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ABSTRACT Large-scale earthquakes can cause huge loss of life and material losses. After an earthquake,
highways are the most commonly used type of transportation for the delivery of the necessary aid teams and
materials to the scene of the event. If the highways are not well maintained, it may cause serious disruption of
transportation after the earthquake or aftershocks. In this study, field studies were conducted in the provinces
where the earthquake was felt severely after the earthquakes in Turkey on February 6, 2023. In these studies,
images were collected according to the condition of asphalt cracks on the highways. These images were
labeled as in need of urgent maintenance (Major) and not in need of urgent maintenance (Minor) and a
new dataset was created. The classification performance of popular pre-trained CNN models is evaluated
on this dataset. First, classification algorithms other than softmax were used to improve the classification
performance. The Combined Metaheuristic Optimization-Relieff (CMO-R) algorithm was designed to
improve the classification performance by one more level. Extensive experiments were conducted on the
dataset, and the VGG16 model demonstrated superior performance, reaching an accuracy of 80.32% without
encountering overfitting.

INDEX TERMS Classification, deep learning, new asphalt cracks dataset, new feature selection algorithm.

I. INTRODUCTION

Two major earthquakes occurred in Turkey on February 6,
2023, in Pazarcik and Elbistan districts of Kahramanmarag
province. Large-scale loss of life and material damage
occurred in 11 different provinces of Turkey. Immediately
after the earthquakes, both human and logistical aid started to
arrive from different provinces of Turkey and different coun-
tries. However, there were serious delays in this aid due to
asphalt deformations on the highways. As a result of the field
studies, it was seen that highways with previously deformed
asphalt prevented road transportation. Moreover, in the event
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of the next earthquake or other disasters, asphalt cracks that
could prevent transportation were identified by experts in
the field, and images of these asphalt cracks were taken.
However, the effects of the current earthquakes were so great
that not all sites could be surveyed for the current condition of
the highways, as access to certain earthquake-affected routes
was closed. Therefore, pre-earthquake highway maintenance
works are of great importance to prevent such transportation
disruptions [1], [2]. However, a significant amount of spe-
cialized personnel is required to identify these maintenance
works. Recently, artificial intelligence systems have started
to give superior performances in automated decision support
systems. Especially after 2012, with the development of deep
learning models, great progress has been made in solving
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automatic classification, regression, and segmentation prob-
lems. These models have been applied in many fields such as
medicine, engineering, economics, and law.

In the proposed approach, a new deep learning-based
technique is used to determine the maintenance urgency
of highways from asphalt crack images after the February
6 earthquakes in Turkey.

The important contributions of the proposed approach are
as follows.

o A new dataset that provides asphalt crack status has
been created with the field studies carried out after the
earthquake.

« By testing 5 different transfer learning approaches and
6 different classifiers, a detailed analysis of the baseline
classification performance is presented.

o Designed a new feature selection algorithm that com-
bines the power of 10 different metaheuristic algorithms
with index matching and incorporates the ReliefF
algorithm.

Il. LITERATURE REVIEW

The main advantage of deep learning techniques is the ability
to extract meaningful features from images [3]. For this, con-
volutional filters with adjustable weights are used. However,
in classical machine learning techniques, it is necessary to
design a highly discriminative feature extraction algorithm.

The automatic classification of asphalt cracks represents a
prevalent challenge within the realm of computer vision [4].
Numerous empirical investigations have underscored the
escalating prominence and efficacy of Convolutional Neu-
ral Networks (CNNs) in the context of crack detection [5],
[6], [7] In a study conducted by Gopalakrishnan et al. [§],
a pre-trained VGG-16 CNN model was employed for the
binary classification of pavement cracks into the categories
of “crack” and “no crack.” Huyan et al. [9] introduced
the CrackU-net model, which adapted the established U-net
architecture to facilitate the pixel-level segmentation of
cracks in a dataset comprising 3000 images. Mandal et al.
[10] developed a pavement crack recognition system by lever-
aging the YOLO v2 deep learning framework, leveraging a
dataset consisting of 9053 road photographs collected from a
moving vehicle. The work of Majidifard et al. [11] proposed
a comprehensive approach to asphalt crack categorization,
involving the utilization of YOLO net for crack detection and
U-Net for crack segmentation. Guan et al. [12] established
an automated methodology for pixel-level classification of
asphalt cracks, incorporating both deep learning and image
processing techniques while taking into account both the
color and depth attributes of the images.

