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ABSTRACT The adoption of cloud computing has become increasingly widespread across various domains.
However, the inherent security vulnerabilities of cloud computing pose significant risks to its overall safety.
Consequently, intrusion detection systems (IDS) play a pivotal role in identifying malicious activities within
a cloud system. The considerable volume of network traffic data may contain redundant and irrelevant
features that can impact the classification performance of the classifier. In addition, the complexity and time
consumption increase while processing such a substantial volume of data in the cloud intrusion detection
process. To enhance the performance of the IDS, this study proposes a hybrid feature selection approach,
combining two bio-inspired algorithms, namely the grasshopper optimization algorithm (GOA) and the
genetic algorithm (GA). The combination of these two algorithms ensures a more efficient search for optimal
solutions. A random forest (RF) classifier is trained using those optimal features. Moreover, the proposal
addresses the challenge of imbalanced data by employing a hybrid approach: over-sampling the minority
classes using an adaptive synthetic (ADASYN) algorithm, while implementing random under-sampling
(RUS) for the majority class as needed. This integrated strategy significantly influences each category,
enhancing the true positive rate (TPR) while minimizing the false positive rate (FPR), thus improving the
overall system performance. The proposed approach was evaluated using three datasets: UNSW-NB15, CIC-
DDoS2019, and CIC Bell DNS EXF 2021. The recorded accuracies for these datasets were 98%, 99%, and
92%, respectively. The hybrid feature selection-based IDS demonstrated superior performance in multi-
class classification, along with exemplary results for individual classes within the datasets. The proposed
strategy exhibited a marked superiority with the random forest classifier, especially when compared to
other classifiers including SVM, LR, FLN, LSTM, AlexNet, DNN, DBN, DT, and XGBoost. Moreover, this
performance remained consistent and commendable even when benchmarked against contemporary state-
of-the-art methodologies across multiple evaluation metrics.

INDEX TERMS Hybrid metaheuristic approach, GOA-GA-based feature selection, UNSW-NB15, CIC-
DDoS2019, CIC Bell DNS EXF 2021.

I. INTRODUCTION
Cloud computing (CC) is a model that enables information
technology and configurable computing resources such as
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storage, networks, servers, operating systems, etc. for cloud
users at affordable service rates [1]. CC offers its services
according to the pay-as-you-use policy [2]. Cloud comput-
ing has three main service models: software-as-a-service
(SaaS), infrastructure-as-a-service (IaaS), and platform-as-
a-service (PaaS) [3]. The characteristics of the cloud, such
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as the elimination of expensive infrastructure, minimized
data management costs, and usage-based service charges,
reduce the financial loss to users/organizations [4]. Although
cloud computing has several advantages like scalability, fast
deployment, rapid elasticity, etc. It also faces serious disad-
vantages in terms of security. Recently, several reports of
security breaches in cloud computing have been reported.
In 2022, the global cybersecurity market was valued at USD
153.65 billion. The market is expected to increase at a com-
pound annual growth rate (CAGR) of 13.8% during the
forecast period, from USD 172.32 billion in 2023 to USD
424.97 billion in 2030 [5]. As the network functions as the
lifeblood of the cloud and enables the delivery of cloud
services to customers, any risks or imperfections present
within it promptly impact the overall security and growth
of the cloud. Consequently, fortifying the network against
any possible breaches is of crucial importance. The detection
and prevention of network threats are the primary security
challenges in cloud computing. Due to inadequate defen-
sive measures, network intrusions have recently increased;
the IDS can be deployed to tackle these security issues.
Intrusion detection systems are critical tools for cyberse-
curity, especially in identifying attacks in cloud computing
environments. Traditional solutions handle intrusions with
firewalls, attack-resistant software, access control, encryp-
tion, etc. However, these techniques were suitable only for
small-scale attack identification. Conventional approaches
are infeasible with a large number of modern attacks [6].
Cloud computing is susceptible to various types of modern
attacks, including but not limited to denial-of-service (DOS),
distributed denial-of-service (DDOS), and domain name sys-
tem (DNS) attacks [7]. With the increase in applications and
devices on the Internet, automatic intrusion detection plays
a major role since manual approaches are unable to handle a
large amount of data [8]. Nevertheless, before integrating any
IDS model into the cloud ecosystem, it’s essential to ensure
its robustness and functionality. Thus, the objective of this
study is to build such an effective IDS.

In summary, the primary motivation for this research
lies in addressing the critical challenge of intrusion detec-
tion in network-driven systems, including cloud computing.
Such systems are frequently subjected to similar types of
attacks. For instance, the notable increase in the adoption of
cloud-based services has precipitated a parallel escalation in
security threats, highlighting the need for effective intrusion
detection systems. Traditional IDS approaches often prove
inadequate, primarily due to their limited capacity to manage
the dynamic and intricate nature of cloud services, as well as
the difficulties arising from imbalanced datasets, which are
characterized by high dimensionality and numerous superflu-
ous features. This scenario intensifies the need for advanced,
AI-enhanced IDS techniques, which are the focus of our
research.

IDS based on AI utilize ML and DL models to construct
an efficient system to shield the cloud from attacks [9].

During the intrusion detection process, MLmodels encounter
certain limitations and their performance deteriorates when
the complexity of attacks increases [10]. IDS approaches that
are built with DL algorithms, such as ANN, RNN, CNN,
etc., have demonstrated the ability to process large volumes
of high-dimensional network traffic with enhanced accuracy
compared toML-based IDS. However, these approaches con-
sume an excessive amount of resources, either in terms of
time or RAM. Each approach has its own strengths and
weaknesses. It’s important to note that ML models generally
consume fewer resources than DL models. However, in some
instances, DL models exhibit superior performance. This
underscores the significance of ensemble learning (EL) mod-
els, which strike a balance between impressive performance
and reasonable resource consumption. RFmodel is among the
most renowned of these due to its structure and its method for
obtaining optimal solutions.

The authors in references [11] and [12] found that the
ML and DL strategies employed in IDS failed to effectively
handlemulti-classification due to the high dimensionality and
non-linear characteristics of the data. Feature selection miti-
gates this issue by eliminating unimportant features, thereby
enhancing the learning process. Irrelevant features can lead
to overfitting and bias the solution, which in turn, nega-
tively affects the performance of the classification process.
Additionally, these features consume a substantial amount
of computational resources and increase processing time.
Optimal feature selection can relieve these issues by conserv-
ing resources. Furthermore, when a classifier is trained with
these optimal features, it not only improves classification
performance but also expedites both the training and testing
phases [13]. Bio-inspired algorithms used in IDS offer advan-
tages such as a reduction in feature sets and the selection
and ranking of discriminative features. By reducing feature
sets with bio-inspired algorithms, we can achieve superior
predictive models with less computational complexity and
cost during the training and testing of a classifier [14].
It is observed from previous research that the selection of
relevant features plays a major role in achieving higher
prediction accuracy and reducing computational costs. There-
fore, we have focused on improving the feature selection
process through a hybrid optimization algorithm in which
GOA and GA are combined to obtain optimized features [15].
In this research, the original data are collected from

the UNSW NB-15, CIC DDOS 2019, and CIC Bell DNS
2021 datasets. Subsequently, data pre-processing is con-
ducted with label encoding, min-max scaling, and a com-
bination of the ADASYN and RUS methods for better data
representation. The proposed IDS mechanism involves two
stages, namely feature selection and classification. The fea-
ture selection process involves hybridizing the GOA and
GA with the aim of selecting optimal features. RF model is
chosen to classify the attacks and will be trained using these
optimally selected features. The performance of the proposed
method is compared with existing approaches in the context
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of multi-class classification. The major contributions of the
research are:

1. Imbalanced Data Handling: Our methodology uniquely
addresses the imbalanced data issue using a combination
of over-sampling for minority classes and under-sampling
for majority classes, by employing the ADASYN andRUS
techniques. This not only aids in mitigating overfitting
and underfitting but also significantly enhances the per-
formance of each category in the dataset. This approach
is specifically tailored to manage the challenges posed by
uneven data distributions, which are common in intrusion
detection scenarios.

2. Hybrid Feature Selection Approach: The integration of
GOA and GA for feature selection in our study repre-
sents a novel approach, combining their exploration and
exploitation abilities. This hybrid method leverages the
strengths of both algorithms, ensuring a more efficient and
comprehensive feature selection process. This not only
reduces the complexity of the model but also contributes
to a reduction in overfitting, thereby enhancing the overall
performance of the classifier.

3. RF Classifier Efficiency in Training: The utilization of
optimally selected features in training the Random Forest
classifier underscores the methodological advancement of
our study. RF, an ensemble learning-based model, has
shown remarkable effectiveness owing to its structure and
notable attributes. These include the ability to manage
both categorical and continuous data, handle missing val-
ues and outliers, and the requirement of less training time,
thereby making it our classifier of choice.

4. Utilization of Latest Datasets: Our methodology is rigor-
ously assessed using the latest and most comprehensive
datasets, namely UNSW-NB15, CIC-DDoS2019, and CIC
Bell DNS 2021. This enhances the relevance and applica-
bility of our findings. These datasets encompass a broad
spectrum of threats, accurately representing prevalent
real-world attacks. The CIC Bell DNS 2021 dataset is
regarded as the most recent and has not been extensively
utilized for evaluations in traditional studies.

5. Robustness and Generalizability: The exceptional per-
formance of our methodology across multiple datasets,
as demonstrated in our study, signifies its robustness and
low variance. This suggests a strong capability of our
approach to generalize across various real-world scenar-
ios, representing a significant improvement over existing
methodologies. Unlike ours, these methodologies might
not exhibit such versatility, often being tested using only
one or two outdated datasets.

This study is organized as follows: Section II reviews the
cutting-edge works related to IDSs. Section III provides
a brief overview of the proposed system and its steps.
In Section IV, we delve into the simulation process and
discuss the results. Section V details the challenges and
limitations of the approach. Section VI delineates key con-
siderations that will facilitate the practical implementation of

our approach. Finally, section VII presents the conclusion and
future work.

