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ABSTRACT A large number of vision sensors has been proposed for enabling self-driving vehicles to
perceive their surroundings. Among them, Light Detection And Ranging (LiDAR) presents the unique
advantage of acquiring a high resolution 3D representation of the vehicle surroundings, in the form of point
clouds, which enables accurate 3D object detection. The success of the first (and current) generation LiDARs
has motivated the development of a second generation of this sensor, now based on coherent detection.
Second generation LiDARs thus enable not only estimating radial distance, but also radial velocity for each
point of the point cloud. The objective of this work is to investigate which benefits can be obtained by
considering such an additional information – radial velocity – in 3D object detection. Results show that
considering object velocity is particularly helpful in objects represented by a small number of points.

INDEX TERMS Autonomous driving, 3D object detection, coherent LiDAR, point cloud, radial velocity,
deep learning.

I. INTRODUCTION
The number of road traffic accidents remains tragically
high [1]. Such accidents frequently result in fatalities or
lifetime disabilities for the victims, being a worldwide health
concern. The main cause of such unfortunate reality is
human error [2]. Despite the availability of safety systems in
modern vehicles, reckless driving is the main factor behind
human error. Autonomous vehicles are the solution for such
problems, as reckless driving becomes impossible.

In order to ensure safe driving, self-driving vehicles must
perceive the surrounding environment with detail. This is
possible using vision sensors. Ultrasonic, Camera, Radio
Detection And Ranging (RaDAR) and Light Detection And
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Ranging (LiDAR) are among the commonly proposed vision
sensors.

From the mix of different sensors that have been proposed,
LiDAR is emerging as a key vision sensor for vehicle
perception tasks due to its ability to acquire a precise 3D
representation of the surroundings [3], [4], [5]. Driven by the
success of the LiDAR in critical perception tasks, such as
3D object detection, the industry and the research community
have been working on a second generation LiDAR, typically
resorting to coherent detection. This sensor enables the
estimation of the object distance with the relative radial
velocity also being directly acquired per-point. Since this
additional feature is acquired without a significant overhead,
there is an interest in using this information for perception
tasks, such as 3D object detection. Object velocity can help in
identifying objects moving at different speeds. For instance,
if the vehicle is moving, stationary background features can
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be easily filtered out. Moreover, road objects such as car,
bicycles and pedestrians typically have different velocities.
Thus, velocity information can help in better classifying and
segmenting different objects.

This paper investigates the benefits brought by the use
of the radial velocity additional feature in LiDAR-based 3D
object detection using Deep-Learning (DL). To the best of our
knowledge, such an investigation has not been done before.

This paper is organized in 9 sections. Sections I presents
an introduction and overview of self-driving vehicles and
widely adopted vision sensors, such as LiDAR. Section II
summarises 3D object detection tools for processing first
and second-generation LiDAR point clouds. Sections III
and IV present the proposed approaches to generate a
synthetic dataset and to validate it, respectively. Section V
describes the methodology applied for DL-based 3D object
detection. Section VI discusses the results for the defined
use cases. Section VII presents the conclusions with respect
to the use cases. Finally, Section VIII summarises the major
contributions of this study.

II. CONTRIBUTIONS
The main contributions of this work are:

• The first publicly available LiDAR dataset including the
radial velocity. Available in [25];

• An improved dataset generation tool, with enhanced
labelling consistency and with the acquisition of five
different point clouds. The code is available in [21];

• The first study regarding the benefits brought by
the radial velocity as an additional feature in the
LiDAR-based 3D object detection with Deep Learning
models.

With the public availability of such code, we enable the
community to work on 3D object detection for automotive
scenarios using synthetic dataset generation.