Most existing studies focus on detecting asphalt cracks
rather than grading their severity, highlighting the need for
a methodology capable of discerning and classifying crack
severity levels. Li et al. [13] pioneered a deep learning-based
approach tailored to the automatic classification of diverse
types of cracks observed on asphalt pavements, creating
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an extensive dataset encompassing five fracture categories,
notably including fatigue cracks. Zhu et al. [14] employed
unmanned aerial vehicles (UAVs) for the acquisition of
pavement images and harnessed deep learning techniques
to recognize six distinct distress types, encompassing four
categories of cracks such as fatigue cracks. Liu et al. [15]
advocated a two-tiered methodology for the identification
and delineation of pavement cracks, predicated on the imple-
mentation of CNNs, with a specific focus on detecting four
distinct crack types, prominently featuring fatigue cracks. For
three distinct image types, Liu et al. [16] harnessed Grad
CAM-based models to expound upon the interpretability of
the CNN model’s outputs, thereby facilitating the identifica-
tion of diverse crack severity categories, including fatigue,
longitudinal, and transverse cracks. Finally, Tran et al. [17]
proffered a two-stage automated crack identification and
severity classification methodology, entailing the deployment
of image processing techniques to estimate the severity levels
of linear fractures.

IlIl. MATERIAL

Within the framework of this comprehensive study, the
dataset under scrutiny was meticulously sourced from on-site
investigations specifically undertaken to scrutinize the intri-
cate asphalt deformations observed on highways subsequent
to the Kahramanmarag Pazarcik and Elbistan earthquakes,
both registering magnitudes of 7.7 and 7.6. The geographical
scope of these investigations encompassed regions pro-
foundly impacted by the seismic activity, namely Kahraman-
marag, Hatay, Malatya, Adiyaman, and Gaziantep provinces.

The data acquisition process involved the use of a state-
of-the-art professional Canon camera, capable of capturing
images in JPEG format and boasting a remarkable resolu-
tion of 24 megapixels. The meticulous capture of a total of
528 images was carried out with a focus on the distinct asphalt
deformations present in the aftermath of the seismic events.
These images were strategically collected in varying quan-
tities from each province, with 111 images obtained from
Adiyaman province, 38 from Gaziantep province, 191 from
Hatay province, 101 from Kahramanmaras province, and
87 from Malatya province.

Asphalt cracks are labeled by experts in the field under two
classes: minor and major cracks. During labeling, 10 pho-
tographs with distorted images were eliminated. Of the total
518 images, 225 were labeled as major and 293 as minor.
Although the width and height of the images are not stan-
dardized, all pre-trained models except the AlexNet model
(227 x 227) were resized to (224 x 224).

IV. PROPOSED METHODLOGY

A representative illustration of the proposed method is given
in Figure 2. In general terms, the proposed method consists
of 4 main stages. In the first stage, an evaluation is performed
on the dataset with a transfer learning approach including the
VGG16 model. The reason for choosing the transfer learning
approach is that the size of the dataset is not too large.
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FIGURE 1. Sample images in the data set created as a result of field
studies.

