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ABSTRACT This paper proposes obtaining maximum and minimum daily cumulative energy curves and
introduces novel hourly and daily energy flexibility indices. Also, it develops a generic methodology that
quantifies and formulates energy flexibility as the possible power increase (P_in) or decrease (P_dec) within
operational limits. The proposed method can be applied to derive maximum and minimum energy flexibility
curves for different devices and aggregate them to extract hourly or daily energy flexibility indices based
on the calculation area between daily cumulative energy curves in an hour and 24 hours. The proposed
energy flexibility estimation is evaluated by doing offline digital time-domain simulations on a 100-bus
home-residential active distribution network (ADN), including flexible equipment/devices (e.g., washing
machines, dishwashers, domestic heat water, battery, photovoltaic (PV) panels, and plug-in hybrid electric
vehicle (PHEV) charging stations) in MATLAB/Simulink software environment. Then, a price-sensitive
model of every flexible equipment is introduced, and ultimately, the effect of electricity price changes on
energy flexibility is evaluated. The simulations and comparisons of the energy flexibility potential of different
pricing scenarios effectively prove the proposed strategy’s effectiveness, accuracy, and authenticity.

INDEX TERMS Daily cumulative energy curves, energy flexibility, energy flexibility indices, plug-in hybrid
electric vehicle, price-sensitive model of flexible equipment.

NOMENCLATURE
Ec.max : Daily aggregated maximum cumulative

energy curve.
Ec.nor : Daily aggregated normal state cumulative

energy curve.
Ec.min : Daily aggregated minimum cumulative

energy curve.
P inc[t1.t2]

: Power-increasing flexibility in [t1.t2].
Pdec[t1.t2]

: Power-decreasing flexibility in [t1.t2].
mmax.t1 : The slop of maximum cumulative energy

curve in [t1, t1 + 1].
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mnor.t1 : The slop of normal state cumulative energy
curve in [t1, t1 + 1].

mmin.t1 : The slop of minimum cumulative energy
curve in [t1, t1 + 1].

(A1, ..,An) : Average of (A1. . . . .An).
f inct1 : Hourly energy flexibility index,

t1 = 1.2. . . . .24.
f inct1 : Hourly energy flexibility index,

t1 = 1.2. . . . .24.
Finc : 24-hour energy flexibility index.
Fdec : 24-hour energy flexibility index.
FHs : Flexibility hours provided by home appli-

ances.
N : Number of households that participate in a

flexibility program.
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PG (t, i) : Generation power of household i at time step
t .

PC (t, i) : Consumption power of household i at time
step t .

PEX (t, i) : Exchanged power between household i at
time step t .

Pr t : Day-ahead price at time step t .
Prav : The average price of the day-ahead price

profile.
SOC (t, i) : Battery’s state of charge of household i at

time step t .
SOCmin : Permissible minimum state of charge.
SOCmin : Permissible maximum state of charge.
Pch : Maximum power charging.
Pdisch : Minimum power charging.
NBESS : Total number of battery energy storage

systems.

I. INTRODUCTION
A. MOTIVATION AND INCITEMENT
Flexibility has become a vital issue today for the reliability
and security of the electrical energy supply. Power system
flexibility is the ability of a power system to reliably and cost-
effectively manage the variability and uncertainty of demand
and supply across all relevant timescales. There is a growing
necessity for flexibility for the following reasons:

• Increasing the share of renewable energy resources in the
energy supply basket,

• Dispersion and intermittent attributes of renewable
energy resources,

• Decentralized growth of energy storage systems,
• Electrical load demand increment in the transportation

and heating sector because of fossil-fueled systems replace-
ment politics with highly efficient electrical equipment like
PHEVs and electrical heat waters [1], and,

• Decrement of the number of traditional controllable
power plants.

• Flexibility estimation is essential for planning and
managing power systems. Generally, flexibility requirements
are considered holistically, both from the overall system
perspective and from the more local perspectives [2]:

• From an overall system perspective, flexibility require-
ments are related tomaintaining a stable frequency and secure
energy supply.