III. 3D OBJECT DETECTION USING LIDAR POINT CLOUDS
The first (and current) generation of automotive LiDAR
sensors is based on time of flight estimation. Each point of the
acquired point cloud is typically comprised by the cartesian
coordinates (x, y, z) and the reflection intensity, i.
Motivated by the success and availability of the

first-generation LiDAR sensors, contributions have been
made over the recent years for 3D object detection:

• Toolboxes, such as OpenPCDet [6], that provide a
user-friendly interface for experimenting with different
3D object detection models and datasets;

• 3D object detection models, such as SECOND [7],
PointRCNN [8], PointPillars [9], among others. Point-
Pillars was the chosen 3D Object Detection model for
this work due to its simplicity and robustness, providing
a good trade-off between model performance and
training time, while also being available in OpenPCDet;

• Real-world datasets, such as Karlsruhe Institute of
Technology and Toyota Technological Institute (KITTI)
[10], Waymo [11], nuScenes [12], among others. KITTI

FIGURE 1. Left: first-generation LiDAR point cloud. Right:
second-generation LiDAR point cloud. Point clouds colored by relative
radial velocity.

is the most popular real-world dataset due to being
the first annotated dataset made publicly available for
mobile robotics and autonomous driving purposes;

• Benchmarks, such as KITTI benchmark [13]. Due to
the popularity of the dataset, the KITTI metrics are also
commonly adopted by the research community for 3D
object detection tasks.

A second-generation LiDAR typically resorts to coher-
ent detection, with Frequency-Modulated Continuous-Wave
(FMCW) being the most popular signaling method. Distance
and radial velocity can be directly estimated from the
positive and the negative linear chirps of the received FMCW
waveform [14]. As seen in Figure 1, each point of the
second-generation LiDAR point cloud is typically comprised
by the cartesian coordinates (x, y, z), the intensity, i, and the
radial velocity, vr .

The second-generation LiDAR is still under development.
Scantinel Photonics [15], Aurora [16], Aeva [17] and
Baraja [18] are among the most popular coherent LiDAR sen-
sor development companies, with prototypes, demonstrations
and collaborations with automotive manufacturers. Since the
majority of coherent LiDAR sensors are prototypes it is
natural that, to the best of the authors’ knowledge, there
are no coherent LiDAR datasets made publicly available.
Consequently, the impact of the additional feature – radial
velocity – for LiDAR-based Deep-Learning based 3D object
detection is yet to be assessed. The study in [19] tried to
perform such an analysis. However, since the real-world
acquired dataset was comprised by a small number of frames,
no Deep learning 3D object detection models were used.
Furthermore, such dataset was not made publicly available.
The present work addresses both gaps: we generate and
make publicly available a dataset made of point clouds
obtained by an ideal coherent LiDAR, and investigate which
benefits can be obtained from using the radial velocity as an
additional feature in 3D object detection using Deep Learning
models. In order to perform such investigation, we resort
to the existent tools for first-generation LiDAR sensors,
such as OpenPCDet, PointPillars and KITTI benchmark, and
generate a synthetic dataset with a KITTI-like format to
ensure that the generated dataset can be directly processed
by the toolbox.

IV. SYNTHETIC DATASET GENERATION
The generation of a real-world dataset made of point clouds
captured by a second generation LiDAR is currently not a
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TABLE 1. Object type labels difference between KITTI and PreSIL.

TABLE 2. KITTI occlusion annotation. Reproduced from [23].

viable option, given that there are only protoypes of such
LiDARs. We therefore had no other option than to generate a
synthetic dataset. The Grand Theft Auto V (GTA V) video-
gamewas selected as the source of the data, due to the realistic
lifelike scenarios and the availability of native functions that
return in-game object information. Precise Synthetic Image
and LiDAR (PreSIL) [20] was used as the dataset generator
since it provides improvements over the native ray-casting
functions and object representations [20]. Furthermore, this
generator acquires a dataset with KITTI-like format, thus, the
data can be directly processed by existent toolboxes, such as
OpenPCDet.

The point clouds of the generated dataset do not have
intensity information, as such information is not provided
by GTA V. Thus, the generated point clouds were not 5D
(i.e., (x, y, z, i, vr )), but 4D (i.e., (x, y, z, vr )), as are the
point clouds of the KITTI dataset, (x, y, z, i). This means
that no additional complexity was added to the considered
PointPillars model. Furthermore, previous tests [24] have
shown that processing the KITTI dataset while discard-
ing intensity information negligibly degraded performance.
In summary, in comparison to KITTI point clouds, and to
point clouds obtained by most mainstream LiDARs, the same
3D object detectionmodels can be used by replacing intensity
information with radial velocity information without risking
losing performance.