II. RELATED WORKS
This section offers a concise overview of state-of-the-
art studies that have sought to improve IDS performance
through the application of feature selection methods such as
metaheuristic-inspired and other related approaches, as well
as ML, DL, and EL models. Rashid et al. [6] suggested a
tree-based stacking ensemble technique (SET) model with
the objective of selecting the best features. The feature
selection approach reduces the dimensionality of network
data. The stacking ensemble model is constructed using a
decision tree (DT), a random forest (RF), and XGBoost
for classification. The proposed IDS model achieved 99.9%
and 95.26% accuracy on the NSL-KDD and UNSW-NB15
datasets, respectively. Ghosh et al. [8] introduced an efficient
IDS designed using the dolphin mating model for feature
selection. The dolphin mating algorithm in the proposed
research removes irrelevant features to achieve higher accu-
racy and reduce the computational cost. Kanna and Santhi [9]
suggested a hybrid IDS model in order to handle the mas-
sive volume of network traffic data. The classification is
performed using a MapReduce-based deep learning model
called the convolutional-long short-term memory network
(CONV-LSTM). Initially, the feature selection is carried out
using the artificial bee colony (ABC) algorithm. The hyper-
parameters of the CONV-LSTM networks are optimized by
the black widow optimization (BWO) algorithm. The pro-
posed approach achieves an accuracy of 98.67%, 97.003%,
98.667%, and 98.25% on the NSL-KDD, ISCX-IDS, UNSW-
NB15, and CSE-CIC-IDS2018 datasets, respectively. Nev-
ertheless, the duration of training (26,721.2 seconds) and
testing (402.67 seconds) is still quite lengthy, indicating sub-
stantial usage of resources.

Cai et al. [10] developed an efficient IDS employing
hybrid parallel deep learning, which comprises two parallel
CNN models that combine spatial features obtained from
full convolution. The spatio-temporal features are classified
using the CosMargin classifier. The approach was assessed
on two datasets, namely CIC-IDS 2017 and ISCX 2012,
and it achieved a 99% accuracy rate in detecting the mali-
cious class. Binbusayyis and Vaiyapuri [11] proposed an IDS
approach that utilizes a combination of convolutional autoen-
coder (CAE) and one-class SVM (OCSVM). The approach
leverages 1DCAE for feature representation and OCSVM for
classification. The objective function is designed by combin-
ing the reconstruction and classification error. The proposed
approach was evaluated on the NSL-KDD and UNSW-
NB15 datasets and achieved better results than conventional
approaches. Kannari et al. [12] developed an IDS strategy
using a sparse autoencoder with a swish-PReLU activation
function, which enhances classification accuracy and speed.
The optimal feature sets are selected with two approaches,
namely the second percentile method and recursive fea-
ture elimination. The proposed IDS mechanism is simulated
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with the NSL-KDD, CIC-IDS2017, and AWID databases.
The approach showed an improvement of more than 4.77%
compared to traditional strategies. Dora and Lakshmi [16]
presented a DDOS detection scheme that uses a fusion of
CNN and optimized LSTM. Feature selection is carried out
using the closest position-based grey wolf optimization (CP-
GWO) technique, while CNN is used for feature learning.
LSTM is optimized with CP-GWO to enhance accuracy
by optimizing the neurons. Although the proposed DDoS
detection model showed enhanced accuracy compared to
conventional schemes, the study failed to discuss the time
consumption of the proposed method. Kanna and Santhi [17]
proposed a model called OCNN-HMLSTM, which integrates
optimized CNN (OCNN) to extract spatial features which
used lion swarm optimization (LSO) to tune hyperparame-
ters and a hierarchical multi-scale LSTM (HMLSTM) that
effectively handles temporal attributes and classifies net-
work packets. This system is effective for identifying threats
because it can automatically interpret spatial-temporal fea-
tures. However, the use of deep learning methods results
in a complex model that requires a long training duration
(30,665 s) and consumes significant resources. Authors plan
to explore feature selection methods in the future. Kim and
Pak [18] presented a real-time intrusion detection approach
that combines deferred decision and hybrid classification
techniques. A packet- and session-based feature were fused
to create a hybrid ML model to achieve intrusion detection
without delay. However, due to the complex nature of the
proposed approach, it may only be suitable for high-level
networks.

Dwivedi et al. [19] suggested an approach for feature selec-
tion using ensemble feature selection (EFS) and grasshopper
optimization algorithm (GOA) to enhance the performance
of the support vector machine (SVM) classifier. The EFS
method was used to rank the features, and GOA was
employed to select the most relevant features. The approach
showed significant improvement in the DR while reducing
the FAR for the NSL-KDD and KDD Cup 99 datasets.
Ahmet Ali Suzen [20] presented a hybrid deep belief network
(DBN) to detect intrusions in network traffic. The DBN
is updated with contrastive divergence. The proposed DBN
model achieved 99.72% accuracy in classification using a
dataset produced by ICS. Sajith and Nagarajan [21] intro-
duced an IDS that employs deep learning and a metaheuristic
algorithm. The feature selection process is performed with
particle swarm optimization (PSO), while the classification
is executed with a DBN model. The proposed approach
is tested on the DARP 1999 dataset, and the results show
that it outperforms conventional methods with an accuracy
of 96.5%. Sreelatha et al. [22] developed a cloud-based
IDS that efficiently selects relevant features from the intru-
sion dataset using the sandpiper optimization algorithm
(SOA). The EEDTL technique is then utilized to classify
samples using the selected features. The EEDTL approach
uses a pre-trained network, AlexNet, to effectively config-

ure the convolution layer features. The network weights are
updated using the extended equilibrium optimizer (EEO).
The proposed approach is tested using the UNSW-NB15 and
NSL-KDD datasets. Liu et al. [23] presented a deep learning
approach for intrusion detection that is based on multi-task
learning. First, the authors visually analyzed the datasets to
study the imbalanced distribution and clustering features of
each attack. Then, they developed a framework to tackle the
class imbalance issue. The auto-encoder-based contrastive
learning, supervised learning-based clustering model, and
MLP-based classifier are combined to develop a single frame-
work to detect the intrusion. The focal loss is used to solve the
problem of imbalanced binary classification. The suggested
methodologywas evaluated using the NSL-KDD, AWID, and
Bot-IoT datasets. Moizuddin and Jose [24] introduced a new
approach to detecting intrusions in the network by proposing
a generalized mean grey wolf algorithm (GWGWO) and an
ElasticNet contractive autoencoder (ECAE). In this approach,
feature selection is carried out using GWGWO, which selects
the most important features from the given dataset. The
selected features are then trained using stacked ECAE. The
classifier model performed both binary and multi-class clas-
sification with an accuracy of 99% on the NSL-KDD and
BoT-IoT datasets. Hsu et al. [25] suggested an IDS that uses
a combination of LSTM and CNN. The proposal employed
deep learning models to solve the shortcomings of ML-based
approaches in IDS. The proposed system uses CNN to extract
relevant features and LSTM for classification. The system
was simulated using NSL-KDD datasets, and it outperformed
other conventional works. Ghosh et al. [26] proposed a
method for intrusion detection in cloud environments using
the sage-grouse mating algorithm (SGM). SGM is utilized for
feature selection and to reduce redundant data. The proposal
was tested on two datasets, NSLKDD and Kyoto2006+, and
the performance of the algorithm was evaluated using ML
classifiers such as neural networks (NN), KNN, Bagging, DT,
and RF to classify the attack type.

Qazi et al. [27] suggested a DL-based IDS that uses a
combination of the stacked non-symmetric deep autoencoder
as well as the SVM for classification. The proposed approach
was verified using the KDD Cup 99 dataset and showed
improved accuracy compared to traditional approaches.
Gupta et al. [28] presented a hybrid IDS that combines
optimization techniques and DL to identify intrusions. The
hybrid chicken swarm genetic algorithm (HCSGA) and min
k-means algorithm perform feature selection and clustering.
The proposed IDS then classifies the network traffic as either
attack or non-attack using a deep learning hybrid neural
network algorithm (DLHNN). The DLHNN is an enhanced
version of the ANN, which is known to suffer from issues
related to backpropagation, leading to longer training times.
To address this issue, the levy-flight centered crow search
algorithm (LF-CSA) is combined with the ANN to opti-
mize the network weights and avoid the backpropagation
problem. The experimental results showed that the proposal
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achieved a high accuracy of 99.52% and a low training time
of only 362 seconds on the NSL-KDD dataset. Balamuru-
gan et al. [29] developed an IDS that incorporates game
theory (GT) and a deep neural network (DNN). The GT
is integrated into the DNN network to select optimal solu-
tions and improve the classification performance of DNN.
The CIC IDS 2017 dataset was used to assess the proposed
system, which demonstrated higher accuracy, precision, and
detection rate than conventional strategies. Du et al. [30]
designed a cloud-fog-IDS based on SVM. To tackle the
higher dimensionality of the dataset, the principal component
analysis (PCA) technique is employed to reduce its dimen-
sions. Additionally, PSO is utilized to optimize the SVM for
training purposes. The proposed IDS scheme was verified
with the KDD CUP 99 dataset, achieved better performance,
and addressed the issues of storage and calculation overhead.
Rehman et al. [31] focused on detecting DDOS attacks using
gated recurrent units (GRU). To evaluate the effectiveness of
the proposed IDS scheme, the CICDDoS2019 dataset was
used. The research employed different classifiers such as
GRU, recurrent neural networks (RNN), naive bayes (NB),
and sequential minimal optimization (SMO). The results indi-
cated that the GRU algorithm exceeded all other classifiers,
achieving the highest accuracy. Wei et al. [32] introduced a
hybrid model for detecting DDOS attacks, which involves
using an autoencoder and a multi-layer perceptron network
(AE-MLP). The autoencoder is used to select relevant fea-
tures, and the MLP network is used to classify attacks into
different DDOS attack types. The approach was estimated via
the CCIDDoS2019 dataset. The proposed scheme overcomes
the issues of performance overhead and bias caused by the
massive volume of datasets.

Patil et al. [33] proposed a blueprint for a hypervisor-level
distributed network security (HLDNS) system. This system
is integrated into each processing server within a cloud-
based settings. A dedicated server, tasked with intrusion
detection, monitors network activities between both the inter-
nal and external networks linked to the underlying virtual
machines (VMs). By employing a combination of rule-based
and misuse-based detection techniques, the model is capable
of identifying both known and unknown attacks. Moreover,
they implemented misuse-based detection prior to rule detec-
tion, effectively reducing the overall computational costs as
the network data only needed to be examined for zero-day
threats. To identify useful features from the cloud net-
work traffic, they enhanced the BBA by introducing two
new fitness functions. The features engineered through this
method were subsequently utilized in the RF model for
intrusion detection. Finally, the misuse (signature) database
was updated using attack data gathered from several servers.
Bakro et al. [34] offered an effective IDS that incorpo-
rates a feature selection concept comprised of IG, CS, and
PSO to select meaningful features. Additionally, the system
addresses data imbalance issues using SMOTE and employs a
random forest for classification. This approach was tested on
the UNSW-NB15 and Kyoto datasets. Amerah [35] proposed

a network intrusion detection and prevention system (NIDPS)
framework, which commences with the normalization of the
dataset, using the standard deviation and mean of feature
columns. Subsequently, an improved salp swarm algorithm
(ISSA) is utilized for automated feature selection. The
selected features are then subjected to the SMOTE–Tomek
method of over-sampling and under-sampling for class bal-
ancing. Four ML classifiers, namely, RF, Extra Tree, DT,
and gradient descent boost, are employed, with the results
indicating that RF outperforms the others. The proposal was
evaluated using the unbalanced UNSW-NB15 dataset for
binary and multi-class classification of network attacks.