• From a more local perspective, flexibility requirements
are related to maintaining bus voltages and securing transfer
capacities.

The temporary and intermittent nature of renewable energy
leads to increased utilization of advanced control systems
to enable the flexibility potential of the demand side by
a suitable integration system [3]. Households have a vital
role in energy flexibility programs on the demand side,
as the home sector accounts for approximately 40% of
global energy consumption [4]. Also, more than 70% of
total electricity in the United States and 90% in Hong Kong

is consumed by the building sector [5], [6]. Application
of distributed energy resources (DER) technologies such as
solar photovoltaic (PV), combined heat and power, electric
vehicles (EVs), and energy storage have enabled active
building loads by reducing demand and satisfying energy,
capacity, and ancillary services requirements [7], [8], [9].

B. LITERATURE REVIEW
In [10], the effect of converting power to heat has been
examined, various power-to-heat options have been catego-
rized, and the authors have introduced an analytical model
formulation of heat pumps and heat water storage as energy
flexibility options. PHEVs can provide energy flexibility by
controlling the charging process according to motivations and
even act as a distributed storage system on the demand side
for supplying required energy in emergencies [11].

In [12], the flexibility potential of the residential appli-
ance has been estimated according to survey data, but
it has not explained how the user behavior is modeled.
In [13], the flexibility potential of residential households
has been estimated according to a fixed percentage of their
consumption. However, it has not mentioned how these
percentages can be obtained. In [14], the flexibility estimation
has been performed in detail, but this study’s survey
data are related to non-flexible appliances. In [15], [16],
and [17], the flexibility potential of residential appliances
has been estimated according to extrapolated consumption
data of smart appliances. Besides, [18] has estimated the
flexibility potential of households based on data from
only one household with flexible appliances. In [19], the
electric load shapes and demand response behavior has been
characterized, and the modeling methods have been applied
to evaluate demand response effectiveness. The definition
of energy flexibility can be found in numerous studies
and reviews [20], [21], [22]. The common view of these
definitions is the ability of the grid to manage predictable
or unpredictable changes. However, a more general and
industrially-applicable definition is ‘‘Power system flexibility
is the ability of a power system to reliably and cost-effectively
manage the variability and uncertainty of demand and supply
across all relevant timescales.’’

C. LITERATURE REVIEW
This paper presents a method based on the area between daily
cumulative energy curves. By exploiting these curves, the
value of energy flexibility potential is estimated. The main
contributions of this paper are as follows:

• Formulating the energy flexibility based on maximum,
minimum, and normal daily cumulative energy curves,

• Defining energy flexibility hourly and 24-hours indices,
• Comparing the energy flexibility potential between

different energy management scenarios,
• Introducing the price-sensitive models of various home

appliances, and
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• Assessment of the effect of price changes in three-step
daily price profiles on energy flexibility.

II. ENERGY FLEXIBILITY ESTIMATION METHOD
Household maximum and minimum daily cumulative energy
consumption curves are determined by flexible appliances
and energy generation and storage systems such as washing
machines, dishwashers, domestic heat water (DHW), bat-
teries, and solar panels. The distribution grid aggregators
aggregate daily averages of cumulative household energy
consumption in a specific area. The total maximum and min-
imum cumulative energy curves determine power-increasing
and power-decreasing flexibility over a certain period.

FIGURE 1. Daily aggregated cumulative energy curves.

In this paper, energy flexibility is defined as the ability to
increase or decrease the consumption power of a particular
area in a given period, referred to as power-increasing
flexibility and power-decreasing flexibility, respectively. (see
Fig. 1) [20].