Therefore, a transfer learning strategy was chosen instead
of a model that learns from scratch. In stage 2, deep features
were extracted from the activation of the dataset with the
network weighted by transfer learning. The deep features
were extracted from the fully connected layers fc7 (4096) and
fc8 (1000) of the VGG16 model. Then, the extracted features
were combined to obtain a 5096-dimensional feature set.
In stage 3, the Combined Metaheuristic Optimization-Relieff
(CMO-R) feature selection algorithm was used both to reduce
computational costs and to improve classification perfor-
mance. In the CMO-R algorithm, 10 different metaheuristic
optimization algorithms consisting primarily of Atom Search
Optimization (ASO), Equilibrium Optimizer (EO), Gener-
alized Normal Distribution Optimization (GNDO), Henry
Gas Solubility Optimization (HGSO), Harris Hawks Opti-
mization (HHO), Marine Predators Algorithm (MPA), Manta
Ray Foraging Optimization (MRFO), Particle Swarm Opti-
mization (PSO), Slime Mould Algorithm (SMA), and Whale
Optimization Algorithm (WOA) techniques were used. These
algorithms are preferred both because they provide fast out-
put and their performance is high. This rule uses index
values chosen by 10 metaheuristic optimization algorithms
(MOAs). If at least 2 metaheuristic optimization algorithms
had a common index, that index was included in the feature
selection set. In other words, instead of combining the fea-
tures of the 10 MOA algorithms, mostly matching indices
were preferred. This made the feature set more effective.
A total of 518 features were selected through the index-
matching process. To further reduce the feature size and
improve performance, the ReliefF algorithm was applied to
the 518 feature set. The ReliefF algorithm is easy and effec-
tive. With the ReliefF algorithm, 518 features are weighted.
A certain thresholding value was selected for the features with
high-weight values. With this technique, the feature set size
was finally reduced to 58. In the classification stage, 6 popular
classifiers (Medium Neural Network (MNN), Support Vector
Machine (SVM), Decision Tree (DT), K-nearest Neighbor
(KNN) Linear Discriminant (LD), and Naive Bayes (NB)) in
machine learning were preferred. The best performance was
achieved with the MNN algorithm and this classifier was used
in the proposed approach.
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V. METHODOLOGY TECHNIQUES

A. TRANSFER LEARNING

The practicality of data acquisition in engineering applica-
tions is often impeded by logistical challenges and associated
costs, resulting in limited datasets for deep learning endeav-
ors. Paradoxically, the performance of deep learning models
exhibits a pronounced sensitivity to dataset size. Addressing
this quandary necessitates the exploration of potential solu-
tions, with transfer learning emerging as a salient avenue.
Transfer learning is a strategic framework concerned with
the preservation and transfer of knowledge derived from
solving one problem domain to the domain of another, albeit
closely related, problem [18]. The core objective of trans-
fer learning, within the framework of a source domain and
learning task, along with a target domain and learning task,
is the enhancement of the learning process governing the
prediction function within the target domain through the
application of insights garnered from the source domain and
learning task [3]. Notably, within the context of deep neu-
ral networks, four principal modalities of transfer learning
are discernible: instance-based transfer learning, mapping-
based transfer learning, network-based transfer learning, and
adversarial-based transfer learning [19].

The utility of transfer learning has been robustly substan-
tiated within civil engineering, particularly in the domain
of image analysis tasks, such as the identification of struc-
tural damage. Such applications are frequently fraught
with challenges associated with either constrained data
accessibility or substantial resource allocation demands for
data collection. Consequently, datasets available for such
applications are often characterized by their meager pro-
portions. Paradoxically, contemporary convolutional neural
network (CNN) models are distinguished by their archi-
tectural intricacy, which renders them reliant on extensive
datasets to mitigate the risk of overfitting. Transfer learn-
ing, therefore, has arisen as an efficacious recourse to
surmount these impediments within the purview of civil
engineering.

In the context of transfer learning applied to CNNs for tasks
such as the categorization of asphalt pavement crack severity,
the operational paradigm typically encompasses two pivotal
phases. In the initial phase, a CNN model is systematically
trained to utilize an extensive image dataset emanating from
the source domain, frequently leveraging resources akin to
ImageNet [20], encompassing a compendium of 1.2 million
images distributed across 1000 categories. This pre-trained
CNN model, herein termed the ““pre-trained CNN model,” is
readily accessible through online repositories. Subsequently,
in the second phase, the pre-trained CNN model is transposed
into the target domain. While preserving the convolutional
layer parameters (i.e., the pre-trained convolutional layers),
requisite adaptations are effected within the fully connected
layers (FC layers) to accommodate the specific output label
requirements, which, in this instance, constitute a binary clas-
sification task. Subsequently, the adapted pre-trained CNN
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FIGURE 2. Representative illustration of the proposed approach.

model undergoes fine-tuning via exposure to the dataset
specifically tailored to the intended application.