After reviewing previous research and examining
Tables 10, 11, and 12, we discovered that many studies used
metaheuristic-inspired algorithms to select features and/or
optimize classifiers, while others utilized alternative meth-
ods like a filter or wrapper methods for feature selection.
Most previous studies utilized tree-based classifiers, such
as XGBoost and RF. They also used neural network (NN)-
based classifiers, which include models from both ML-NN
like FLN and ELM, and DL-NN such as LSTM. These often
outperform other models. However, due to the structure of
NN models, they consume extra resources. Therefore, tree-
based classifiers are considered superior in many scenarios.
Additionally, certain approaches had constraints, such as
inadequate data processing and feature handling, neglect-
ing to address data imbalances, or using small or outdated
datasets. Also, some methodologies were complex and their
results were difficult to interpret.

To design an effective intrusion detection system, metic-
ulous preparation of the dataset is crucial. In this respect,
we propose addressing data imbalance using a combination
of ADASYN and RUS, followed by the application of fea-
ture selection techniques to reduce dataset size and enhance
performance. We employ bio-inspired algorithms, which are
instrumental in selecting the optimal set of features, and
have found commendable results using these methods. For
classification, we have found that tree-based models perform
exceptionally well; consequently, we have used the RFmodel
due to its numerous advantages. Furthermore, we utilize the
most recent datasets, which cover a wide range of significant
potential zero-day attacks, to evaluate the performance of our
system.

III. METHODOLOGY
Before we can implement an IDS in a cloud environment,
it is paramount to preprocess the datasets. These datasets
encapsulate a variety of attacks as well as a vast amount
of irrelevant information. Therefore, it is necessary to iden-
tify and isolate the most pertinent features for the training
process. The selected features will then be used to train a
classifier capable of differentiating between normal packets
and various forms of attacks. Consequently, in this section,
we introduce our proposed IDS which consists of four basic
phases: data preprocessing, feature selection utilizing the
GOA-GA, addressing the imbalance in the training set, and
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implementing the RF model for result generation. Each step
will be discussed in detail in the subsequent sections. Figure 1
provides an overview of our proposed approach.

A. DATASETS
The creation of an exhaustive dataset is an expensive under-
taking, necessitating significant financial investment and
advanced knowledge. Thus, a key challenge faced by IDSs
involves the methodical development of a comprehensive,
state-of-the-art dataset. This dataset must encapsulate a wide
array of contemporary threats categories and accurately
reflect the real-world settings. Datasets such as UNSW-
NB15, CIC-DDoS2019, and CICBell DNS EXF 2021, which
are acknowledged as labeled network traffic datasets, are suit-
able for evaluating intrusion detection systems. The statistical
information pertaining to the datasets utilized in this work is
presented in Table 1.

TABLE 1. Statistics of utilized intrusion datasets.

To bolster the research process, it is imperative that the
dataset undergoes regular updates to incorporate the most up-
to-date prevalent attack scenarios. While the three previously
referenced datasets in the study may not include all potential
cases in network traffic, they are acknowledged to encompass
the most critical recent attack types. A concise review of each
of these datasets is provided below:

1) UNSW-NB15
The dataset created by Moustafa and his team [39]. It was
designed to handle the challenges inherent in the KDD-
Cup 99 and NSLKDD datasets [40]. These two datasets are
widely used in the field of intrusion detection research as
benchmarks for evaluating novel systems. Compiling this
dataset was an intensive process, requiring a diverse range of
tools and a substantial time investment of 31 hours to accu-
mulate 100 GB of data, which encompasses approximately
2.5 million samples [41]. The dataset comprises 49 features,
gathered utilizing Bro-IDS, Argus tools, and 12 innovative
algorithms. Every attribute, along with its associated data
type, is displayed in Table 21. Of these features, the majority
(43) are numerical, with the remaining six being nominal.
These attributes are organized into five distinct groups: basic,
time, flow, and content features as well as additional features.
Within the dataset, there are two unique features functioning
as labels: ‘‘attack_cat’’ and ‘‘label’’. ‘‘Attack_cat’’ encom-
passes ten classes, including ‘dos’, ‘fuzzers’, ‘exploits’,
‘generic’, ‘reconnaissance’, ‘backdoor’, ‘analysis’, ‘worms’,
‘shellcode’, and ‘normal’. While the ‘‘label’’ feature differ-
entiates between an attack (1) and normal traffic (0). In total,

the dataset distinguishes between nine types of attacks, which
represent a significant variety of threats that any networked
system may encounter, along with ‘normal’ traffic indicating
the absence of an attack. In this study, our main focus is on
the ‘‘attack_cat’’ feature, which serves as the target variable in
our multi-class classification scenario. Due to the substantial
size of the dataset, only a selected subset is utilized for
evaluation [42]. Table 2 provides a detailed division of the
number of instances utilized for each category during training
and testing, alongwith the new training set which is generated
after balancing.

TABLE 2. Subset of the UNSW-NB15 dataset utilized in the study.

2) CIC-DDoS2019
DDoS attack is a well-known threat to network security.
This type of attack seeks to overload target networks with
malicious traffic until the network’s available bandwidth is
fully consumed. This excessive traffic can lead to a signifi-
cant decrease in system performance and, in extreme cases,
precipitate a complete system crash. The CICDDoS2019
dataset, developed by Sharafaldin et al. [43] at the Canadian
Institute for Cybersecurity, was created specifically to train
models for the detection of various types of DDoS attacks.
The CICDDoS2019 dataset remedies the limitations found
in other datasets. It encompasses both benign data and the
most recent common DDoS attacks, which can be conducted
at the application layer through TCP/UDP-based protocols,
thus accurately reflecting authentic real-world data. These
attacks can be classified into two main categories: reflection-
based and exploitation-based [44]. Both categories aim to
obscure the attacker’s identity and direct traffic to reflector
servers, utilizing the target’s IP address as the source IP.
This strategy results in the inundation of the target system
with an overwhelming volume of response packets. The
reflection-based category includes such attacks as TFTP,
LDAP, SNMP, SSDP, NETBIOS, MSSQL, DNS, and NTP.
In contrast, the exploitation-based category is composed of
SYN, UDP, UDP-Lag, and WebDDoS. This brings the total
to twelve distinct classes of attacks, characterized by 88 fea-
tures [45]. Each of these attacks is explained in reference [46].
Table 22 presents every attribute alongside its associated
data type, highlighting that of the total attributes, 82 are
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FIGURE 1. The block diagram of the proposed IDS based on a hybrid of bio-inspired algorithms.

digital, and 6 are categorical. The ‘Label’ attribute serves as
the target variable. Table 3 presents a detailed distribution
of the number of instances employed for each category during
the training and testing phases, in addition to showcasing the
new training set generated after the balancing process.

3) CIC BELL DNS EXF 2021
The Domain Name System (DNS) exfiltration is a technique
in which compromised devices transmit encoded data to an
attacker’s server via DNS request messages [47]. Thismethod
is frequently utilized to extract sensitive information from
target networks and to establish clandestine communication
channels [48]. Despite the implementation of firewalls to
scrutinize DNS traffic, adversaries often succeed in con-
veying encoded data to compromised servers under their
control. To develop our detectionmechanism for such attacks,
we utilized the most recent dataset, CIC Bell DNS EXF
2021, which encompasses a significant number of instances
of these attacks [49]. This will serve to enhance the precision

and effectiveness of our proposal. This dataset, released by
Mahdavifar et al. [50], comprises 270.8 MB of DNS traffic,
generated through the exfiltration of various file types of
diverse sizes. It incorporates 42 features, extracted from the
DNS packets, amounting to approximately 1,019,318 sam-
ples. Out of these 42 features, 15 are stateless, 26 are stateful,
and ‘timestamp’ feature. Stateless features, extracted from
individual DNS query packets, are independent of the tempo-
ral characteristics of queried domains or the DNS activity of
hosts, thus minimizing computational strain during real-time
operations. In contrast, stateful features consider a sequence
of queries within a specific time window, imposing a greater
computational burden on the detection system. However, the
advantage of stateful detection lies in its capacity to scrutinize
DNS logs over an extended timeframe, thus equipping it
to handle low-intensity and prolonged DNS attacks. In our
study, for a more robust and comprehensive defence against
data exfiltration over DNS,we employ a combination of state-
less and stateful features. This hybrid approach can facilitate
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swift threat detection (due to stateless features) while also
empowering the system to identify more complex, slow-
developing anomalies (attributable to stateful features). The
samples are categorized into four classes: ‘heavy’ and ‘light’
attacks, as well as ‘heavy’ and ‘light’ benign [38]. In relation
to these classes, we have introduced an additional feature,
‘label.’ This feature serves as the target variable, representing
the type of instance, bringing the total count of attributes
to 43. Each ‘heavy’ and ‘light’ attack category encompasses
six file types, namely, compressed, audio, image,.exe, video,
and text. The features and their corresponding data types are
elucidated in Table 23. Among the 43 features, 11 are nominal
and 32 are numerical. Table 4 offers a comprehensive delin-
eation of the number of samples utilized for each class during
both the training and testing phases. Additionally, it reveals
the new training set derived from the balancing process.

TABLE 3. Subset of the CIC-DDoS2019 dataset utilized for evaluation.

TABLE 4. Subset of the used CIC Bell DNS EXF 2021 dataset.

B. DATA PREPROCESSING
The datasets encompass a wide array of nominal and digital
data, among others, including instances of noise, missing
values, and unusable data formats. However, some data points
may display skewed or irregular values, potentially leading
to suboptimal results and negatively impacting the compre-
hension and performance of machine learning models. This
section delves into data pre-processing, an essential step for
preparing data for feature selection, given that machine learn-
ing algorithms require numerical and cleansed inputs. The
following steps are undertaken to achieve this:

1) EXPLORATORY DATA ANALYSIS (EDA)
It is a pivotal procedure enabling a thorough understanding
of key attributes of input data elements, such as instances
(rows) and features (columns), utilizing statistical summaries
and visualization methods based on Python libraries. This
process produces highly effective results by ensuring accurate
execution of subsequent data processing stages. Post EDA,
we receive a comprehensive overview of the features and
their data types. This process also aids in identifying missing
values, zeros, ‘inf,’ negative values, duplicate data, outliers,
and class imbalances, in addition to determining the total
sample count for each class within the datasets, among other
insights.