Pinc[t1, t2] = P1 − Pref

=

{(
Ec,max(t2) − Ec,normal(t1)

t2 − t1

)
−

(
Ec,normal(t2) − Ec,normal(t1)

t2 − t1

)}
=

(
Ec,max(t2) − Ec,normal(t2)

1T

)
Pdec[t1, t2] = P2 − Pref

=

{(
Ec,min(t2) − Ec,normal(t1)

t2 − t1

)
−

(
Ec,normal(t2) − Ec,normal(t1)

t2 − t1

)}
=

(
Ec,min(t2) − Ec,normal(t2)

1T

)
(1)

III. ENERGY FLEXIBILITY INDICES
In this paper, hourly and 24-hours indices compare numerous
more flexible scenarios. As shown in Fig. 2, to calculate
the hourly maximum/minimum energy flexibility index, the

FIGURE 2. The area between aggregated cumulative energy curves.

area between the maximum/minimum aggregated cumulative
energy curve and the normal aggregated cumulative energy
curve every hour is calculated. It is divided into the total area
between the maximum aggregated cumulative energy curve
and the minimum aggregated cumulative energy curve every
hour (sampling rate of cumulative energy curves: 4 samples
per hour).

mmax,t1 =
Ec,max(t1 + 1) − Ec,max(t1)

(t1 + 1) − (t1)
= Ec,max(t1 + 1) − Ec,max(t1)

mnor,t1 =
Ec,nor(t1 + 1) − Ec,nor(t1)

(t1 + 1) − (t1)
= Ec,nor(t1 + 1) − Ec,nor(t1)

mmin,t1 =
Ec,min(t1 + 1) − Ec,min(t1)

(t1 + 1) − (t1)
= Ec,min(t1 + 1) − Ec,min(t1) (2)

Ec,max(t) − Ec,max(t1) = mmax,t1 × (t − t1)

Ec,max(t) =
(
mmax,t1

)
× t

+
[
Ec,max(t1) −

(
mmax,t1 × t1

)]
Ec,max(t) = [A(t1) × t] + B(t1)

Ec,nor(t) − Ec,nor(t1) = mnor,t1 × (t − t1)

Ec,nor(t) =
(
mnor,t1

)
× t

+
[
Ec,nor(t1) −

(
mnor,t1 × t1

)]
Ec,nor(t) = [C(t1) × t] + D(t1)

Ec,min(t) − Ec,min(t1) = mmin,t1 × (t − t1)

Ec,min(t) =
(
mmin,t1

)
× t

+
[
Ec,min(t1) −

(
mmin,t1 × t1

)]
Ec,min(t) = [E(t1) × t] + F(t1) (3)

Sinc,t1 =

(4×t1−1)∑
i=(4×t1−3)

∫ i+1

i

∫ Ec,max(t)

Ec,nor(t)
dE × dt

=

(4×t1−1)∑
i=(4×t1−3)

(A(t1) − C(t1))
2
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× [2i + 1] + (B(t1) − D(t1))

Sdec,t1 =

(4×t1−1)∑
i=(4×t1−3)

∫ i+1

i

∫ Ec,nor(t)

Ec,min(t)
dE · dt

=

(4×t1−1)∑
i=(4×t1−3)

(C(t1) − E(t1))
2

× [2i + 1] + (D(t1) − D(t1)) (4)

finc,t1 =
Sinc,t1
Stotal,t1

=
Sinc,t1

Sinc,t1 + Sdec,t1(
0 ≤ finc,t1 ≤ 1

)
fdec,t1 =

Sdec,t1
Stotal,t1

=
Sdec,t1

Sinc,t1 + Sdec,t1(
0 ≤ fdec,t1 ≤ 1

)
(5)

Finc =

∑24
t1=1

finc,t1
24

=
(
finc,1 , finc,2 , . . . , finc,24

)
Fdec =

∑24
t1=1

fdec,t1
24

=
(
fdec,1 , fdec,2 , . . . , fdec,24

)
(6)

IV. PRICE-SENSITIVE MODEL OF LOADS EQUIPMENT
This paper estimates the energy flexibility provided by home
appliances and storage units. A price-sensitive load model
must be defined to examine the effect of price variation on
energy flexibility in the day-ahead electricity price profile.
The following presents a price-sensitive model of home
appliances like washing machines, dishwashers, domestic
heat water, and lighting load. Also, batteries’ charging and
discharging algorithms belong to buildings equipped with
photovoltaic panels and plug-in hybrid electric vehicles
(PHEVs) batteries.