For the purposes of transfer learning in this context, the
selection gravitated toward the VGG 16 model, predicated on
its notable proficiency in the classification of the dataset.
VGG16 represents a convolutional neural network archi-
tecture incubated by the Visual Geometry Group (VGG)
at the University of Oxford [20]. It stands as an eminent
exemplar within the realm of deep learning and computer
vision. Noteworthy for its user-friendliness and efficacy as
a pre-trained model across diverse computer vision tasks,
VGG16’s architecture comprises a constellation of 16 lay-
ers, with 13 dedicated to convolutional operations and the
remaining 3 configured as fully connected layers. Notably,
its architectural design is characterized by the utilization
of compact 3 x 3 convolutional filters, characterized by a
unitary stride, alongside the incorporation of max-pooling
layers adopting 2 x 2 windows and employing a stride of
two. This uniform arrangement of convolutional and pooling
layers confers the capacity to capture features across multiple
scales.

B. METAHEURISTIC ALGORITHMS

Metaheuristic algorithms are optimization strategies for solv-
ing difficult optimization problems. Engineering, operations
research, computer science, and other fields make exten-
sive use of metaheuristics. They are especially beneficial for
non-linear, non-convex, and multimodal optimization prob-
lems [21].

Natural processes such as evolution, swarming behavior,
and annealing inspire metaheuristic algorithms, which use
ideas from these processes to guide the search for optimal
solutions. These algorithms do not ensure that the global

VOLUME 12, 2024

O
Matching of Feature Selection O .A
Indexes
o ° f
® O
A 2
A
A O

Feature Selection using 10 metaheuristic
optimization algorithms

. WX e ©
(X X PN

oY X A

Classifier

optimum will be found, but they do strive to discover a
suitable solution in a fair amount of time [22].

For feature selection in various machine learning and
optimization problems, metaheuristic algorithms have multi-
ple advantages. Metaheuristic methods are meant to search
for solutions across the whole search space, to find opti-
mal or near-optimal solutions. This global search capability
qualifies them for feature selection, as they can identify
pertinent features that local search methods may miss. Meta-
heuristics use randomness or probabilistic search algorithms
to explore diverse regions of the search space in a non-
deterministic way. This randomization can aid in escaping
local optima and exploring diverse feature combinations,
resulting in increased feature space exploration. Metaheuris-
tics can be used for a wide range of optimization problems,
including feature selection, without the need for considerable
problem-specific changes. They can be tailored and modified
to meet a variety of objectives and limitations in feature
selection activities. Because many real-world datasets contain
a large number of features, feature selection can be compu-
tationally difficult. Metaheuristic algorithms can frequently
handle high-dimensional data by intelligently exploring fea-
ture space and identifying essential features while reducing
computational overhead. Complex and non-convex objective
functions, such as those found in machine learning models,
may be used in feature selection. Metaheuristics are built
to handle such complex functions by iteratively refining
solutions and gradually enhancing the objective value. Meta-
heuristics find a balance between search space exploration
and exploitation. They rotate between exploration (diver-
sification), which aids in the discovery of new promising
solutions, and exploitation (intensification), which refines
solutions in the search space’s promising areas. This balance
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is especially relevant for feature selection, where it is crit-
ical to investigate various feature subsets while optimizing
speed. Metaheuristics do not require explicit knowledge of
the objective function’s underlying mathematical properties
or gradients. This property qualifies them for feature selec-
tion in situations where the objective function is complex
or not easily differentiable. Many metaheuristic algorithms
can be parallelized or distributed across numerous process-
ing units, resulting in faster convergence and more efficient
exploration of the feature space. Unlike certain optimization
methods, which require derivatives of the objective function,
metaheuristics can work without them. When dealing with
non-differentiable or noisy objective functions, this is useful.
Metaheuristics enable the investigation of trade-offs between
competing aims, such as maximizing classification accuracy
while lowering the number of selected characteristics.