2) DATA CLEANING
It is the process of identifying and rectifying or removing
erroneous, incomplete, irrelevant, or missing data, such as
replacing missing or NaN values with the mean of the cor-
responding attribute. A significant portion of the effort is
dedicated to ensuring the input data is clean and free of errors,
as poor-quality data can result in biased outcomes, lower
accuracy, and higher error rates in a model [45].

3) FEATURE ENCODING
The input datasets comprise various columns with a mix of
numerical and categorical values. Feature encoding is the
process of converting non-numerical data into a numerical
format. Most features in this study are numerical, while
the rest are nominal. As machine learning models inter-
pret numerical inputs, it becomes necessary to convert these
categorical features into a machine-readable format. One-
hot encoding and label encoding are common methods for
this conversion, each with its own pros and cons. Although
one-hot encoding may provide superior performance, it sig-
nificantly increases the dimensionality of the features [51].
For this study, label encoding was chosen due to its satis-
factory results [6]. Integrating one-hot encoding with label
encoding would amplify the feature count and enlarge the
dataset, resulting in higher resource usage. Since the objective
is to reduce the number of features, utilizing label encod-
ing alone—assigning a unique number, commencing from 0,
to each unique text of a feature—proves to be more efficient.

4) FEATURE SCALING
The values of numerous features in the datasets span different
units and magnitudes. To enhance the efficiency of machine
learning methods, it’s advantageous to scale input attribute
values to a uniform range. Consequently, prior to model train-
ing, we normalize and convert all attribute values to fit within
a specified range. This crucial step reduces any bias due to
features with larger values. Significant techniques for feature
scaling encompass standardization (commonly referred to as
the Z-score method) and normalization (also referred to as
min-max scaling), which frequently yield satisfactory find-
ings [41]. Therefore in this study, we opted for the min-max
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method, elaborated as below:

B =
B−Bmin

Bmax − Bmin
(1)

In this context, Bmin and Bmax represent the minimum and
maximum values of the feature B, respectively. In subsequent
step C, the ideal attributes will be determined from the pre-
processed dataset.

C. FEATURE SELECTION
The objective of feature selection is to enhance classifi-
cation performance by selecting the most optimal set of
features [52]. A trimmed dataset provides faster training
times and greater accuracy. Accordingly, we propose utilizing
a fitness function that fulfills objectives like maximizing clas-
sification accuracy and minimizing features. In this context,
we will briefly discuss our feature selection approach using
the Genetic-Grasshopper optimization algorithm.

F = max
(
Acc+wf

(
1 −

Fs
Ft

))
(2)

where Acc represents the accuracy, wf is the weight factor, Fs
is the length of selected features, and Ft is the total number
of features. The value of the weight factor is set close to one
means that both goals—accuracy enhancement and feature
minimization—are considered equally important [53].

1) GRASSHOPPER OPTIMIZATION ALGORITHM (GOA)
GOA is a bio-inspired algorithm that emulates the foraging
behaviour of grasshopper swarms. Grasshoppers, notorious
for their potential to inflict severe damage to crops, undergo a
life cycle comprising distinct stages: egg, nymph, and adult.
From eggs emerge nymphs, which are small, wingless, and
capable of only slow, short-distance movement, characterized
by a small step size. These nymphs gradually metamorphose
into adult grasshoppers, capable of traversing long distances.
These two movements, corresponding to the nymph and
adult phases, respectively, represent exploitation and explo-
ration [54]. The mathematical model of the GOA is expressed
as follows:

Xi = Si + Gi +Wi (3)

where Xi signifies the position of the i-th grasshopper, Si
denotes the grasshopper’s social interaction,Gi stands for the
gravity force on the i-th grasshopper, and Wi represents the
wind advection. The social interaction is given as follows:

Si =

∑M
j=1
j̸=i

s
(
eij
)
êij (4)

In the provided equation, M indicates the count of grasshop-
pers, s denotes the social force, while eij represents the
Euclidean distance between the i-th and j-th grasshopper.
Where eij =

∣∣Xj − Xi
∣∣ and êij =

Xj−Xi
eij

. The function Gi is
defined as follows:

Gi = −gêg (5)

where g is the gravitational constant and êg is the unity vector
towards the center of earth. The functionWi is given as:

Wi = dûw (6)

In the aforementioned equation, d represents the drift con-
stant, and ûw is the unity vector directed towards the wind.
The grasshoppers’ position is defined as follows:

Xi =

∑M
j=1
j̸=i

s
(∣∣Xj − Xi

∣∣) Xj − Xi
eij

− gêg + dûw (7)

The equation is modified to address the optimization prob-
lem as illustrated in the following equation:

Xdi = c

(∑M
j=1
j̸=i

c
ud − ld

2
s
(∣∣∣Xdj − Xdi

∣∣∣) Xj − Xi
eij

)
+ Ôd

(8)

where ud and ld are the upper and lower limits of the d-
th dimension, respectively, while Ôd denotes the optimal
solution identified thus far. The variable c signifies as the
inertia weight and attraction zone. The value of c is outlined
below:

c = cmax−t
cmax − cmin

T
(9)

where cmax and cmin denote the maximum and minimum
values respectively, t represents the current iteration, and T
signifies the maximum number of iterations.

2) GENETIC ALGORITHM (GA)
GA is a bio-inspired optimization approach that operates
based on principles of natural evolution. The GA generates
solutions through an optimization process involving genetic
operators such as selection, mutation, and crossover. Initially,
a random population of chromosomes is generated, with a
fitness value calculated for each chromosome [55]. A new
population is then formed through the processes of selection,
crossover, and mutation. The selection mechanism involves
choosing two parent chromosomes. The crossover opera-
tion produces new offspring that inherit genetic attributes
from these selected parents. Lastly, the mutation mechanism
involves introducingminor changes in the new offspring [56].
The subsequent steps of Algorithm 1 outline the GA opti-
mization process:

Algorithm 1 GA
Step 1: The initial population of the chromosomes is gener-
ated randomly
Step 2: The fitness of each chromosome is evaluated
Step 3: The parents are selected for the mating process.
Step 4: With the crossover and mutation operation new off-
spring are generated.
Step 5: The new generation replaces the current ones.
Step 6: Go to Step 2 until the termination is completed.
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3) HYBRID GOA-GA
The proposed hybrid GOA-GA algorithm integrates the
unique characteristics of both the GOA and GA algorithms.
This approach leverages the exploration capabilities of the
GOA and the exploitation capacity of the GA. The GA oper-
ation prevents the GOA from falling into local optima [57].
The details of the proposed algorithm are explained as fol-
lows.

Step 1: Initialization
The positions of the grasshoppers are randomly allocated

in a d-dimensional environment. The fitness function of each
agent is calculated according to equation (2). The position
of the best initial grasshopper is then selected as the target
position.

Step 2: Search process by GOA
The position of each grasshopper is updated in accordance

with equation (8). Subsequently, the fitness of each grasshop-
per candidate is evaluated. The target position, denoted as
O, is identified as the most optimal grasshopper position
obtained thus far.

Step 3: Selection
In this step, tournament selection (TS) is utilized to choose

solutions from the population. With TS, optimal solutions
are selected based on a probability assigned to each solution.
The chosen candidates from this process are subsequently
designated as parents. This TS process is iteratively repeated
to ensure the selected candidates are frequently considered.

Crossover:
Following the selection of parents through TS, crossover

is executed. An arithmetic crossover or binary crossover is
applied to the chromosomes selected with TS. In the case of
arithmetic crossover, combination is handled linearly. How-
ever, when arithmetic crossover is inapplicable to binary
genes, uniform crossover is employed instead.

Algorithm 2 GOA-GA
1: Initialize random population of grasshoppers Xi (i = 1, 2, . . . . . . ,M)

2: Initialize cmax , cmin, T , and set t = 0
3: Evaluate the fitness of each search agent using Equation (2)
4: Identify the best search agent and set its position as O
WHILE t < T DO
5: Update c using Equation (9)
FOR i = 1 TO M DO
6: Update position of the current search agent using Equation (8)
7: Evaluate its fitness using Equation (2)
8: If the new solution is better, update O
9: Select parents for crossover from current population using Tournament

Selection
10: Apply crossover and mutation on selected parents
11: Evaluate the fitness of offspring
12: If offspring solution is better than the parent, replace the parent with

offspring
END FOR

13: Update the best global solution if a better solution is found during this
iteration

14: Increment t by 1
END WHILE
15: RETURN O as the optimal solution (features)

Mutation:
In this approach, Gaussian mutation is employed where a

randomly distributed Gaussian unit is added to the selected
gene. The new gene value is clipped if the value of the
Gaussian mutation falls outside of the user-specified lower
or upper bounds for that gene.

Step 4: Updation
The agents, or candidates obtained thus far, are evaluated

using the fitness function. The position of the best agent is
then updated to serve as the new target position.

Step 5: Termination
The proposed algorithm is terminated once the maximum

number of generations has been reached. The optimal solu-
tion is selected from the final target position.

4) PSEUDOCODE FOR THE GOA-GA METHODOLOGY
The following is Algorithm 2, which presents the pseudocode
for the proposal:

5) COMPUTATIONAL COMPLEXITY OF OUR FEATURE
SELECTION APPROACH
To calculate the computational complexity of our approach,
we analyze each step of Algorithm 2 and determine how the
computational effort scales with the size of the input. In our
case, the key factors are the number of grasshoppers (search
agents) M , the number of dimensions (features) d for each
grasshopper, and the number of iterations T . Let’s break it
down:

Computational Complexity of Our Feature Selection Approach (GOA-
GA)
1- Initialization (Steps 1-4):

Grasshoppers Initialization:O(Md).This phase accounts for initializingM
grasshoppers, each with d dimensions, which represents a linear scaling with
the size of the population and the dimensionality of the problem.

Constants Initialization: O(1). The setup of fixed parameters like cmax ,
cmin, and T .

Step 3: O(Mf ) per iteration, where f is the complexity of the fitness
function.

Step 4: O(M ). as it involves a linear scan to identify the best agent.
2- Main Loop (Step 5 and WHILE loop):

Update of c: O(1) per iteration. A simple calculation that’s independent of
M or d .

