data communicates with
the control centre, which will evaluate it using complex
algorithms that use environmental and conductor conditions
to compute and forecast the current ampacity of the
transmission line in real time. The data is utilized to
optimize the transfer capacity and prevent overloading [175].
The complex algorithms employed in DLR are based
on standards published by the Institute of Electrical and
Electronics Engineers (IEEE) and the Council on Large

Electric Systems (CIGRE) for estimating conductor thermal
behaviour depending on weather and conductor conditions.
Modern technologies utilize artificial intelligence to compute
and continually update transmission line ratings in real time.
The results are transmitted to transmission system operators
to guarantee efficient use of transmission capacity [175].
Many versions of the standards are accessible to determine
the line rating of the conductor. Thus, it is crucial to
understand each standard’s differences and constraints before
deciding which standard is suitable based on the available
parameters. Figure 6 illustrates the calculation process based
on the IEEE and CIGRE standards.

The similarity of both standards (IEEE and CIGRE)
is their foundation to calculate the conductor’s ampacity
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for the steady-state and dynamic state. It is based on the
thermal balance theory, where heat gain equals heat loss,
as stated in equations (1) and (2) for IEEE and CIGRE,
respectively [176], [177], [178], [179]. The parameters for
weather conditions, such as the amplitude and direction of
the wind, ambient air temperature and solar radiation are
present in both standards. However, they use different ways
to calculate the thermal equation [180], especially for solar
heat gain and convective cooling. The IEEE standard has the
following form:

qC + qr = qs + qj (1)

While the heat balance equation according to the CIGRE
standard is presented by:

Pc + Pr + Pw = Ps + PJ + PM + Pi (2)

As shown in (1), magnetic heating, corona heating
and evaporative cooling are negligible because they have
a minor influence on the line rating calculation [181].
Even though corona heating and evaporative heating are
included in (2), they are still excluded from the line rating
calculation. According to previous studies, the outcomes for
both measures are approximately the same, with percentage
differences in the range of 5 - 15% [182], [183], [184], [185].
The contrast between the formula between both standards is
summarized in Table 5.
According to Table 5, using different non-dimensional

parameters is the key difference between the convective
cooling standards of IEEE (3) and CIGRE (4). While
IEEE only considers Reynold’s numbers, CIGRE employs
Nusselt’s, Reynolds, Grashoff’s, and Prandtl’s numbers.
These parameters make CIGRE more theoretically accurate,
provided that the values obtained are precise. CIGRE
considers the conductor surface’s temperature, while IEEE
assumes it to be constant along the conductor’s length [186].
However, both standards agree that natural and forced
convection can reduce the conductor’s temperature [74],
[77], [187], [188], with wind speed being the most sig-
nificant factor. The formulas in both standards depend
on wind speed, but unreliable wind speed measurements
can lead to significant errors in the conductor’s ampacity.
Therefore, to increase reliability, both IEEE and CIGRE
suggest calculating forced and natural convective cool-
ing and choosing the largest value as the conductor’s
convection value.

The radiative cooling formula between the two standards
shows they are similar. The four main parameters that govern
the radiative heat loss are the outer diameter, emissivity,
conductor’s temperature, and ambient temperature, with
constant values such as the Stefan-Boltzmann law and Pi,
which are included in both equations. The sensitivity of
emissivity depends on the temperature difference between
the conductor’s maximum operating temperature and the
ambient temperature. The relationship between emissivity
and temperature difference is directly proportional and

corresponds to the radiative cooling rate [77], depending on
the conductor’s age.

For solar heating, both standards include various terms in
their calculations, such as solar declination, the sun’s hour
angle, and the latitude of the line [182]. The conductor’s
location can impact global solar irradiance, although it is less
significant than wind speed. The CIGRE standard considers
other factors such as ground reflection, conductor orientation,
and nearby sheltered areas. Both standards recognize that
solar radiation depends on the time of day and location [189]
and that solar intensity increases with altitude above sea
level. The physical characteristics of the overhead line
conductor, such as outer diameter and absorptivity, are
essential considerations for solar heating. It is worth noting
that solar heat gain increases with increasing absorptivity,
typically determined by the manufacturer, and varies from
0.2 to 0.9, depending on the conductor’s age.