FIGURE 2. Vehicle models used as reference for new object type
annotation.

Although the PreSIL dataset generator was fairly mature,
modifications were done to enhance the dataset quality and
consistency. Furthermore, new features were implemented to
acquire the required point clouds for this study. The updated
version of the dataset generator is accessible in [21].

A. IMPROVING ANNOTATION QUALITY
Some annotations computed by the original PreSIL generator
were not consistent with the KITTI labelling format. Such
inconsistency would deteriorate the model performance.
Therefore, modifications were made in the object type and
occlusion annotations.

1) OBJECT TYPE ANNOTATION
As shown in Table 1, PreSIL object type annotations differ
from the KITTI dataset. In order to enhance consistency
between the real-world dataset and the synthetic dataset, the
object types were changed to match the KITTI dataset.

Additionally, it was noticed that some objects from
the same vehicle segment, which are commonly present in the
video-game scenarios, were incorrectly labelled, such as the
‘Cavalcade’ GTA V vehicle model which was labelled by
PreSIL as a ‘Truck’ type object. In order to improve the
consistency and quality of the dataset, the vehicle model to
object type relation of each vehicle model was reviewed,
as depicted in Figure 2, with:

• Small-size vehicles are considered ‘Car’ for labelling
purposes. Cavalcade vehicle was used as reference
model;

• Medium-size vehicles are considered ‘Van’ for labelling
purposes. Taco vehicle was used as reference model;

• Large-size vehicles are considered ‘Truck’ for labelling
purposes. Benson vehicle was used as reference model.

2) OBJECT OCCLUSION ANNOTATION
The KITTI object occlusion label is an integer value,
as shown in Table 2. Depending on the object truncation,
occlusion and bounding box height, an object can be assigned
a Easy, Moderate or Hard difficulty level [22].
Nonetheless, PreSIL yields a float value from the occlusion

computation. Thus, incorrect difficulty levels can be assigned
to objects. Since KITTI provides no threshold for such
attribution, a visual inspection was performed to establish the
following thresholds:

• If the computed PreSIL occlusion is lower than 0.2, the
object has the KITTI occlusion level 0;
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• If the computed PreSIL occlusion is greater than or equal
to 0.2 while being lower than 0.6, the object has the
KITTI occlusion level 1;

• If the computed PreSIL occlusion is greater than or equal
to 0.6, the object has the KITTI occlusion level 2;

• No level 3 occlusion exists since the occlusion is
computed for every object.

B. IMPROVING FRAME DIVERSITY
When capturing frames (i.e., images and point clouds) at
a high frame rate, consecutive frames have little to no
difference among them. As such, one could be biasing the
model with identical frames in the training and testing sets.
Conversely, using a low frame rate significantly increases
the duration involved in acquiring a dataset. Therefore, our
approach used 0.2 Hz as the frame rate specification with the
following approaches to mitigate frame similarity:

• Reduce the frame rate on the dataset acquisition when
the vehicle is in the same position in consecutive frames.
It was noticed that consecutive frames present high
resemblance when vehicles are stopped awaiting traffic
light changes. When the vehicle is moving, the frame
rate is restored to the original specification;

• Frame shuffling was performed after the dataset acqui-
sition to select which frames comprise the dataset.
In order to generate a dataset with 15000 frames,
approximately the same as KITTI, over 25000 frames
that had annotated objects were acquired. From the
25000 frames, a random shuffle was performed to select
which frames comprise the final dataset;

• Random frame shuffling for the testing and training
splits was performed in the final dataset to further
enhance the diversity of frames.

C. ONLINE POINT CLOUDS
The default PreSIL dataset generator source code acquires
a single point cloud comprised by the object cartesian
coordinates, (x, y, z), and by the object unique identifier,
ObjectID. Since the point clouds required for this study could
not be captured online by default, the acquisition of the
following point clouds were included in the improved dataset
generator:

1) Point cloud 1: (x, y, z,(Bool)Is_Object). The best
performance of the Deep Learning model is expected
for such a point cloud as ground truth information is
provided as the additional feature. This point cloud is
acquired through the instance segmentation available in
the GTAV game-engine, where each object is uniquely
identified. Since two predominant object categories are
commonly observed in the video-game environment,
this point cloud is further divided into two point clouds.