Iterations Count: The loop runs for T iterations, contributing to the overall
complexity.
3- Within Each Iteration (FOR loop Steps 6-12):

Position Update (Step 6): O(M2d). Each grasshopper’s position update
involves pairwise comparisons across dimensions, resulting in quadratic
complexity due to these comparisons between grasshoppers.

Fitness Evaluation (Step 7): O(Mf ) per iteration, where f is the complex-
ity of the fitness function. GA Operations (Steps 9-12): O(Mg) for all
grasshoppers per iteration, where g represents the collective complexity of
selection, crossover, and mutation.
4- End of Iteration (Steps 13-14):

Global Solution Update: O(d)
Incrementing t: O(1) per iteration.

5- Final Step (Step 15):
Returning the Optimal Solution: O(1).

Generally Computational Complexity:
Overall Complexity = O(T × (M2d +Mf +Mg))
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The overall complexity of our approach effectively encap-
sulates the impact of the main iterative loop, along with the
intricacies of fitness evaluation and genetic algorithm opera-
tions. This complexity is characterized by quadratic scaling
with respect to the number of grasshoppers M , primarily
due to the position update step. In our case, this complexity
is manageable, owing to the judiciously chosen small value
of M , which has produced acceptable results. Additionally,
there is linear scaling with the number of dimensions d , the
number of iterations T , and the complexities of both the
fitness function f and the GA operations g. This linear scaling
contributes to a more predictable and manageable increase
in computational requirements as the problem size grows,
suggesting that the algorithm can adapt to datasets of different
sizes and complexities, making it versatile. In our approach,
the principal determinants of computational complexity are
M , d , and T . Here, d signifies the number of features in the
dataset, a known and fixed quantity. We have chosen to set
M at 15 and T at 30, selections that have provided satisfac-
tory results in our experiments. This configuration strikes a
balance between performance efficiency and computational
manageability, thereby ensuring effective processing while
keeping the computational demands within feasible limits.

Determining the appropriate values for M and T is intrin-
sically linked to the nature of the dataset. The most effective
method to ascertain these values is through empirical testing.
Conducting experiments with varyingM and T values allows
for the observation of their impact on performance metrics.
Critical in this process is finding a balance where the number
of agents and iterations are sufficient to enable thorough
exploration and exploitation of the search space. However,
these values should not be so high as to cause excessive and
unjustified computational overhead. Inappropriate values for
M and T may increase the risk of converging to local optima,
hindering the discovery of more globally optimal solutions.
Furthermore, an unsuitable value forM , particularly in high-
dimensional spaces, could lead to overlooking potentially
superior solutions.

• Challenges:

-Computational Burden with LargeM :
The quadratic scaling of computational complexity with

the number of grasshoppers (M2d) in the position update
step can become a significant burden when M is large. This
leads to increased computation time, particularly for very
large datasets or an excessively high number of grasshoppers.
The efficiency may decline due to the quadratic compo-
nent of the complexity. Additionally, the scalability of our
approach is affected by this quadratic dependency on M .
As M increases, the computational load escalates, especially
in high-dimensional feature spaces.

- Risk of Premature Convergence or Stagnation:
Like many optimization algorithms, there is a risk of pre-

mature convergence or stagnation. This is particularly likely
if the balance between exploration and exploitation is not
effectively managed.

• Good Aspects:

-Efficiency and Scalability:
In the context of our datasets, optimal efficiency is

observed in the results. Our approach exhibits manageable
scalability, characterized by linear scaling with respect to
both d and T . Additionally, it effectively navigates the solu-
tion space due to a well-balanced exploration and exploitation
mechanism.

-Cloud-Based Systems:
In cloud-based environments, where scalable computa-

tional resources are plentiful, our approach can be used
effectively even for large datasets. The cloud infrastruc-
ture can accommodate the increased computational demands.
Parallel processing and distributed computing techniques,
applicable in cloud environments, can address the quadratic
complexity associated withM . Additionally, certain elements
of the algorithm, including the evaluation of fitness across
multiple grasshoppers and the execution of GA operations,
lend themselves to parallelization. This capability could lead
to a significant reduction in real-world execution times.

D. DATA SPLITTING
In this stage, each dataset is divided into two distinct parts
at a ratio of 75/25. The larger portion, constituting 75% of
the data, is used for training the model, while the remaining
25% is reserved for testing and verifying its performance.
This practice of splitting the data into training and testing
sets is a fundamental step in model validation. It ensures that
the model’s effectiveness is evaluated on previously unseen
data, providing a more accurate assessment of its real-world
performance. This process also aids in tuning the model’s
parameters and identifying potential overfitting, where a
model might excel with training data but perform poorly on
new, unseen data. Tables 2, 3, and 4 display the statistical
distribution of the training and testing sets for each class
within each dataset.

E. ADDRESSING THE IMBALANCE IN TRAINING DATA
Imbalanced datasets are a common challenge in various
real-world ML applications, including network intrusion
detection. The imbalance can undermine classifiers’ efficacy,
especially when handling minority threat categories within
highly imbalanced datasets. To overcome this challenge, two
prevalent techniques are employed: oversampling and under-
sampling [58].
Oversampling: The oversampling approach increases the

representation of minority classes either by replicating exist-
ing instances or by generating synthetic samples until all
classes have an equal count. The most significant advan-
tages of this strategy include the preservation of majority
class information, heightened sensitivity to theminority class,
and a more comprehensive training process, as the model
is trained on additional examples from the minority class.
However, it also poses challenges, including potential noise
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introduction and increased time and computational resources
required due to the enlargement of the dataset [59].
Undersampling: The undersampling method aligns the

majority class representation with the minority class by
reducing the instances of the majority classes. This strategy
is computationally efficient and maintains the information of
minority classes, but it risks losing valuable information and
diversity from the majority classes.
Trade-offs andOur Proposal:Balancing data can apprecia-

bly diminish bias, thereby enhancing classifier performance
and evaluation metrics, and allowing the model to general-
ize better from the training data to unseen data. However,
this process can incur trade-offs, such as the risk of under-
fitting or overfitting. Underfitting may lead to a model
that is too simplistic to capture the underlying patterns
in the data. Overfitting poses a significant challenge as it
results in exceptional performance on the training data but
poor generalization to new, unseen data [60]. In our pro-
posal, we amalgamated two methodologies—oversampling
and undersampling—to exploit their pros while mitigating
their cons. Specifically, we employed the ADASYN method,
an advanced version of the widely-used SMOTE technique,
to increase the samples for the minority class [61]. Simultane-
ously, we reduced the samples of the majority classes using
the RUS technique. Our goal was to optimize performance
without bias and with minimal computational cost, both of
which are critical considerations in real-time threat detection
within the context of networked systems, especially cloud
systems.

For the testing dataset, our balancing strategy diverges
from that of the training dataset. Our philosophy aligns with
a widely recognized ML axiom: the testing dataset should
mirror the real-life data distribution as closely as possible to
provide a precise assessment of the system’s real-world effi-
cacy. Therefore, we preserved the original proportions of the
classes in our testing dataset, mimicking those found in the
actual dataset used. Tables 2, 3, and 4 depict the quantity of
newly balanced training samples resulting from our combined
balancing approach. Algorithm 3 presented below offers a
concise pseudocode representation of our proposed balancing
approach.

F. CLASSIFICATION
Classifiers aim to categorize incoming packets as either mali-
cious or benign, a task that can be executed using DL and
ML methods. However, due to their complexity and high
resource demands, DL models may not be ideal for our sce-
nario. MLmodels, on the other hand, having ample capability
to handle our datasets, appear more fitting. Among various
ML models, such as SVM, DT, and others, our experiments
indicated that the tree-based model exhibits superior perfor-
mance, requiring less training and testing time compared to
other classifiers. Thus, we employed a random forest (RF)
classifier in our study, feeding it with the most beat feature
set selected.

Algorithm 3 Balancing Approach (ADASYN-RUS)
1. procedure Balance-Training-Dataset
2. input: An imbalanced training dataset
3. output: A balanced training dataset
4. Initialize balanced_training_dataset as an empty dataset
5. for each class in the imbalanced training_dataset do
6. if class is a minority class (Number of training Instances < 1000)
then
7. Apply ADASYN to the class such that the total instances in this
class become approximately 3000
8. Add the oversampled class data to balanced_training_dataset
9. else if class is a majority class (Number of training Instances >

100,000) then
10. Apply RUS to the class such that the new number of instances =

round(old training instances ∗ 0.8)
11. Add the undersampled class data to balanced_training_dataset
12. else
13. Add the class data to balanced_training_dataset unchanged
14. end if
15. end for
16. return balanced_training_dataset
17. end procedure

Random Forest (RF)
RF is a technique that falls under the category of ensemble

learning, a process that combinesmultiple decision trees (DT)
to enhance the overall predictive performance. A DT is a
supervised machine learning model used for both classifica-
tion and regression tasks. The possible decisions/outcomes
choices are presented in a structure resembling a tree, where
every node represents a feature or attribute, each branch
signifies a likely value of a feature, and each leaf indicates
a numerical value or class label [62]. The training set is used
to build the tree, and the purpose of developing this tree is
to construct a classifier that can reliably predict the target
variable while increasing information gain and decreasing
the nodes’ number [63]. To avert overfitting, the DT clas-
sifier autonomously selects the most valuable features for
tree construction and employs a pruning approach to remove
superfluous branches. Common kinds of DT include C4.5,
CART, and ID3 [42]. In some instances, a single tree may
not provide satisfactory performance; thus, techniques such
as RF and XGBoost, both consisting of multiple DTs, are
utilized [6]. Therefore, the structure of the RF model makes
it fit for addressing large datasets, and it also offers an assess-
ment of the most influential variables in the classification
process. Our research revealed that the RF method delivers
superior performance. Since this method integrates multiple
DTs, it produces a model that is both more robust and more
accurate.

G. EVALUATION CRITERIA
In this section, we shed light on the evaluative criteria
employed to measure the performance of our suggested
model. These criteria are formulated based on the confusion
matrix (CM), a two-dimensional grid that delineates actual
and predicted classes, as illustrated in Table 5 [62]:
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TABLE 5. The confusion matrix.

• TP: This refers to an intrusion scenario that has been
correctly identified as an attack.

• TN: This denotes a non-intrusive sample that is success-
fully classified as normal.

• FP: This refers to a normal instance that is incorrectly
classified as an attack.

• FN: This term pertains to an attack instance that is
erroneously identified as benign.

Accuracy (ACC): This metric denotes the proportion of
records that have been properly detected relative to the total
number of records, thereby indicating the model’s effective-
ness.