The IEEE standard directly includes magnetic heating
in joule heating, whereas CIGRE separates both terms.
While both types of heating can increase the conductor’s
temperature, their sources differ. Joule heating arises from
resistance, whereas magnetic heating arises due to magnetic
flux phenomena such as eddy currents, hysteresis, and skin
effects. Thus, CIGRE separates joule heating and magnetic
heating, which depends on the type of conductors (ferrous
and non-ferrous) since ferrous conductors include magnetic
heating and skin effect.

E. VALIDATION
The last step of the DLR process is validation, which involves
verifying the accuracy and effectiveness of the system. This
significant step ensures the reliability and accuracy of the
DLR system to provide accurate information for real-time
grid operation. The malfunction of monitoring sensors due
to age or weather conditions could lead to incorrect readings.
Real-time detection of anomalies in the sensor data during
analysis can enhance confidence in decisions made based
on the data [72], [115]. The accuracy of the models used in
the analytics may vary based on the input range, requiring
the validation of both models and sensor data. It is possible
to use sensitivities that can restrict the variation of weather
data parameters affecting transmission line ratings. More
steps must be taken to diagnose and identify the causes of
system failures. Addressing these issues could be crucial
in establishing long-term trust in DLR technologies [72],
[115]. It is an ongoing process that that compares the
ampacity calculated by DLR with actual line temperature
and sag measurements. Another way is by comparing the
DLR predictions with the calculated ampacity from the
SLR method. The lines’ reserved margin can be known by
comparing DLR and SLR values.

Integrating DLR into the control room is the most
challenging aspect of implementing this technology, as it
involves complex work that may overwhelm operators [115].
One approach to address this is to have the analytic engine
calculate information, which can be ready by the supervisory
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TABLE 6. Summary of DLR interaction with other flexibility option.

control and data acquisition (SCADA) system [190], [191]
and displayed to operators. Operators want a maximized but
stable line rating that ensures conductor temperatures do not
rise excessively, which could cause sagging. DLR depends on
wind speed and direction, which can cause noisy data. Thus,
filtering is needed to reduce the volatility of information
and increase confidence in ratings. It is recommended to
use standardization of DLR data with a baseline of expected
functionality and performance to integrate DLR into the
control room successfully [115].

VI. GRID FLEXIBILITY WITH DYNAMIC LINE RATING
Grid flexibility has become increasingly important in modern
power systems due to new challenges, such as integrating
intermittent RE sources and transportation electrification.
In renewable power generation with large amounts of wind
power production, the dynamic nature of wind results in
significant power output fluctuations over a short time
duration. These power fluctuations have a negative effect
on the safe and economic operation of grids and challenge
the effective utilization of extra-wind electricity generated in
congested transmission networks [192], [193], [194], [195].
DLR is a promising solution to enhance grid flexibility
by allowing utilities to dynamically adjust the capacity of
transmission lines based on actual conditions. Integrating
traditional and flexible resources requires novel methods and
control strategies to address the uncertainties in power system
operation without compromising power system reliability.
Flexibility in the power grid can be achieved through
different system stages, such as generation, transmission,
and distribution. On the generation side, grid flexibility can
be provided by allotting more reserves from conventional
power plants to cope with the uncertainty posed by RE
sources. Demand-side management and storage options can
be deployed on the load side to make the system more
flexible, although such technologies are expensive [196].

Energy storage technology can be used to store and stably
transmit the power generated with wind energy and can
efficiently restrict the fluctuations of wind power, enhance
the grid’s frequencymodulation capacity, provide rapid active
power support, improve power accommodation capacity and
enable large-scale wind power to be reliably and conveniently
integrated into grids [192], [194], [197], [198], [199].