2) Point cloud 1A: (x, y, z,(Bool)Is_Car). The additional
feature of each point that belongs to an object of the
‘Car’ type has a Boolean 1.0 value; contrariwise, the
0.0 value was used. An example is shown in Figure 3a.

3) Point cloud 1B: (x, y, z,(Bool)Is_Ped). The additional
feature of each point that belongs to an object of the
‘Pedestrian’ type has a Boolean 1.0 value; contrariwise,
the value 0.0 was used. An example is shown in
Figure 3b.

4) Point cloud 2: (x, y, z,(Float)Radial_Velocity). Simi-
larly to the data yielded by a coherent LiDAR sensor,
this point cloud includes the relative radial velocity
as the additional feature of each point, as shown in
Figure 3c. Since no native function is available to
acquire the radial velocity, it can be computed as:

vr = || ⃗vTS|| cos(θ) = ⃗vTS ·
⃗rTS

|| ⃗rTS||
, (1)

where:
• vr is the relative radial velocity and the additional
feature appended to the point cloud;

• θ is the angle between the object velocity vector
and the line of sight of the ego-vehicle;

• ⃗vTS is the relative velocity vector, computed by
⃗vTS = v⃗T−v⃗S. The ego-vehicle velocity, v⃗S, and the
object velocity vector, (v⃗T, were acquired through
native functions;

• ⃗rTS is the relative position vector, computed by
⃗rTS = r⃗T − r⃗S. The target point position, r⃗T,
and the ego-vehicle position vector, r⃗S, can be
acquired through a native function that returns
GTA V world coordinates. However, in order to
correctly resemble KITTI LiDAR sensor place-
ment, the ego-vehicle position z-axis value was
modified to 1.73 meters above ground, thus r⃗S =

(rsx , rsy ,Ground + 1.73).
For further details please check section 3.2.2 of [24].

5) Point cloud 3: (x, y, z,(Float)Abs_Speed). In this
point cloud, every point has the absolute speed of the
object as the additional feature, yielded by a native
function. An example is shown in Figure 3d.

6) Point cloud 4: (x, y, z,(Bool)Is_Moving). In this point
cloud, the additional feature is a Boolean value that is
set to 1.0 if the object is moving; contrariwise it is set to
0.0 for static objects. An example is shown in Figure 3e.

7) Point cloud 5: (x, y, z). The worst performance of the
Deep Learning model is expected since no additional
information is provided. Therefore, the object detection
model must only resort to the geometrical information
of the objects for the predictions. An example is shown
in Figure 3f.

D. NOISE ADDITION
Having a direct estimation of the radial velocity helps in
distinguishing moving objects from stationary background
points (e.g., ground points). It is therefore expected that
having a direct estimation of the radial velocity helps relaxing
the precision of range estimation. In order to evaluate such
proposition, a new point cloud was created offline from
both point clouds 2 and 5. For both point clouds, the point
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FIGURE 3. Example of the acquired point clouds. Left: image of an acquired frame. Right: point cloud colored by the additional feature for the
acquired frame.

TABLE 3. Object occurrences in the GTA V synthetic dataset.

coordinates (x, y, z) are affected by errors. For a matter of
simplicity, no error was added to the radial velocity.

As observed in Figure 4, noise was added to the point cloud
after its acquisition (thus, offline) by:

1) Converting the cartesian coordinates to spherical
coordinates;

2) Generating an error using a gaussian distribution with
the ideal radial distance as mean and standard deviation
of 5 cm, 10 cm and 15 cm;

3) Converting the spherical coordinates back to cartesian
coordinates.

TABLE 4. Moving object occurrences with the average speed of the
captured object types.

V. SYNTHETIC GTA V DATASET VALIDATION
Generating a dataset, by itself, does not guarantee its
quality. As no GTA V scenarios were user-customized, the
game-engine is responsible for the location and density of
all objects. The analysis of the object type occurrences, the
object difficulty levels and the velocity occurrences follow
what would be expected in everyday life scenarios, as:

• ‘Car’ and ‘Pedestrian’ type objects are the two predom-
inant object classes, as shown in Table 3.