TABLE 1. TOU and Fhs information on washing machines and
dishwashers.

A. WASHING MACHINE AND DISHWASHER
PRICE-SENSITIVE MODEL
Time of use (TOU) and hours of participation in flexibility
programs (FHs) have been shown in Table 1. In [23], the
consumption profile of washing machines and dishwashers
has been presented. Also, owners are given a day-ahead
electricity price profile, and they can select the optimumTOU
of every appliance according to its TOU, FHs, and cost of

energy consumption based on the day-ahead electricity price
profile in the range of [TOU-FHs, TOU-FHs].

In this price-sensitive model, the starting point is moved in
the time steps in the range of [TOU-FHs, TOU-FHs]. In every
step, the cost of energy consumption is calculated according
to the consumption power profile and day-ahead electricity
price profile. Finally, the optimum time of use (TOUopti) of
the appliance is obtained with the object of minimum cost of
energy consumption.

FIGURE 3. Calculating reference temperature in time step t .

B. DOMESTIC HEAT WATER (DHW) PRICE-SENSITIVE
MODEL
In this model, to consider the prosperity of households, the
temperature of water in the storage tank should be kept within
[Tmin,Tmax] which are selected by the households.

For simplification of this model, Tmin and Tmax is
considered the same for all households. According to Fig.3,
in every time step, the reference temperature (Tref ) of DHW
is obtained according to Tmin, Tmax Maximum and minimum
price in the day-ahead electricity price profile and electricity
price in that time-step. If in time step t, the water temperature
of the tank of DHW is higher than Tref .t ; the DHW heater
turns off; otherwise, the heater will be turned on.

Tref,t = Tmin +

{
(Prt − Prmax) ×

Tmax − Tmin

Prmin − Prmax

}
t = 1, 2, . . . , 96 (7)

TABLE 2. Random distribution of households’ heat water consumption.

The daily power consumption profile of households’ DHW
is needed to derive the price-sensitive daily cumulative energy
curve. Table 2 considers three random distributions to gather
households’ daily hot water consumption.
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FIGURE 4. The charging and dischrging algoritm for battry energy storage systems.

In every time step, the equilibrium temperature of DHW i
(Teq(t, i)) is calculated according to the hot water consump-
tion of DHW i (HWC i), the temperature of residual water in
the DHW’s tank (Tres,w(t, i)), total volume of DHW i (Vi),
and the temperature of the water, which is replaced with
consumed hot water (Tw).

Teq(t, i) =

(
HWC(t, i)

Vi
× Tw

)
+

(
Vi − HWC(t, i)

Vi
× Tres,w(t, i)

)
t = 1, 2, . . . , 96 & i = 1, 2, . . . ,N (8)

In this paper, the volume of DHW’s tank in all households
and the temperature of cold water (Tw), is considered 100
Litr and 18◦, respectively, for simplification. Comparison
between Teq (t, i) and Tref .t in every time step is specified
whether the DHWi should be turned on or not. If Teq (t, i)
be less than Tref .t , then the DHWi in the time step, t will
be turned on; otherwise, it will be turned off. The energy
consumption of DHW in a time step when it is turned on is
calculated by the below relation.

EDHW(t, i)kWh
= PkWDHWi

× 0.25h (9)

For simplification, PDHW is considered 1kW for all of
DHWs.

C. CHARGING AND DISCHARGING ALGORITHM OF THE
BUILDING’S BATTERY
This paper considers the battery storage system for house-
holds with a PV system. The charging and discharging
strategy of a building’s battery has been designed in Fig. 4
based on every household’s total generation and consumption
and the day-ahead price profile. The maximum and minimum
state of charge (SOCmax , SOCmin) and the maximum power
of the Charger in charging mode (G2V) and discharging
mode (V2G) are considered the limiting factors in this
planning. Finally, the energy consumption and generation of
the batteries in every time step are calculated by the below
relation.