In summary, metaheuristic algorithms offer a powerful and
versatile method of feature selection, allowing for the suc-
cessful exploration of complex and high-dimensional feature
spaces to find optimal or near-optimal subsets of features
for diverse machine-learning applications. ASO, EO, GNDO,
HGSO, HHO, MPA, MRFO, PSO, SMA, and WOA algo-
rithms are used in this study. These algorithms are used
because they are new and popular in metaheuristics. Detailed
information about these algorithms is given in [23], [24], [25],
[26], [27], [28], [29], [30], [31], and [32].

C. RELIEFF ALGORITHM

The ReliefF algorithm is a method for selecting features in
machine learning and data mining. It is especially beneficial
for classification and regression tasks, where the goal is to
choose the most important features (variables or attributes)
from a given dataset to increase the accuracy and efficiency
of a predictive model. The ReliefF is an improvement on
the original Relief algorithm, which Kira and Rendell intro-
duced in 1992. The ReliefF, which stands for ‘“‘Relief Feature
Selection,” is a dataset processing tool that can handle both
continuous and categorical variables [33], [34], [35], [36],
[37]. The algorithm is mostly used in supervised learning for
feature selection. The general steps of the ReliefF algorithm
are as follows.

Step 1 (Initializations): The algorithm begins by selecting
a data instance (sample) at random from the dataset.

Step 2 (Distance Computation): ReliefF computes the
“near-hit” and “near-miss” examples from the same and
different classes for the selected instance. It uses a distance
metric to quantify the difference between attribute values for
these instances.

Step 3 (Feature Relevance Update): Based on the dif-
ferences computed in the previous stage, ReliefF adjusts the
relevance score for each attribute. Higher relevance scores are
assigned to features that contribute more to discriminating
between instances of various classes.

Step 4 (Weight Update): ReliefF changes the weights
of characteristics depending on the relevance scores after

6608

processing a sample. Weights are assigned to more relevant
attributes.

Step 5 (Iteration): Steps 1-4 are repeated for a predeter-
mined number of iterations or until convergence is reached.

Step 6 (Feature Selection): The final stage is to rank the
qualities according to their relevance scores or weights. The
top-ranked characteristics are used in the following machine-
learning model.

The final stage is to rank the qualities according to their rel-
evance scores or weights. The top-ranked characteristics are
used in the following machine-learning model. The weight
equation of the ReliefF feature selection algorithm is given
in Eq. 1.

W)
k .
j— dl (B9Ei5S')
— Wib) - 214 d
mxk
P(C) ¢ diff B, E;my
+Zc;&ctass<&-) [1 — P(class (E))) ijl ok

ey

where both feature is symbolized by x?, the feature set is
symbolized by B, and the instances of the feature set are
E; and S; and the hyperparameter is symbolized by t.

D. CMO-R ALGORITHM

The Combined Metaheuristic Optimization-ReliefF (CMO-R)
feature selection algorithm is a new algorithm that combines
the feature selection power of 10 different metaheuristic
optimization algorithms and the ReliefF algorithm. In this
algorithm, the features that the 10 different metaheuristic
algorithms find strong are first identified. Then, if the feature
found by one algorithm matches the feature found by the
other algorithm, it is considered a strong feature. As the last
step, the feature importance weights of these strong features
are calculated with the ReliefF algorithm. The features with
the highest weights are selected according to the number of
features that the user will specify. The pseudo-code of the
CMO-R algorithm is given in Algorithm 1.