• There are a reasonable number of occurrences of each
KITTI difficulty level objects (Easy, Moderate and
Hard) in the dataset, as shown in Figure 5.
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FIGURE 4. Example of the noise included in the point clouds. Top: A point
cloud with two selected objects. Red: The approaching object points with
different Gaussian error standard deviations (in meters). Blue: The
receding object points with different Gaussian error standard deviations
(in meters).

FIGURE 5. Difficulty level occurrences for ‘Pedestrian’ and ‘Car’ objects.

• The object type speeds analysis indicates that, on aver-
age, objects can be distinguished by their speed and there
are significant occurrences of moving and static objects,
as shown in Table 4.

VI. OBJECT DETECTION METHODOLOGY
The generated dataset is comprised by 15000 frames and
three use cases were created:

1) Use case 1, with raw radial velocity as additional
feature (as seen in Point cloud 2);

2) Use case 2, with processed radial velocity as additional
feature (as seen in Point cloud 3 and 4);

3) Use case 3, with raw radial velocity as additional
feature with erroneous point coordinates;

Four-fold cross-validation was applied for Use case 1. For
the remaining use cases, a single fold of test and training
split was applied. Each fold is comprised by 3750 randomly

FIGURE 6. 3D AP@R40 ‘Car’ type objects results using the radial velocity
additional feature. Top: Training results. Bottom: Testing results.

assigned frames. For each iteration 11250 frames are used for
model training, and 3750 frames for model testing.

The metrics employed by the KITTI benchmark for 3D
object detection were adopted. The models are evaluated
using the Average Precision (AP) metric, with 40-point inter-
polation, for three KITTI difficulty levels: Easy, Moderate
and Hard.

The PointPillars model hyper-parameters were set at the
default values of OpenPCDet for the KITTI dataset. The
intensity information provided by the KITTI dataset was
replaced with the additional feature (the velocity) of each
acquired synthetic point cloud. For use case 1, the model was
trained with 300 epochs, whereas for the remaining use cases
80 epochs were used.

VII. RESULTS
A. USE CASE 1: IMPACT OF RAW RADIAL VELOCITY
To analyse the impact of the raw radial velocity use case 1was
created. It is comprised by:

• Upper limit: established by point cloud 1A: (x, y, z,
(Bool)Is_Car) for ‘Car’ type objects or the point cloud
1B: (x, y, z,(Bool)Is_Ped) for ‘Pedestrian’ type objects.
This is the upper limit as the additional feature is the
ground truth;

• Lower limit: established by the point cloud 5:(x, y, z).
This is the lower limit because there is no additional
feature;

• Margins for improvement: obtained by the AP differ-
ence between the upper limit and the lower limit;

• The point cloud with the relative radial veloc-
ity additional feature, point cloud 2: (x, y, z,(Float)
Radial_Velocity)
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FIGURE 7. Use case 1 3D AP@R40 testing results for ‘Pedestrian’ type
objects using the raw radial velocity additional feature.

1) ‘CAR’ TYPE OBJECTS
The AP averaged from all four folds, for ‘Car’ type objects,
are shown in Figure 6.
The results indicate that there is no overfitting, since there

is no substantial difference between the training and the
testing performance. Overfitting was not observed in any of
the results, and therefore we only show test performances
henceforth.

Analysing the lower limit, though no additional feature
is used, excellent performance was nonetheless achieved.
Such a good performance was achieved likely because the
number of points that comprise a Car is large. Therefore,
objects which are comprised by a large number of points
have, necessarily, a richer geometrical representation of their
shape and structure, thus not requiring additional information
to be detected. Since the geometrical information of the cars
is sufficient by itself to achieve such a high performance, the
obtained margin for improvement was small, of at most 3%.
Therefore, the radial velocity information introduced, at best,
slight improvements for Easy and Moderate difficulty levels
objects. Moreover, on average, the model performance at the
Hard difficulty level slightly decreased with the use of this
feature.