EBATT(t , i) = [SOC(t + 1 , i) − SOC(t , i)]

× CAPBATT ∀t ∈ 1, 2, . . . , 96 (10)

The specification of the energy storage system of buildings
is shown in Table 3.
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TABLE 3. The specification of the energy storage system of buildings.

D. CHARGING AND DISCHARGING ALGORITHM OF
PHEVS’ BATTERY
This paper supposed that 50% of households possess PHEVs
inclined to contribute flexibility programs and exchange
power from the battery to the grid (V2G) or conversely
(G2V). In the other word, according to the day-ahead
price profile, the minimum and maximum permissible
state of charge (PSOCmin,PSOCmax) specified by PHEV
owners, the charging and discharging strategy are designed.
In this study, it is supposed that 20% of PHEVs contribute
flexibility programs only at parking lots of buildings,
and 30% contribute flexibility programs only at stations
nearby the workplace. The others contribute flexibility
programs at both places. Table 4 shows information such
as arrival time, departure time, initial SOC, and location of
the PHEVs.

TABLE 4. The information of the PHEVs in the flexibility program.

In the proposed charging and discharging strategy, the
PHEVs are charged when the hourly electricity price be less
than the average price of the day-ahead price profile, and
the SOC of the battery must not be higher than PSOCmax .

On the other hand, the PHEVs are dischargedwhen the hourly
electricity price is higher than the average price of the day-
ahead price profile, and the SOC of the battery must not
be less than PSOCmin. Finally, the energy consumption and
generation of every PHEV’s battery in every time step is
calculated by the below relation.

EPHEV
BATT (t , i) = [SOC(t + 1 , i) − SOC(t , i)]

× CAPPHEV
BATT

∀t ∈ 1, 2, . . . , 96 (11)

FIGURE 5. The outline of the sample microgrid.

V. CASE STUDY
In this section, a microgrid with 100 households is con-
sidered. Some of those have home appliances such as a
Washing- machine, dishwasher, and DHW participating in
flexibility programs. Also, some households have equipment
such as PV panels, Battery Energy Storage Systems, and
PHEVs participating in flexibility programs. In Fig. 5, the
outline of the sample microgrid is shown. The final goal
of this study is the collection of generation or consumption
energy data of the different sections of the study case
and estimating the energy flexibility of a sample microgrid
due to the information gathered from households and the
microgrid’s components. The day-ahead electricity price
information of two various price scenarios is shown in
Table 5. Pricing criteria are based on low, medium, and full
load times.

VI. SIMULATION RESULTS
Two scenarios are provided in this paper to validate
the proposed method for estimating energy flexibility
potential.
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TABLE 5. The day- ahead electricity price information.

FIGURE 6. Total power generation of PV panels [25].

A. SCENARIO 1: EVALUATION OF ENERGY FLEXIBILITY
POTENTIAL OF PROPOSED MICROGRID IN SECTION (V)
In this study case, 60 PV units were considered randomly
for distributed generation of the houses. The total daily
power generation of PV panels has been illustrated in
Fig. 6. In Figs. 7 and 8 illustrate the washing machine
and dishwasher’s maximum, minimum, and daily cumulative
energy curves. Also, in Figs, normal daily cumulative energy
by applying price-sensitive models. 7 and 8.

FIGURE 7. Daily cumulative energy profiles of washing machines.

FIGURE 8. Daily cumulative energy profiles of dishwashers.

The impact of electricity price on displacement TOU of the
washingmachines and dishwashers is evident in Figs. 7 and 8,
respectively. As expected, because of the low electricity
price in the time range of 00:00 to 08:00 in price profile 1,
some of the washing machines and dishwashers, which are
allowed to start during this period according to parameters
like TOU and FHs, set earlier to decrease total cost of energy
consumption. Whereas due to price profile 2, the minimum
price is related to the range of 16:00 to 24:00.According to
Figs. 7 and 8, as much as the electricity price is approached
at the minimum price of the day-ahead prices, the normal
cumulative energy of washing machines and dishwash-
ers is approached to maximum daily cumulative energy
curves.