ACC =
TP + TN

TP + TN + FP + FN
(10)

Recall (R): This concept refers to the proportion of actual
attacks that were correctly predicted as such, out of the
entirety of actual attack instances. It is also known as sen-
sitivity (S), detection rate (DR), or true positive rate (TPR).

R =
TP

TP + FN
(11)

False Alarm Rate (FAR): Also known as the false positive
rate (FPR), this term signifies the proportion of samples
incorrectly identified as attacks relative to the total count of
actual normal samples.

FAR =
FP

FP + TN
(12)

Precision (P): This measure evaluates the proportion of
correctly predicted attacks out of the complete set of instances
identified as attacks.

P =
TP

TP + FP
(13)

F1-score (F): This is a metric used to evaluate a system’s
effectiveness by taking into account both its recall and preci-
sion, commonly referred to as the F1 measure.

F =
2

1
/
Precision+1

/
Recall

(14)

Missed Alarm Rate (MAR): Also referred to as the false
negative rate (FNR), this measure denotes the ratio of
instances mistakenly identified as normal in relation to the
entire pool of instances.

MAR =
FN

FN + TP
(15)

ACC, R, and FAR are essential metrics that characterize the
capabilities and effectiveness of any IDS. Alongside these,
we also consider the receiver operating characteristic (ROC)

curve. This curve is generated by comparing the model’s
false positive rate (FPR) and true positive rate (TPR) [64].
Although the ROC curve is traditionally used in the perfor-
mance assessment of binary classificationmodels [40], in this
context, we apply it to multi-class classification.

IV. EXPERIMENT AND RESULTS DISCUSSION
This section introduces, discusses, and compares the find-
ings of our proposition with those of preceding research
efforts. The experimental phase was carried out using Python
within the Google Colab Pro environment, which boasts
a robust 25 GB of RAM. Notably, during the execution,
a suite of libraries, including Sklearn and several others, were
employed.

Table 6 lists the parameters utilized in the classifiers for
this study. In this research, acceptable results were obtained
without adjusting the hyperparameters. However, by using
the grid search approach for hyperparameter optimization,
there is still room for these models to be improved in the
future. In order to find the best possible hyperparameters, this
approach thoroughly investigates every potential parameter
combination. In contrast, the random search strategy picks
values at random and might not always produce the best
results.

TABLE 6. Values of parameters used in the classifiers.

Table 7 presents the performance criteria of our proposal
for multi-class classification across four scenarios: without
feature selection approach, GA, GOA, and the combined
GOA-GA. The values provided include accuracy and the
weighted averages of recall, precision, and F1-measure,
as well as the averages of FAR andMAR. Based on the results
in Table 7, we found that our hybrid strategy for feature selec-
tion, which combined both GOA-GA techniques, yielded
a highly meaningful feature set. The random forest classi-
fier, when provided with this ideal feature set, demonstrated
outstanding performance within an acceptable timeframe.
However, it’s essential to note that the effectiveness of the
proposed strategy in real-world scenarios remains uncertain.
This is because the evaluation was conducted in a lab setting
using specific datasets. Factors such as the structure of the
dataset and parameter values could influence the model’s
performance.

Table 7 shows the efficacy of our hybrid strategy com-
pared to each solo feature selection technique, all using the
random forest model. The findings show that in terms of
classification ACC, R, FAR, P, F, MAR, and processing time,
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our proposed method consistently exceeds the standalone
approaches.We also note that reducing the number of features
and finding the optimal ones not only improves performance
but also reduced processing time. The numbers of the fea-
tures that each technique picked are listed in the ‘‘Selected
Features’’ column. Tables 21, 22, and 23 provide the precise
names of each feature that was chosen.

Due to the complexities of high-dimensional data and
the inherent drawbacks of any solitary feature selection
technique, a hybrid approach to feature selection has been
proposed. Complex patterns are frequently present in high-
dimensional datasets, which may make it difficult for a single
feature selection approach to recognise them correctly. Each
technique has advantages and disadvantages of its own. Our
hybrid approach seeks to integrate the advantages of two
metaheuristic algorithms: GA and GOA. By doing so, it suc-
cessfully circumvents the constraints intrinsic to each. This
strategy makes use of the GA’s potential for exploitation and
the GOA’s exploratory capabilities. The GA operation keeps
the GOA from getting trapped in a local optimum scenario.
We have found that employing this hybrid method enhances
the system’s overall performance by providing an ideal subset
of the original attributes. In which, Tables 10, 11, and 12
further underscore the robustness of our hybrid approach,
showcasing its superiority over prevailing methodologies.

The performance of many ML and DL algorithms, includ-
ing SVM, LR, FLN, LSTM, AlexNet, DNN, DBN, DT,
XGBoost, and RF, is compared in Table 8. This comparison
takes into account important assessment criteria, including
ACC, R, FAR, andMAR, along with both training and testing
times. Please note that Table 6 contains detailed information
about the parameters employed by these classifiers. Using the
DateTime library, we were able to determine the timepoints
for the beginning and finish of the training and testing stages.

Table 8 demonstrates the improved performance of the RF
model compared to other models. Upon investigation, we dis-
covered that tree-based models outperform neural network
(NN) models and other types in metrics such as ACC, R,
FAR, and MAR. Moreover, tree models have the advantage
of shorter processing times. It’s noteworthy that, although
NN models required considerably more processing time than
other models, they still surpassed SVM and LR in various
aspects. One avenue for enhancing the performance of neural
network classifiers, such as FNN, LSTM,AlexNet, DNN, and
DBN is to use optimal features derived from the GOA-GA
algorithm. This can help fine-tune and optimize the weights
of these classifiers. To further optimize the performance
of LSTM, AlexNet, DNN, and DBN adjustments to their
architecture can be made, including modifying the number
of hidden layers, the density of connections, the choice of
activation functions, and the number of epochs, among others.

The accuracy and loss of our proposed model during both
the training and validation phases are illustrated in Figures 2,
4, and 6, which represent the performance without utilizing
our feature selection approach. Conversely, Figures 3, 5,
and 7 demonstrate the results following the application of our

feature selection methodology (GOA-GA). These metrics are
influenced by the number of trees used to form the random
forest model. Conversely, for neural network classifiers, such
values are often defined by the number of epochs.

FIGURE 2. Accuracy and loss metrics - UNSW-NB15 (48 Features).

FIGURE 3. Accuracy and loss metrics - UNSW-NB15 (25 Features).

FIGURE 4. Accuracy and loss metrics - CIC-DDoS 2019 (87 Features).

FIGURE 5. Accuracy and loss metrics - CIC-DDoS 2019 (40 Features).

Figure 2 depicts the model achieving its highest accuracy
of 97.05% and its lowest loss of 0.127% at the 35th tree.
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TABLE 7. Findings for each selection method and our suggested hybrid approach.

FIGURE 6. Accuracy and loss metrics - CIC Bell DNS EXF 2021 (42
Features).

FIGURE 7. Accuracy and loss metrics - CIC Bell DNS EXF 2021 (17
Features).

The training accuracy curve, as elaborated in Figure 2a,
initially ascends from 98.00% to 98.71% before stabilizing.
Concurrently, the validation accuracy starts at 96.42% and
reaches its peak of 97.05% at the 35th tree. This results in

a disparity of 1.66% between the peak training and validation
accuracies. Figure 2b illustrates that the training loss com-
mences at 0.43% and gradually decreases to 0.033% before
achieving stability. In contrast, the validation loss starts at
1.12% and diminishes to its lowest value of 0.127% by the
35th tree, at which point it also stabilizes. Consequently, this
leads to a 0.094% discrepancy between the lowest training
and validation losses.

Meanwhile, as depicted in Figure 3, the model’s accuracy
peaks at 98.54% with its smallest loss at 0.041% in the
35th tree. The training accuracy curve is detailed further in
Figure 3a, where it rises from 98.49% to 99.01% before sta-
bilizing. Meantime, the validation accuracy begins at 97.63%
and reaches its maximum of 98.54% with the 35th tree.
Consequently, there is a 0.47% variation between the maxima
of training and validation accuracies.

In Figure 3b, the training loss begins at 0.32% and eventu-
ally drops to 0.027% before stabilizing. The validation loss,
in contrast, starts off at 0.43% and drops to its lowest value
of 0.041% by the 35th tree, in which it also stabilizes. As a
result, there is a 0.014% discrepancy between the lowest
training and validation losses.

In a similar vein, Figure 4 illustrates the model achieving
its maximum accuracy of 99.23% and its minimal loss of
0.072% at the 35th tree. Figure 4a presents an overview of
the accuracy trends. Here, the training accuracy initiates at
99.64%, gradually increases to 99.85%, and subsequently
stabilizes. In parallel, the validation accuracy commences at
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TABLE 8. Comparison of our proposed solution using RF and other
classifiers.

98.75% and peaks at 99.23% at the 35th tree, resulting in a
0.62% disparity between the highest points of training and
validation accuracies. Figure 4b, conversely, demonstrates the
training loss divergence pattern, beginning at 0.078% and
progressively declining to 0.009% before reaching stability.
Similarly, the validation loss starts at 0.386% and diminishes
to its lowest value of 0.072% at the 35th tree, where it also
stabilizes. Consequently, there is a 0.063 difference between
the lowest points of training and validation losses.

On the other hand, Figure 5 depicts the model’s 35th tree as
the point at which it reaches its maximum accuracy of 99.97%
and its minimal loss of 0.024%. An overview of the accuracy
measures is shown in Figure 5a. The training accuracy starts
at 97.76%, increases gradually to 100%, and then stabilizes.
Parallel to this, the validation accuracy begins at 97.18% and
peaks at 99.97% at the 35th tree. As a consequence, there
is a 0.03% difference between the highest points of training
and validation accuracy.Figure 5b, on the other hand, illus-
trates the training loss divergence pattern. It starts at 0.14%
and progressively decreases to 0.019%, where it stabilizes.
Therefore, the validity loss starts at 0.26% and drops till it
gets to its smallest value at the 35th tree, when it likewise

stabilises. As a result, there is a 0.005 difference between the
lowest values of the training and validation losses.

Similarly, Figure 6 reveals that at the model’s 35th tree,
it attains its highest accuracy of 88.52% and its minimal
loss of 0.453%. Figure 6a provides a summary of the accu-
racy trends. Here, the training accuracy initiates at 90.57%,
progressively advances to 91.71%, and eventually reaches
equilibrium. In tandem, the validation accuracy commences
at 88.46% and culminates at 88.52% at the 35th tree.
Consequently, this leads to a 3.19% variance between the
peak values of training and validation accuracy. Conversely,
Figure 6b displays the pattern of training loss reduction.
This pattern begins at 0.84% and methodically diminishes
to 0.223%, at which point it becomes steady. In a similar
manner, the validation loss starts at 1.87% and declines to its
lowest mark of 0.453 at the 35th tree, where it also stabilizes.
Thus, there is a 0.23 discrepancy between the minimal values
of the training and validation losses.