E. PERFORMANCE METRICS

Accuracy (ACC) is the most popular metric used in classifi-
cation problems. This is why accuracy is used as the main
evaluation metric in this study. Sensitivity (Sn), precision
(Pr), specificity (Sp), and F-score metrics should also be used
when there is an imbalance in the number of samples in the
classes. The Area Under Curve (AUC) value also provides
information about the classification success in the classes.
All of these metrics are calculated from the true positive (TP),
true negative (TN), false positive (FP), and false negative val-
ues in the confusion matrix. The ACC, Sn, Sp, Pr, and F-score
metrics calculations are given in Egs. 2-6, respectively.

TP + TN

ACC = 2
TP+ TN + FP+FN
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Algorithm 1 The pseudo-code of the CMO-R Algorithm

CMO-R Algorithm

Input: feature vector (fea), label, and Output:
feature_selection

1: Dbegin

2 function findRepeatingNumbers (matrix) :

3 for each row in the matrix:

4 for each number in row:

5: if number is in repeating numbers:

6 continue

7 else number repeats in the matrix

8 add number to repeating numbers

9: return repeating numbers

10: function ReliefF (X,Y):

11: calculate weights by Eqg.1l

12: indices = sort (weights)

13: selected _indices = indices|[selected_features]

14: return selected _indices
15: function CMO-R(X,Y):

16: indices_1 = ASO(X,Y)
17: indeces_2 = EO(X,Y)
18: indices_3 = GNDO(X,Y)
19: indices_4 = HGSO(X,Y)
20: indeces_5 = HHO (X,Y)
21: indeces_6 = MPA (X,Y)
22: indices_7 = MRFO(X,Y)
23: indices_8 = PSO(X,Y)
24: indices_9 = SMA(X,Y)
25: indeces_10 = WOA(X,Y)
26: combined_indices= [indices_1,...,indices10]
27: mathcing_indices =
findRepeatingNumbers (combined_indices)
28: fea_selectedl = fea[matching_indices]
29: feature_indices = reliefF[fea_selectedl, Y]
30: selected_features =

fea_selectedl [feature_indices]
31: return selected_features
32: feature_selection = CMO-R(fea, label)
33: end

TP
n= 3)
TP + FN
TN
Sp= 4
P = IN ¥ FP )
TP
r=— )
TP + FP
2x TP
F — score = (6)

2xTP+FP+FN

The AUC metric is calculated as the area under the ROC plot.
The ROC plot is plotted as the sensitivity (true positive rate)
change against the 1-specificity (false positive rate) metric.

VI. EXPERIMENTAL STUDIES

All coding of the proposed approach and other algorithms
were performed on MATLAB (2022b) installed Windows
11 pro equipped with the 19 intel processor, 64 GB memory,
and 24 GB graphical card (NVIDIA RTX 4090). MAT-
LAB program was run in GPU mode. The dataset for
training and validation processes was divided using the
10-fold cross-validation. Training option parameters for all
transfer learning approaches (VGG16, SquzeeNet, AlexNet,
ResNet50, and MobileNetV?2) were selected as the same. The
mini-batch size, initial learning rate, and validation frequency
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FIGURE 3. Training and test accuracy graphs for transfer learning with the
VGG16 model.
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FIGURE 4. Training and test loss graphs for transfer learning with the
VGG16 model.

parameters were 64, 0.001, and 30, respectively. The opti-
mizer solver was tuned as the Stochastic Gradient Descent
with Momentum (SGDM). The VGG16 model with transfer
learning was trained and tested on the dataset. Accuracy and
loss graphs (loss function: cross-entropy) for training and
testing are given in Figures 3 and 4. At the end of 350 itera-
tions, the training and test accuracies were 80.32% (Figure 3).
As seen in Figure 4, the loss value of the cross-entropy
function was 0.52.