FIGURE 9. Daily cumulative energy consumption of DHWs.

On the other hand, the normal cumulative energy of
washing machines and dishwashers is approached to min-
imum daily cumulative energy curves when the electricity
price is approached to the maximum price of the day-
ahead prices, provided that the displacement of TOU of the
objective appliance is possible. Fig. 9 shows the maximum
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and minimum daily cumulative Energy profiles of DHWs.
Also, the normal daily cumulative energy by considering the
daily price impact on the energy consumption of DHWs has
been calculated. For this purpose, two operation mode has
been designed below.

• Operation Mode 1: Calculating normal daily cumulative
energy by applying price impact on consumption energy
of DHWs, so that According to section II-B, the reference
temperature of DHWs in every time step is specified based
on Fig. 3.

• Operation Mode 2: Calculating normal daily cumulative
energy by not applying price impact on consumption energy
of DHWs so that the reference temperature of DHWs in every
time step is selected randomly within [Tmin,Tmax].

As illustrated in Fig. 9, in the range of 00:00 to 08:00,
the reference temperature OM1 is higher than the reference
temperature OM2. Therefore, the energy consumption of
the DHWs, in OM1 is more than in OM2. In the range of
08:00 to 16:00, the electricity price has been maximum, and
the reference temperature has been Tmin Furthermore, the
heater of the DHW s sets off. The equilibrium temperature of
DHWs’ storage tank is decreasing by heat water consumption
of households until the equilibrium temperature of DHWs’
storage tank equals Tmin. At this moment, the DHW sets
on. Finally, in the range of 16:00 to 24:00, the price
of electricity is decreased, and the reference temperature
becomes more than Tmin and energy consumption of DHWs
is increased. In Fig. 10, the maximum and minimum daily
cumulative energy curves have been achieved by charging
and discharging all BESSs at the beginning of the day. The
normal daily cumulative energy has been calculated due to
factors used in the BESSs charging and discharging flowchart
in Fig. 4. These factors are SOC of BESSs, hourly electricity
price, generation power, and consumption power of every
household.

FIGURE 10. Daily cumulative energy profiles of BESSs.

Considering three types of PHEVs’ owners’ contribution
in this study case that is mentioned in Table 3, and due
to the day-ahead electricity price information in Table 4,
the daily cumulative energy profiles of three groups of
PHEVs are calculated (Fig. 11). In this study case, the

average daily electricity price is equal to 0.086667 $/kWh
according to the day-ahead electricity price. All PHEVs
are expected to be in charging mode within [00:00-08:00],
as the electricity price in this period is less than the average
electricity price of the day-ahead electricity price profile.
Due to the absence of PHEVs that belong to the type2
within [00:00-06:00], despite the proper condition for PHEVs
charging, the cumulative energy of this group has been equal
to zero.

FIGURE 11. Daily cumulative energy profiles of PHEVs.

FIGURE 12. Total daily cumulative energy profiles.

Finally, as seen in Fig. 12, the total daily cumulative energy
curves related to the objective zone are achieved by summing
all the maximum, minimum, and normal curves of various
sectors contributing to the flexibility program. According
to the provided strategy in Section II, the hourly power-
increasing flexibility and hourly power-decreasing flexibility
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FIGURE 13. Hourly power increasing flexibility.

FIGURE 14. Hourly power decreasing flexibility.

are calculated, which is mentioned in Figs. 13 and 14,
respectively. By comparison of electricity prices information
in Table 4, it is expected that the total consumption power
related to price profile 2, in the range of [16:00,24:00], will
be increased. Consequently, in the range of [16:00,24:00],
hourly power-increasing flexibility in price profile 2 is less
than in price profile 1. In other words, the hourly power-
decreasing flexibility in price profile 2 is more than the hourly
power-decreasing flexibility in price profile 1. All the above
results are evident in Figs. 12-14.

FIGURE 15. Hourly increased energy flexibility indexes profile.