2) ‘PEDESTRIAN’ TYPE OBJECTS
A similar analysis was performed for ‘Pedestrian’ type
objects. The average fold AP results are shown in Figure 7.

For ‘Pedestrian’ type objects there is a significant margin
for improvement, with approximately 15% improvement
potential for all difficulty levels. Following the rationale
presented when analysing ‘Car’ type objects, this occurs
because ‘Pedestrian’ type objects are typically represented by
a small number of points, which makes such objects harder
to detect. Nonetheless, despite existing a large margin for
improvement, the obtained improvements were negligible
(∼ 1%).

B. USE CASE 2: IMPACT OF PROCESSED RADIAL VELOCITY
Since the benefits obtained from the raw radial velocity were
minimal, perhaps processing this feature into simpler features
yields better results. As such, use case 2 was created. It is
comprised by:

• Upper limit: established by point cloud 1A: (x, y, z,
(Bool)Is_Car) for ‘Car’ type objects or the point cloud

FIGURE 8. Use case 2 3D AP@R40 testing results for ‘Car’ type objects
using speed and motion information.

FIGURE 9. Use case 2 3D AP@R40 testing results for ‘Pedestrian’ type
objects using speed and motion information.

1B: (x, y, z,(Bool)Is_Ped) for ‘Pedestrian’ type objects.
This is the upper limit as the additional feature is the
ground truth;

• Lower limit: established by the point cloud 5:(x, y, z).
This is the lower limit because there is no additional
feature;

• Margins for improvement: obtained by the AP differ-
ence between the upper limit and the lower limit;

• The point cloud with the absolute ground speed
additional feature per-point, point cloud 3: (x, y, z,
(Float)Abs_Speed);

• The point cloud with a Boolean value for moving
objects additional feature per-point, point cloud 4:
(x, y, z,(Bool)Is_Moving);

1) ‘CAR’ TYPE OBJECTS
The use case 2 results for ‘Car’ type objects is presented in
Figure 8.

The results follow the same tendency observed for use
case 1. The margin for improvement is minimal for ‘Car’ type
objects and no significant benefits were obtained from the
processed radial velocity additional feature.

2) ‘PEDESTRIAN’ TYPE OBJECTS
The use case 2 results for ‘Pedestrian’ type objects is
presented in Figure 9.

There was a slight increase in the margins for improvement
when compared to the use case 1, caused by the different
model training conditions, with a margin of 16% to 18%.
Analysing the impact of the processed radial velocity, it can
be seen that both the processed features were able to
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FIGURE 10. 3D AP@R40 ‘Car’ type object testing results for the use
case 3. PC used as an abbreviation of point cloud.

FIGURE 11. 3D AP@R40 ‘Pedestrian’ type object testing results for the
use case 3. PC used as an abbreviation of point cloud.

introduce more benefits to the model performance, with up
to approximately 5%. A possible explanation for such an
improvement is that the model prefers just knowing which
points are moving, and which points are not, as such a binary
information resembles ground truth.

C. USE CASE 3: IMPACT OF RAW RADIAL VELOCITY FOR
ERRONEOUS RANGE ESTIMATION
So far, point clouds with ideal range estimation were
employed. In order to observe whether considering ideal
radial velocity could help in better detecting objects in points
clouds with non-ideal range estimation, use case 3 was
created. It is comprised by:

• Lower limit: achieved by using the point cloud 5:
(x, y, z) + (ϵx ,ϵy,ϵz). This point cloud includes error in
the coordinates of each point.

• The point cloud with the radial velocity, point cloud
2: (x, y, z,(Float)Radial_velocity) + (ϵx ,ϵy,ϵz,0), con-
taining the same coordinates error as in the other
point cloud that comprises this use case. The raw radial
velocity additional feature remains ideal;

1) ‘CAR’ TYPE OBJECTS
The results for ‘Car’ type objects are shown in Figure 10.
Figure 10 shows that, despite the slight performance

decrease obtained from degrading the geometric information
quality, the velocity information did not improve the object
detection. In fact, it slightly decreased themodel performance
when compared to the scenario without the additional feature
and the coordinates being affected by the highest introduced

error (noise). The raw radial velocity did not introduce any
noteworthy benefits to this use case.