Correspondingly, Figure 7 demonstrates that at the model’s
35th tree, it achieves its highest accuracy of 92.28% and its
lowest loss of 0.209%. Figures 7a and 7b display the accuracy
and loss metrics, respectively. The methodology for their
interpretation follows the same approach as that applied to
the previously discussed figures. The discrepancies between
the training and validation accuracies at the 35th tree are 0.05,
and for the losses, they are 0.0016.

In summary, Tree No. 35 produced acceptable outcomes in
terms of both training and testing timeframes, as well as accu-
racy and loss rates, as illustrated in Table 8 and Figures 3, 5,
and 7. Although we could introduce more trees, the potential
increase in accuracy and decrease in loss rates might be slight
and not worth the extra computing effort.

It’s crucial to remember that when a technique is under-
fitting, both the training and validation performances are
subpar, and the losses are significant. This indicates that
the classifier hasn’t adequately grasped the training data set.
In contrast, overfitting results in very high training and signif-
icantly lower validation accuracies, coupled with a very low
training loss and much higher validation loss. This translates
to a large gap in the curve between training and validation.
Such a discrepancy is a sign that the classifier has mem-
orized the training data too well but is unable to perform
well on unseen data. The training and validation plots of a
well-trained classifier should demonstrate high accuracy and
low loss for both the training and validation sets. This means
that the classifier can produce precise predictions for new
data. However, if there’s a disparity between the two curves,
it suggests a performance difference between the training and
validation datasets.

Table 9 presents the variance between the peak values of
training and validation accuracy across the datasets, referred
to as ‘model accuracy’, and the difference between the mini-
mal points of training and validation loss, denoted as ‘model
loss’. Additionally, it includes the accuracy and loss values
of validation. These values are extrapolated from the data
depicted in Figures 2-7, specifically at Tree No. 35.
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TABLE 9. Accuracy and loss metrics across the datasets before and after
applying feature selection.

Table 9 illustrates that the feature selection methodology
not only reduces processing time and enhances accuracy,
along with other evaluation metrics (as indicated in Table 8),
but also minimizes overfitting. This is evidenced by the
decreased variance between the training and validation accu-
racies, as well as between the training and validation losses.
Thus, our approach has demonstrated robust training and the
capability to make precise predictions on new data. It showed
superior performance on the CIC-DDoS 2019 dataset com-
pared to the other datasets.

Nevertheless, as evident from Figures 3, 5, and 7, and
in consideration of the information previously provided, our
model shows very little to negligible overfitting, especially
with the UNSW-NB15 dataset. Future work could address
this issue by either employing a more effective feature selec-
tion method or using a different classifier with optimized
hyperparameter tuning.

In Tables 10, 11, and 12, we evaluate the performance
of our suggestion in comparison with previously published
works. These tables demonstrate that the proposed model
surpasses other methodologies, especially in terms of ACC,
R, and FAR. This underscores the success of our feature selec-
tion methodology. Adopting feature selection approaches has
significantly enhanced performance metrics. We used three
benchmark public datasets, which encompass the most preva-
lent current threats, to evaluate our approach. Although some
experiments in the literature utilize more advanced methods,
it’s essential to consider both interpretability and complexity
when choosing techniques for classification. In some cases,
simpler strategies may exceed more complicated ones. It’s
important to recognize that performance is influenced by a
variety of factors. These include the dataset’s size, its prepara-
tion, the approach to dimensionality reduction, the balance of
the training set, available computing power, classifier param-
eter settings, and more. It’s not just the complexity of the
classifier or methodology that matters. The recommended
methodology has yielded improved results, primarily due to
the efficiency of the feature selection section. This stage is
essential for developing any successful IDS.Moreover, robust
dataset preparation and addressing the imbalanced dataset
issue are crucial. The use of a potent classifier, such as the
RF, which has proven effective in different scenarios, further
enhances the system’s performance.

Table 10 indicates that, while our methodology outper-
forms most others, there are notable exceptions. Research
No. 3 excels in terms of R and F metrics. Proposal No. 8 sur-
passes in terms of the R and FAR measures. Studies No. 30
and 37 stand out for their performance in P. Approach No.
32 is superior across all metrics. Work No. 35 outperforms
in nearly all criteria except for FAR; notably, it utilized a
deep learning classifier that required ‘‘27,123.87’’ seconds
for processing. Study No. 36 shines in both ACC and FAR
metrics, and methodology No. 39 is particularly strong in
terms of ACC.

Table 11 demonstrates that although our technique out-
stands others most of the time, there are some notable
exceptions. In terms of the R and P metrics, Research
No. 6 stands out. Excluding its performance on the FAR,
Approach No. 10 excels across all parameters. Meanwhile,
Methodology No. 14 is especially strong in terms of ACC.

Table 12 displays satisfactory performance. It’s worth not-
ing that, unlike our work which incorporates both stateless
and stateful features, other studies do not. Additionally, very
few published studies test their methodologies using this
dataset.

We want to be clear that while we are not arguing that our
findings are themost impressive ever obtained, our study does
show enhanced performance in comparison to the publica-
tions referenced in our work for the majority of the metrics.
We would like to emphasize that, while the related works and
the approaches described in Tables 10, 11, and 12 present
novel methodologies, they do not introduce new or innovative
techniques. Nonetheless, these studies have contributed to
the growing body of knowledge in the IDS sector. Addition-
ally, several of the research papers mentioned used the RF
model, with varying degrees of effectiveness. However, the
disparities in performance can be attributed to the diverse
dataset preparation techniques, feature selection methods,
and so on. In contrast, our study employs a standard RF
classifier and integrates contemporary strategies for feature
selection. Still, we believe that the uniqueness of our research
exists in the meticulous combination of both GA and GOA
approaches to select the best attributes after the datasets have
been adequately processed and balanced. This clarification
should underscore the significance and applicability of our
approach.

The abbreviations found in Tables 10 and 11 are elaborated
in Table 20 with their full names. These full names are not
listed in the ‘Related Works’ section.

Figures 8, 9, and 10 display the confusion matrices for
our experiment. The confusion matrix is a commonly uti-
lized machine learning technique that thoroughly evaluates
a model’s performance based on a dataset. It also aids in
determining the classifier’s advantages and disadvantages.
For instance, the matrix can highlight the categories in which
the classifier excels and those where it encounters challenges.

Based on Figure 8, the assessment criteria for every
category in the UNSW-NB15 dataset are generated and pre-
sented in Table 13. The results highlight robust performance,
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TABLE 10. Comparative analysis of the proposed methodology and contemporary techniques using the UNSW-NB15 dataset.

particularly in terms of ACC, R, FAR, andMAR, demonstrat-
ing the efficacy of our methodology. Among all categories,
the ‘‘Worms’’, ‘‘Shellcode’’, ‘‘normal’’, and ‘‘generic’’ types
display the best findings across all measures.

Figure 11 and Tables 14 and 15 illustrate that, for the
various classes in the UNSW-NB15 dataset, our method sur-
passed traditional methods in terms of ACC, R, and FAR.
The majority of threats were accurately determined, with an
increase in R and a decrease in FAR.

Figure 11 compares the effectiveness of our proposal with
other studies in terms of ACC across all categories in the
UNSW-NB15 dataset. Our method outperformed the others
in all categories, with the exception of the ‘‘fuzzers’’ category
from the first study and the ‘‘normal’’ class from the second
study.

Table 14 demonstrates the success of our proposal in iden-
tifying several types of threats in the UNSW-NB15 dataset.

However, there were exceptions: the ‘‘dos’’ and ‘‘exploits’’
types in study No. [66], the ‘‘worms’’ category in article No.
[76], the ‘‘normal’’ class in works No. [34] and [86], and the
‘‘reconnaissance’’ and ‘‘analysis’’ classes in reference No.
[34].

Table 15 shows that our approach has an acceptable FAR.
Although the three references [34], [40], and [68] outper-
formed our approach in specific classes, overall, our approach
performed better on other metrics.

According to Figure 9, we have constructed Table 16which
presents the assessment norms for each type in the CIC-DDoS
2019 dataset. From this, we observed superior findings.

Table 17 compares the DR of our technique with those
of previously published methods. Our proposed method sur-
passed the performance in all categories of the CIC-DDoS
2019 dataset, with the exception of the ‘‘Syn’’ class in refer-
ence No. [88].
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TABLE 11. Comparative analysis of the suggested approach and state-of-the-art methodologies using the CIC-DDoS 2019 dataset.

TABLE 12. Comparative analysis of the proposed method and recent studies using the CIC Bell DNS EXF 2021 dataset.

FIGURE 8. The confusion matrix for the UNSW-NB15 dataset.

Table 18 depicts that our strategy has a satisfactory FAR.
However, the method described in reference [95] outper-
formed our approach in specific types. Nevertheless, our
system performed better on the ACC metric across all cat-
egories.

We have constructed Table 19 based on Figure 10, which
details the assessment norms for each category in the CIC

FIGURE 9. The confusion matrix for the CIC-DDoS 2019 dataset.

Bell DNS EXF 2021 dataset. The results obtained from this
were satisfactory.

To the best of our understanding, we couldn’t identify
any prior research that conducted a comparable analysis of
performance metrics for the CIC Bell DNS EXF 2021 dataset
to juxtapose against our findings.

The ROC curves for the multi-class classification are
shown in Figures 12, 13, and 14. They were drawn depending
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TABLE 13. Evaluation metrics across all categories in the UNSW-NB15
dataset.

FIGURE 10. The confusion matrix for the CIC Bell DNS EXF 2021 dataset.

on the FPR and TPR values for every category presented in
Tables 13, 16, and 19.

The ROC curve offers insightful information about how
well the strategy performs for every single class. For example,
the proposition had the worst performance in the ‘‘backdoor’’
type in the UNSW-NB15 dataset. On the other hand, in the
CIC-DDoS 2019 dataset, the ‘‘MSSQL’’ category showed
the poorest performance. Meanwhile, in the CIC Bell DNS
EXF 2021 dataset, the ‘‘Light-Benign’’ type demonstrated
the weakest performance. A macro-averaged ROC curve also
allows us to see how well the model performed across differ-
ent categories.

