IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 22 December 2023, accepted 6 January 2024, date of publication 10 January 2024,
date of current version 18 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3352078

==l RESEARCH ARTICLE

A Comparative Analysis of Metaheuristic
Techniques for High Availability Systems

DARAKHSHAN SYED!, GHULAM MUHAMMAD SHAIKH"1,
HANI MOHAMMED ALSHAHRANI“2, MOHAMMED HAMDI2, MOHAMMAD ALSULAMI 2,
ASADULLAH SHAIKH3, (Senior Member, IEEE), AND SYED RIZWAN*

Computer Science Department, Bahria University, Karachi 75260, Pakistan

2Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia
3Department of Information Systems, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia
“Department Computer Science, Iqra University, Karachi 75500, Pakistan

Corresponding author: Darakhshan Syed (darakshansyed.bukc @bahria.edu.pk)

This work was supported by the Deanship of Scientific Research at Najran University are funding this work under the Research Groups
Funding program grant code (NU/RG/SERC/12/27).

ABSTRACT In the ever-evolving technological landscape, ensuring high system availability has become
a paramount concern. This research paper focuses on cloud computing, a domain witnessing exponential
growth and emerging as a critical use case for high-availability systems. To fulfil the criteria, many
services in cloud infrastructures should be combined, relying on the user’s demands. Central to this study
is load balancing, an integral element in harnessing the full potential of heterogeneous computing systems.
In cloud environments, dynamic management of load balancing is crucial. This study explores how virtual
machines can effectively remap resources in response to fluctuating loads dynamically, optimizing overall
network performance. The core of this research involves an in-depth analysis of several metaheuristic
algorithms applied to load balancing in cloud computing. These include Genetic Algorithm, Particle Swarm
Optimization, Ant Colony Optimization, Artificial Bee Colony, and Grey Wolf Optimization. Utilizing
CloudAnalyst, the study conducts a comparative analysis of these techniques, focusing on key performance
metrics such as Total Response Time (TRT) and Data Center Processing Time (DCPT). The findings of this
research offer insights into the varying behaviors of these algorithms under different cloud configurations and
user retention levels. The ultimate aim is to pave the way for developing innovative load-balancing strategies
in cloud computing. By providing a comprehensive evaluation of existing metaheuristic methods, this paper
contributes to advancing high-availability systems, underscoring the importance of tailored solutions in the
dynamic realm of cloud technology.

INDEX TERMS Cloud computing, cloud analyst, high availability, load balancing, metaheuristics, perfor-
mance analysis, swarm intelligence.

I. INTRODUCTION lenges in cloud computing. This study targets one of the

A broad spectrum of users widely uses cloud computing
to solve large-scale computing issues. Cloud computing
services include heterogeneous computing resources such
as CPUs, speed, and memory [1]. Confidentiality, load
balancing, benchmarking, dynamic resources, sustainabil-
ity, information security, optimal resource planning, data
exchange cost, and energy efficiency are all current chal-

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana

most recent additions in the cloud computing world: load
balancing. The production of quality of service (QoS) from
several servers, referred to as a server data centre, is one of
the most widely utilized load balancing uses. Load-balancing
systems are commonly found on popular websites, large chat
networks, high-bandwidth file transfer protocol sites, and
DNS servers [2]. In practice, users would anticipate a partic-
ular level of QoS. Cloud vendors store the data in many cloud
platforms or data centres (DCs). When consumers request
services from cloud service providers, the desired tasks are

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

7382 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0002-5319-5847
https://orcid.org/0000-0002-7296-2052
https://orcid.org/0000-0002-8799-9448
https://orcid.org/0000-0001-6304-9125
https://orcid.org/0000-0001-5765-1291
https://orcid.org/0000-0003-4806-6159
https://orcid.org/0000-0003-3264-185X

D. Syed et al: Comparative Analysis of Metaheuristic Techniques for High Availability Systems

IEEE Access

distributed across multiple servers using virtual machines
(VM). These distinct VMs are allocated to different user
duties. VMs are aided by cloud services, and all receiving
load is spread among the various VMs. On several occasions,
assigning work to different VMs can end in a few VMs
being overloaded or needing more utilization [3]. Different
load-balancing strategies derived from various literature are
used to achieve the aim.
The objectives of this study are mentioned below:

« To investigate the effectiveness of several metaheuris-
tic algorithms (including Genetic Algorithm, Particle
Swarm Optimization, Ant Colony Optimization, Bat
Algorithm, and Grey Wolf Optimization), particularly in
the context of load balancing in cloud computing.

« To analyze the behaviour of the selected metaheuristic
algorithms in various cloud infrastructure configurations
and user retention scenarios using CloudAnalyst.

o To formulate guidelines and suggestions for creating
novel load-balancing algorithms that can be used in
cloud computing based on the knowledge gathered from
the study.

In that way, this study encourages amateur researchers to
participate easily in creating more effective load-balancing
strategies. It will allow relevant academics to do more
research in this area.

A. MOTIVATION

There are multiple motivations for attempting to write a
research paper on the performance evaluation of various
metaheuristic algorithms for load balancing in a cloud-based

architecture, and the primary motivations are as follows [4],
[5], [6], and [7]:

o To address the complexity of cloud environments
because they are inherently complicated and dynamic.
An encouraging substitute is metaheuristic algorithms,
renowned for identifying ideal solutions in challenging
search areas.

« To facilitate researchers to improve Cloud performance
and efficiency by investigating different metaheuristic
algorithms and recognizing approaches that signifi-
cantly increase these metrics.

« To investigate the applicability of various algorithms.
A comparative analysis reveals whether an approach
better suits cloud environment types or load balancing
problems.

« To encourage innovation in cloud computing through the
comparative analysis of metaheuristic approaches. The
study points out the advantages and disadvantages of the
existing strategies, directing further advancements.