In the other stage of this study, 5096 deep features were
extracted by using the weights of the fc7 and fc8 layers
of the VGG16 model. In the classification phase, a new
algorithm strategy has been applied to both reduce the com-
putational cost and increase the classification success. The
CMO algorithm selected 518 distinctive features from the
VGG16-based feature set. After this step, a threshold value
of -0.0075 was applied to the Relieff-based weight values in
the CMO-R algorithm, and 58 features were selected. Relieft-
based weight values in the feature set obtained from the CMO
algorithm are given in Fig. 5. In Fig. 6, the 3D representations
of deep features are given in three different cases. In case 1,
CMO-R and CMO feature selection algorithms were not used
for the feature set. In cases 2 and 3, CMO and CMO-R feature
selection algorithms were applied to the feature set. As can be
seen in Fig. 6, the formal distinctiveness between minor and
major classes gradually increases from case 1 to case 3.

In Fig. 7, confusion matrix results are given for the MNN
classifier with the CMO-R algorithm. The proposed approach
achieved a 91.5% accuracy. True positive (TP), true negative
(TN), false positive (FP), and false negative values in the
confusion matrix were 213, 268, 25, and 12, respectively.
As can be seen from the confusion matrix, there is not much
difference in accuracy and error rates between classes.

VII. DISCUSSION
In this section, ablation studies are performed for the strate-
gies used in the model. Studies on asphalt cracks are
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feature selection.

fer learning. Figures 8 and 9 show the accuracy and loss
also included. The transfer learning results of other popu- results for Alexnet, MobileNetV2, ResNet50, and SquzeeNet,
lar pre-trained CNN models in the first ablation study are respectively. As can be seen from Figure 9, the best test
given in Figure 8. In the first ablation study, other popular accuracy (80.92%) score was achieved with the ResNet50
pre-trained CNN models were trained and tested with trans- model, while the worst test accuracy (57.13%) score was
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FIGURE 11. Confusion matrix results for MNN classifier according to
feature selection cases: (a) case 1 (no feature selection), (b) case 2 (CMO
feature selection), (c) case 3 (CMO-R feature selection).

TABLE 1. Performance metrics of classifiers on deep features (4096
features) for VGG16 models.

Classifier Classes TP TN FP FN Sn  Sp Pr  F-Score ACC

MNN Minor 201 256 37 24 0.89 0.87 0.84 0.86 88.2%

Major 256 201 24 37 0.87 0.89 0091 0.89

VM Minor 224 219 74 1 I 075 075 0.86 85.5%

Major 219 224 1 74 075 1 1 0.86

DT Minor 196 256 37 29 0.87 0.87 0.84 0.85 87.3%

Major 256 196 29 37 0.87 087 0.9 0.88

KNN Minor 199 255 38 26 0.88 0.87 0.84 0.86 87.6%

Major 255 199 26 38 0.87 0.88 091 0.89

LD Minor 223 233 60 2 099 0.8 079 0.88 88.0%

Major 233 223 2 60 0.8 0.99 0.99 0.88

Minor 198 256 37 27 0.88 0.87 0.84 0.86
NB 87.6%

Major 256 198 27 37 0.87 088 0.9 0.88

achieved with the AlexNet model. The test accuracy of the
VGG16 model used in the proposed approach was 0.65%
lower than the test accuracy of the ResNet50 model. However,
as seen in Figure 8, the VGG16 model was chosen for the
proposed approach because of the overfitting problem in the
ResNet50 model. In addition, overfitting problems occurred
in models other than AlexNet and VGG16. Loss values of
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FIGURE 12. ROC curves and AUC values for MNN classifier according to

feature selection cases:(a) case 1 (no feature selection), (b) case 2 (CMO
feature selection), (c) case 3 (CMO-R feature selection).

AlexNet, MobileNetV2, ResNet50, and SquzeeNet models
were 0.6745, 1.2425, 0.4328, and 0.4280, respectively.
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TABLE 2. Performance metric results according to the confusion matrix
values in Fig. 11.