As a result, the suggested methodology demonstrated
increased efficiency and a shorter processing time—a cru-
cial consideration for cloud systems that prefer to conserve
computational resources. This improvement was achieved
through meticulous dataset preparation, addressing balance
issues, and selecting an ideal set of features using our feature
selection strategy. Furthermore, the superior performance of
the RF model was notable. The system we designed can
effectively detect breaches in future cloud settings, boasting
a high Recall and a low FAR. Our findings show that our

approach can recognize possible cloud threat patterns, such
as those listed in the datasets used. Therefore, it is suitable
for operation in cloud environments.

V. CHALLENGES AND BOUNDARIES OF THE APPROACH
1. Data Preprocessing Steps: In feature encoding, utilizing

label encoding for nominal features may inadvertently
introduce bias, particularly when dealing with categorical
data that possesses an underlying ordinal structure. This
can create a false sense of order or importance among
different categories. For instance, a model might erro-
neously interpret ‘‘category 2’’ as being more superior
or significant than ‘‘category 1’’. Thus, label encoding
may not be suitable for all categorical variables. In such
contexts, one-hot encoding often emerges as amore appro-
priate alternative. However, it is important to note that
in our specific datasets, the majority of the features are
numerical; therefore, we have opted to use label encoding.
Additionally, in feature scaling, the choice of a scaling
method can profoundly influence the final performance
of a model. Min-Max scaling, in particular, is suscepti-
ble to the presence of outliers. When a dataset contains
pronounced outliers, this technique can distort the rela-
tive distances between feature values, leading to skewed
interpretations. However, the implementation of a ran-
dom forest model may mitigate the effect of any outliers.
Nonetheless, we have observed satisfactory results with
the application of Min-Max scaling in our case.

2. Hybrid Feature Selection Approach: The hybrid approach
of utilizing both the GOA and GA presents certain chal-
lenges, particularly with regard to computational expense
and time consumption, especially when dealing with high-
dimensional data. Although the incorporation of GA aims
to counteract GOA’s tendency to converge to local optima,
this hybrid method may still be vulnerable to becom-
ing entrapped in these suboptimal solutions. Furthermore,
there is a potential risk of overfitting, a condition in which
the selected features may not adequately generalize to
unseen data or different datasets. Nevertheless, these chal-
lenges can be substantially mitigated through meticulous
parameter tuning and by determining an appropriate num-
ber of generations. Additionally, our utilization of a hybrid
balance approach (ADASYN-RUS) assists in reducing
data dimensionality somewhat. Proper implementation of
these techniques has led to convergence towards robust
performance in our results. Consequently, this affirms the
potential effectiveness of our hybrid approach within the
context of our selected datasets, demonstrating advantages
over standalone GOA or GA methods or other existing
methodologies.

3. Imbalanced Data Approach: Over-sampling the minority
class using ADASYN may lead to overfitting, as it often
involves the creation of exact copies or near-replicas of
minority class instances. This practice can also risk intro-
ducing noise, especially if synthetic samples are generated
without consideration of the underlying data distribution.
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FIGURE 11. Comparison of the performance between our approach and previous research in terms of ACC for each category in the UNSW-NB15.

TABLE 14. Comparison of the performance between our approach and previous research in terms of recall for each category in the UNSW-NB15.

TABLE 15. Comparison of the performance between our approach and previous research in terms of FAR for each category in the UNSW-NB15.

Conversely, under-sampling the majority class through
RUS might result in a loss of information by removing
instances from the dataset that could have been crucial for
the model’s learning. However, according to our findings,
particularly the curves depicting significant convergence
between training and validation sets, these potential issues
appear to have a very slight, almost negligible, effect.

4. Random Forest models can be relatively slow in generat-
ing predictions compared to other algorithms, particularly
when dealingwith datasets of high dimensionality or when
the number of trees within the model is large. Despite
being recognized as a robust model, it may still suc-
cumb to overfitting if not properly tuned. Additionally,
understanding the decision-making process in RF model

can be challenging, as they often function as a ‘‘black
box,’’ rendering the logic behind their decisions somewhat
opaque and difficult to interpret. However, our perfor-
mance evaluations have shown superiority compared to
other classifiers, particularly after determining the optimal
number of trees based on the empirical results.

5. Evaluation Datasets: Creating and maintaining an up-
to-date dataset for IDS is both challenging and costly.
IDS must grapple with the constant evolution of novel
attacks, network anomalies, and previously unseen out-
liers. Consequently, stability becomes a concern, requiring
the model to adapt continually to changes in networks and
threats. Specific evaluation datasets may not generalize
to other contexts and might contain biases or a lack of
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TABLE 16. Evaluation metrics across all classes in the CIC-DDoS
2019 dataset.

TABLE 17. Performance comparison of our proposal with other studies,
based on the recall metric for each class in the CIC-DDoS 2019 dataset.

TABLE 18. Performance comparison of our proposal with other studies,
based on the FPR and ACC metrics for each class in the CIC-DDoS
2019 dataset.

TABLE 19. Evaluation metrics across all classes in the CIC Bell DNS EXF
2021 dataset.

diversity that could skew results. However, in the cur-
rent work, we utilized the most recent datasets to test
and validate our proposal. These datasets are diverse and

FIGURE 12. ROC curve of the UNSW-NB15 dataset.

FIGURE 13. ROC curve of the CIC-DDoS 2019 dataset.

encompass the important instances of new attacks on
real-world network environments that exist today. More-
over, by using a variety of performance measures on these
datasets and achieving satisfactory results compared to
other studies, we demonstrated the robustness and gener-
alizability of our model.

6. Real-world Implementation Challenges: Practical imple-
mentation can reveal unexpected challenges when tran-
sitioning from theoretical or lab-tested proposals to
real-world environments. These challenges may include
unanticipated problems such as integration issues with
existing systems, performance deficiencies under real-
world loads, unforeseen security vulnerabilities, and inef-
ficiencies outside of a controlled lab setting. To mitigate
these uncertainties, it is advisable to test the proposal
in a real-time setting following lab evaluation. Doing so
ensures that the strategy is tailored for real-world applica-
tion, a process we plan to pursue in our future work.
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FIGURE 14. ROC curve of the CIC Bell DNS EXF 2021 dataset.

VI. CONSIDERATIONS FOR PRACTICAL
IMPLEMENTATION
In the context of applying our proposal in a real-world envi-
ronment (live testing), we recognize, as previously noted, that
this remains a current limitation of our study. Nevertheless,
this section outlines key considerations that will facilitate the
practical implementation of our approach in future endeavors:

• Parallelizability: The architecture of our approach,
specifically the components that necessitate iterating
over each grasshopper or feature, is aptly designed
for parallel computation. This design can substantially
enhance runtime efficiency, a crucial factor in real-world
cloud computing environments. These environments
often feature modern multi-core processors and leverage
distributed computing techniques, making our approach
particularly well-suited for such settings

• Batch Processing or Sampling: Considering the poten-
tially substantial number of instances in our datasets,
we may suggest employing batch processing or sam-
pling techniques, particularly within cloud settings.
These methods are highly effective at significantly
reducing the computational burden during fitness eval-
uations. The availability and scalability of cloud infras-
tructures provide an efficient platform for the implemen-
tation of these techniques, thereby enhancing the feasi-
bility of our approach when processing large datasets.

• Hardware Resource Considerations: We emphasize
the importance of securing adequate computational
resources, particularly for the effective processing of
large-scale datasets. This challenge is more manage-
able in a cloud environment, where the ‘pay-as-you-use’
model provides scalable resources tailored to specific
computational needs. Such an environment facilitates
flexible and cost-effective access to the necessary hard-

TABLE 20. The abbreviation table.
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TABLE 20. (Continued.) The abbreviation table.

ware resources, thereby enhancing the feasibility of
processing extensive data sets efficiently.

The aforementioned considerations are intended to establish a
preliminary foundation for future live testing and the practical
deployment of our approach.

VII. CONCLUSION
Security in the cloud is of paramount importance due to
the increasing use of cloud computing by both individuals
and organizations. To detect threats and protect user data,
machine learning classifiers were employed to categorize
network packets as either benign or malicious. The pro-
posed intrusion detection system aims to harness enhanced
intrusion detection accuracy by merging the advantages of
two feature selection algorithms, GA and GOA. This com-
bination identifies an optimal feature subset and leverages
the exploitation capacity of GA and the exploration capa-
bilities of GOA. The operation of GA prevents GOA from
getting stuck in local solutions. This not only augments the
approach’s performance but also conserves computational
resources. The hybrid feature selection method selects the
best features, while the classifiers categorize the network
data. Demonstrating a high recall and a lower FAR, the pro-
posal proved proficient in identifying various types of attacks.
The evaluation was conducted based on accuracy, recall,
FAR, precision, f-measure, MAR, and ROC curves. Different

TABLE 21. Corresponding data types for each feature in the UNSW-NB15
dataset.

classification algorithms were tested on the proposed model,
and the evaluation results confirmed that the random forest
classifier outperformed the others across all three datasets.
While there are numerous studies in the literature utilizing
meta-heuristic algorithms for selecting optimal features or
for optimizing the weights of neural network classifiers, our
proposal’s findings surpassed the performance of themajority
of these methodologies.

In future work, we intend to leverage optimal features
derived from hybrid metaheuristic algorithms, such as GOA-
GA, to fine-tune and optimize the weights of neural network
models. Our objective is to enhance the efficacy of neural
network classifiers by adjusting parameters, including the
number of hidden layers, connection density, choice of acti-
vation functions, and the number of epochs. Furthermore,
we aim to propose a systematic hyperparameter tuning of
the classifiers, employing techniques such as grid search,
random search, and metaheuristic algorithms. This future
endeavor will include a comprehensive comparative analysis
of the results to identify the most effective tuning strategy.
An additional focus will be to devise a robust methodology
to address issues related to data imbalance.

APPENDIX A
Table 20 showcases the abbreviations utilized within the
manuscript, which are not detailed in their full forms. They
are arranged in the sequence in which they appear.
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TABLE 22. Specification of data types for all features in the
CIC-DDoS2019 dataset.

TABLE 22. (Continued.) Specification of data types for all features in the
CIC-DDoS2019 dataset.

TABLE 23. Data type allocation for each feature in the CIC Bell DNS EXF
2021 dataset.

APPENDIX B
Tables 21, 22, and 23 detail every attribute, along with
its corresponding data type, in the public datasets UNSW-
NB15, CIC-DDoS2019, and CIC Bell DNS EXF 2021,
respectively. These data types were identified by consulting
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the descriptions of each dataset from their official sources,
as cited in Table 1, and also by employing the info() method
offered by the Pandas library.
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