2) ‘PEDESTRIAN’ TYPE OBJECTS
The results of use case 3 for ‘Pedestrian’ type objects are
presented in Figure 11.
Note that, as the average error introduced to the object

coordinates increases, the model was able to extract more
benefits from the radial velocity information due to the poor
geometrical information of the ‘Pedestrian’ type objects.
Hence, the raw radial velocity was able to provide benefits
(approximately 5% improvement) to such a challenging and
critical task.

Raw radial velocity already proved not to help neither in
localizing nor in classifying objects with many points, such
as cars. Hence, feeding the model with an extra feature that
is not useful for detecting such an object class either makes
no difference in its performance, or may even be detrimental
if data is noisy, as is the case of Figure 11. Conversely, for
pedestrians, Figure 10, this is not the case, as pedestrians
comprise few points. Hence, even if data is noisy, considering
radial velocity helps in detecting such objects.

VIII. CONCLUSION
In this paper, we investigated how the per-point radial velocity
information provided by an ideal second-generation LiDAR
would benefit 3D object detection in automotive scenarios.
In general, having radial velocity information available
for each point of the point cloud helps in differentiating
moving objects from stationary background points. Such
help is particularly valuable when the object is small and/or
comprises a small number of points. As a result, radial
velocity helps where it is most critical: in detecting objects
represented by a small number of points, such as pedestrians.

Three scenarios were studied to support such conclusions.
In the first scenario the raw radial velocity was considered
as an additional feature. In the second scenario, the radial
velocity was processed into a simpler feature, such as
a Boolean value for moving objects or object absolute
speed. Finally, in the third scenario, we tested the premise
of whether ideally estimated radial velocity would help
detecting objects, provided that the cartesian coordinates
(x, y, z) are non-ideally estimated, as it occurs in practice.

The results obtained for ‘Car’ type objects in all three
scenarios showed that the radial velocity, either raw or
processed, produced negligible benefits. The reason behind
such a negligible improvement lies in the large number of
points that represent a car, which enable accurately detecting
a Car without requiring further information.

Conversely, for ‘Pedestrian’ type objects, a significant
margin for improvement, up to 15%, was estimated. Such
makes sense, as pedestrians are represented by a small
number of points. Considering the raw radial velocity
introduced negligible minimal improvements, approximately
1%, and 5% for non-ideal points clouds with error in
range estimation. However, the simpler features acquired
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FIGURE 12. Loss function using point cloud 5: (x, y, z).

by processing the raw radial velocity introduced up to 5%
improvement. The reason why the processed features helped
in detecting Pedestrians could be that detecting few, vertically
stacked points that are moving helps the model in better
detecting such objects as Pedestrians, as such a binary
information resembles ground truth.

Though the improvements are modest, they could be
valuable in protecting lives, as pedestrians are the most
vulnerable road users.

IX. FUTURE WORK
This study pioneers the use of radial velocity information for
3D object detection. This is therefore a preliminary study,
which opens a significant breadth of future work.

1) Improving existent results:
a) Fine-tune the existent use cases: perform

hyper-parameter tuning and cross-validation on
use case 2 and 3;

b) Considering other available object types;
c) Create a confusion matrix to analyse the velocity

impact in object classification;
2) Considering new use cases:

a) Attention mechanisms, where velocity informa-
tion can be used to select which objects should
be considered for further processing and to avoid
path collisions (e.g. objects approaching the
ego-vehicle);

b) Potential benefits of the objects radial velocity to
vehicle odometry estimation.

3) Real-world validation:
a) The long-term goal would be to validate the

synthetic dataset and the presented results
with a real-world dataset acquired with a
second-generation LiDAR.

APPENDIX A
DEEP LEARNING MODEL TRAINING DETAILS
Since the acquired synthetic dataset sensor specification and
point clouds range resembles KITTI’s dataset, PointPillars
was trained using the default KITTI configurations available
in the OpenPCDet toolbox. The number of epochs was
adjusted to 300 for the first use case by the analysis of

the loss function, shown in Figure 12. For a matter of time
management, the remainder use cases only used 80 epochs.
No hyperparameter tuning was performed, which is identified
as future work.
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