However, effective utilization of energy storage technology in
the wind power intermittency mitigation depends on several
factors such as installation and maintenance costs, efficiency
and maturity of the technology, storage duration, delay time
response, ramp rate of the technology, environmental impact
and the suitability of the site topology. Consequently, single
storage technology cannot provide a total mitigating solution
to the intermittency effect of wind power on the grid [200].
Changing the topology using DLR can provide flexibility on
the transmission side. Table 6 summarizes the interaction of
the DLR with other flexibility options to make the system
more reliable, efficient, and cost-effective.

Additionally, remote transmission of electricity, especially
in the case of wind power generation may experience
delays and faults [201] and interference with radio systems
and aligned antenna positions, etc. The issues such as
delays, faults, and subsequent power losses associated with
remote electricity transmission from wind power generation
sites often stem from the need to invest in robust and
reliable infrastructure such as fault detection and correction
systems [202], [203], [204], [205], maintenance and repairs
using durable equipment can help minimize the need for
frequent visits as remote locations may be difficult to access,
making routine maintenance and repairs more challenging
and costly [206].
Also, advanced communication technologies for remote

monitoring and control [215], [216], [217], [218], which
may require additional investment communication technolo-
gies [219]. Balancing these considerations is crucial for
optimizing the economic viability of remote wind power
projects while ensuring a consistent and sustainable power
supply. Note that technological advancements and economies
of scale may contribute to cost reductions in remote wind
power transmission solutions over time [220], [221]. In terms
of interference and distortions that can be caused by
wind turbines (WTs) due to electromagnetic effects on the
transmitted signals in the near radiocommunications such
as fixed radio links [222], [223], aeronautical navigation
systems [224], broadcasting services [225] and radars [226].
Even though critical interference incidents are rare, if the
potential impact is detected before the installation of the
wind farm, locations and dimensions of wind turbines can be
modified to avoid or at least minimize interference effects.
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FIGURE 7. Mitigation of challenges related to remote wind energy.

However, if they arise after installation, locations and
dimensions of WTs can be adapted to prevent, or at
least minimize, the necessary post-installation corrective
measures, which are typically cost-prohibitive or technically
challenging. Also, another mitigation measure can be used
to reduce the WT interference effect by modifying careful
shaping of the tower and nacelle with different dimensions,
using advanced signal processing [227], and choosing a
model or communication system upgrades [228]. The above-
mentioned challenges and their mitigations are summarized
in Figure 7. In any case, the preventive measurement costs
are lesser than corrective measurements and prevent public
opposition to wind energy development [229]. These wind
energy challenges and related compromised costs can be
discussed in detail in separate research work.

VII. CONCLUSION
In conclusion, this paper has emphasized the importance of
grid optimization and various methods to increase ampacity
and voltage. DLR is the best grid optimization option.
The OHL conductors’ section has provided insights into
the factors influencing conductor line rating, including
weather and conductor conditions and the range of line
rating methodologies available. The discussion on DLR
benefits, limitations, considerations, case studies, and stan-
dard considerations has given an overview of the status
of DLR development worldwide, including a comparison
of DLR development in Malaysia with other countries.
It is worth noting that there may be unique challenges
and considerations for implementing DLR in Malaysia as
it is located in a tropical region and experiences hot and
humid weather throughout the year with variations in ambient
temperature and rainfall.

The DLR process section has explained the process in
detail, from line identification to integrating DLR into the
control room. The communication system must be reliable
and robust to ensure accurate real-time data transfer and
to avoid data loss in case of bad weather conditions or
challenging environments. Technological advancements and
increased adoption of dynamic transmission solutions over
time may reduce implementation costs. In addition, the
review of the calculation parameters of DLR showed that the
CIGRE ismore theoretically accurate than the IEEE standard.

The section on grid flexibility with DLR has highlighted
how DLR can enhance grid flexibility along with other
flexibility options and discussed the future direction of DLR
development. This review paper has provided researchers
in this study area with valuable information and insights
to advance the grid’s flexibility and resilience in the face
of energy transition and climate change. Further research is
needed to explore new and innovative ways to optimize the
grid and improve DLR technology to meet the ever-growing
demands of the modern power system.
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