According to the relations presented in Section III, hourly
increased and decreased energy flexibility indices are calcu-
lated for price profiles 1 and 2. Hourly energy flexibility rate
is described with the help of hourly increased and decreased
energy flexibility indices. When the energy flexibility index
is approached 1, energy flexibility is increased. Due to
the hourly increase and decreased energy flexibility indices
profile in Figures 15 and 16, in the range of [17:00,24:00],
the tendency to increase power in price profile 1 is higher
than in price profile 2. On the contrary, the tendency to power
decrease in price profile 2 is more than in price profile 1. For
daily increasing and decreasing energy flexibility assessment,
daily increased and decreased energy flexibility are presented
by indices that realize the daily energy flexibility potential
comparison possibility between diverse scenarios. According
to Fig. 17, daily increased and decreased energy flexibility

FIGURE 16. Hourly decreased energy flexibility indexes profile.

FIGURE 17. Daily increased and decreased energy flexibility indexes.

indices are achieved by calculating the average of the
hourly increased and decreased energy flexibility indices,
respectively. Generally, the daily increased energy flexibility
index in price profile 1 is more than the daily increased
energy flexibility index in price profile 2. On the contrary,
the daily decreased energy flexibility index in price profile
2 is more than the daily decreased energy flexibility index in
price profile 1.

TABLE 6. EV charger (I) schedule.

B. SCENARIO 2: COMPARISON WITH A
PREVIOUSLY-REPORTED FLEXIBILITY
EVALUATION TECHNIQUE [24]
In [24], three EV charging strategies have been presented,
and their energy flexibility potential has been evaluated.
Minimum Time (MT), economic Model Predictive Control
(eMPC), and Optimal Control with Minimum Cost and
Maximum Flexibility (OCCF) have been considered for each
Charger in the charging station. Maximum charging power
in fast mode has been considered 50kW, and the battery
capacity of an EV is 80kWh. To analyze the proposed
charging strategies, the EV charger schedule for one charging
station has been reported in Table 6. The power profile of
EV charger (I) with the different strategies has represented
in Fig. 18. The proposed strategy of this paper determines
the maximum and minimum cumulative energy curves of this
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scenario. All the cumulative energy curves have represented
in Fig. 19.

FIGURE 18. Power profiles of EV Charger (I) with the different strategies.

FIGURE 19. Cumulative energy curves of EV Charger (I).

FIGURE 20. Daily increasing and decreasing energy flexibility indexes of
EV Charger (I) with the different strategies.

According to Fig. 19 and the proposed energy flexibility
estimation strategy, daily increasing and decreasing energy
flexibility indices are calculated (Fig. 20). According to
Fig. 20 and Table 4 in [24], the OCCF strategy is more
flexible than the eMPC strategy and eMPC strategy is
more flexible than MT strategy from increasing power
potential prospective. Also, the MT strategy is more flex-
ible than the eMPC strategy, and the eMPC strategy is
more flexible than the OCCF strategy from decreasing

power potential perspective. The results effectively prove
the accuracy and authenticity of the method presented in
this paper.

VII. CONCLUSION
This paper presents and formulates a novel approach to
estimating energy flexibility. We propose a generic method-
ology that quantifies and formulates energy flexibility as
possible power increases and decreases within operational
limits. Utilizing this formulation, energy flexibility indices
were introduced that allow comparisons between various
pricing scenarios. The maximum and minimum cumulative
energy curves for a day were obtained, along with indices
of energy flexibility created hourly and daily. We derived
maximum and minimum energy flexibility curves for differ-
ent types of devices. We extracted hourly or daily energy
flexibility indices using the calculation areas between daily
cumulative energy curves recorded in one hour and one
day. Additionally, the price-sensitive models corresponding
to each load were introduced to apply the reaction of loads
to pricing politics. This makes it possible to change energy
flexibility by changing electricity prices over a specific
period. The proposed energy flexibility estimation strategy
was evaluated using offline digital time-domain simulations
in MATLAB/Simulink software on a home-residential grid.
The simulation results and comparisons of the presented
energy flexibility potential of different pricing scenarios
revealed that the proposed strategy is effective, accurate, and
authentic.
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