Cases Classes TP TN FP FN Sn Sn Pr

Minor 198 256 37 27 088 0.87 0.84 0.86

Major 256 198 27 37 087 0.88 0.9 0.88

Minor 206 261 32 19 092 0.89 0.87 0.89

Major 261 206 19 32 089 092 093 0.91

Minor 213 268 25 12 0.95 091 0.9 0.92

Major 268 213 12 25 091 0.95 0.96 0.94

Figure 10 shows the classification process using deep fea-
tures extracted from the VGG16 model. To achieve the best
performance in the classification process, 6 popular classi-
fiers in machine learning were used, including MNN, SVM,
DT, KNN, LD, and NB.

Table 1 shows the performance metrics generated using
the values in the confusion matrices in Figure 10. Thus,
sensitivity (Sn), specificity (Sp), precision (Pr), and F-score
values were calculated for each classifier and class. Accuracy
(ACC) scores were also calculated for each classifier. As seen
in Table 1, the best accuracy value was obtained with the
MNN classifier (88.2%), while the worst accuracy value was
obtained with the SVM classifier (%85.5). The best average
Sn (0.9), Sp (0.9), Pr (0.89), and F-score (0.88) values were
obtained with the LD classifier. However, the performance
metric scores between the two classes of the MNN classifier
are more balanced.

Figure 11 shows the MNN classifier confusion matrix
results according to the feature selection cases. MNN classi-
fier accuracy was 88.22% without feature selection (case 1),
90.15% with CMO (case 2), and 92.85% with CMO-R
(case 3).

Table 2 shows the performance metric results calculated
based on the confusion matrix results in Figure 11. The best
performance values in Sn, Sp, Pr, and F-score values for both
classes were achieved with case 3 (MNN classifier + CMO-R
feature selection).

Figure 12 shows the ROC curves and AUC values for the
3 different feature selection cases mentioned in Figure 11.
As seen in Figure 12, the average AUC values for cases 1, 2,
and 3 were 0.925, 0.9454, and 0.9533.

VIil. CONCLUSION

In this study, a two-class dataset is created to represent the
condition of asphalt cracks on highways after the earthquakes
in Turkey on February 6, 2023. First, a transfer learning
approach was performed with 5 different popular pre-trained
CNN models. The most optimal performance (80.32% ACC)
with no overfitting was achieved by the VGG16 model.
Deep features were extracted from the fully connected layers
of the VGG16 model to improve the classification perfor-
mance. These features were tested on 6 different popular
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classifiers. The best classification performance was obtained
with the MNN classifier. In the next step, a new feature
selection algorithm is used to further improve the classifica-
tion performance. This algorithm improved the classification
performance by 4.63% and achieved 92.85% classification
accuracy.

The proposed methodology faces several limitations.
Firstly, its reliance on a relatively small dataset raises con-
cerns about its generalizability to larger and more diverse
datasets, as the transfer learning approach, specifically utiliz-
ing the VGG16 model, was necessitated by this constraint.
Additionally, the dependency on pre-trained models like
VGG16 introduces a potential limitation in adaptability
to different network architectures. The incorporation of
the Combined Metaheuristic Optimization-Relieff (CMO-R)
algorithm, involving 10 different metaheuristic optimization
algorithms, adds a significant level of algorithmic com-
plexity that may result in increased computational costs,
limiting its practicality for real-time or resource-constrained
applications. The extensive feature selection process, rely-
ing on CMO-R and ReliefF algorithms, raises concerns
about overfitting to the training data. The methodology’s
reliance on a single classifier, the Medium Neural Network
(MNN), based on its performance, may restrict adaptabil-
ity to diverse classification scenarios where other classifiers
might perform better. Furthermore, the limited explanation
of algorithm choices within CMO-R hinders reproducibility
and understanding. The evaluation based on data from spe-
cific earthquake events may limit the generalizability of the
methodology to other disaster types or scenarios. Lastly, the
application of a thresholding value in the ReliefF algorithm
for feature reduction introduces subjectivity, impacting the
final feature set and overall model performance. In con-
clusion, while the proposed methodology shows promise
in addressing specific challenges, careful consideration of
these limitations is essential for a nuanced interpreta-
tion of its applicability and performance across various
contexts.
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