« Practical approaches are becoming necessary to satisfy
the growing demands for Cloud Computing as more
companies migrate to the cloud. This evaluation moti-
vates the need to provide better technological solutions
to fulfil these increasing needs.

VOLUME 12, 2024

« To evacuate knowledge gaps in the literature by thor-
oughly comprehending the various metaheuristic algo-
rithms’ performance. It contributes to the corpus of
academic knowledge and is a valuable resource for other
scholars and industry professionals.

This study makes a significant contribution to the field of
cloud computing and may result in cloud services that are
more efficient, cost-effective, and convenient. A comparison
of the current research with prior studies is shown in Table 1.
As indicated in Table 1, filling in the gaps found in the com-
parative study of the body of existing literature is essential
to advancing the subject and guaranteeing thorough research.
Not filling in these gaps may result in several consequences
mentioned below [6], [8], [9], [10]:

« If the research may not fully explain how the algorithms
perform under different scenarios and cloud settings if it
does not cover varied real-world scenarios. Ultimately,
it restricts the findings’ application and might lead to
solutions that are not tailored for various scenarios in
real life.

« If graphical analysis and performance constraints are not
considered, then the research might not be as thorough
or transparent.

o Ifthe researchers do not consider the control parameters,
then they may not be able to offer practitioners helpful
information to improve these algorithms for real world
applications.

+ More informed research may result in adequate con-
clusions in practical applications, particularly in crucial
systems that depend on cloud computing for efficiency
and performance.

Therefore, if these gaps are not filled, the research may
not be as thorough, comprehensive, or practically applicable.
In addition to bolstering the study, addressing these topics
adds much to the corpus of information regarding cloud
computing and metaheuristic algorithms.

B. OUR CONTRIBUTION

In the realm of algorithms used in high-availability systems,
there has been a rise in the utilization of metaheuristic tech-
niques, specifically Swarm Intelligence (SI) algorithms [11].
These algorithms have proven to be solutions for opti-
mal load balancing. This research focuses on analyzing the
efficiency of SI algorithms in improving load balancing
and resource provisioning techniques, which are crucial for
high-performance computing environments.

The study primarily explores known approaches such as
Genetic Algorithms (GA), Ant Colony Optimization (ACO),
Particle Swarm Optimization (PSO) and Artificial Bee
Colony (ABC). Each technique offers unique perspectives
and mechanisms for effectively distributing workloads [19],
[20].

The main contribution of this work is to evaluate SI-based
metaheuristic load-balancing algorithms under various sce-
narios. The behaviour of these algorithms is observed under

7383

IEEE Access

D. Syed et al.: Comparative Analysis of Metaheuristic Techniques for High Availability Systems

TABLE 1. Comparison of the presented study with the previous studies on metaheuristic-inspired load-balancing techniques.

Reference Comparative Varied Cloud Graphical Performance Control
Analysis Scenarios Configuration Analysis Constraints Parameters
[12] v X X X X v
[13] v X v X X v
[14] v X X X X X
[15] v X v v X X
[16] v X v X v v
[17] v X v v v X
[18] v X v v X X
Presented Study v v v v v v

varied scenarios by using CloudAnalyst tool. The study’s
key metrics are Total Response Time (TRT) and Data Center
Processing Time (DCPT). These metrics serve as benchmarks
for comparing performance.

Moreover, this research goes beyond analysis by com-
paring the effectiveness of these metaheuristic techniques.
It provides an overview based on response time and data
centre processing times. Such a comprehensive comparison is
essential for identifying the algorithms in terms of operational
effectiveness and resource management. The main goal of
this study is to guide researchers and professionals in the
field of cloud computing for achieving optimal load balanc-
ing. By assessing these methods, the research helps make
informed choices about selecting and using load-balancing
algorithms in cloud-based settings. This contribution will
play a significant role in advancing availability systems.
The sections of this research article are divided as follows:
Section II consists of the need for load balancing in the
cloud environment. Section III presents the literature review
of various metaheuristic-based load-balancing techniques for
cloud. The comparative study of the discussed SI strategies
based on performance and several quality metrics is presented
in Section I'V. The future possibilities and conclusions of SI
algorithms utilized in cloud applications for load balancing
are discussed in Section V and Section VL.

Il. NEED OF LOAD BALANCING IN CLOUD COMPUTING
Load balancing is a method for evenly allocating additional
dynamic workload among various endpoints. It’s also uti-
lized to boost user satisfaction and resource management and
ensure that no single node is overloaded, resulting in better
system reliability. We can use the available resources via
load-balancing strategies by minimizing resource use (See
Figure 1) [21]. Load balancing also strives to provide flexibil-
ity and agility for applications that may contribute to growth
in the future and demand extra support, as well as to prioritize
operations that need frequent execution above others.
Additional goals of load balancing include minimizing
energy consumption and carbon emissions, preventing bot-
tlenecks, configuration management, and achieving QoS

7384

Backend Services of Cloud

| Load balancer

-+
>

! Resilience Systems to

| [public highly available IP ! control Failure. :|

e |
= &
T u

Single User

8

Mobile devices

Multiple Users

FIGURE 1. The architecture of load balancer in cloud computing.

standards for optimal task scheduling () [22], [23]. Workload
mapping and load balancing methods that consider a variety
of characteristics are necessary. A load balancer plays a vital
role in enhancing cloud services’ overall performance and
reliability. Various QoS parameters are listed below:

« Resource Utilization: Load balancing helps evenly dis-
tribute tasks across all available servers, ensuring that
every server is adequately utilized. It optimizes the use
of hardware resources.

« Resilience: Load balancing makes adding new servers
to the system easier, promoting scalability. To manage
growing workloads without performance degradation,
this is crucial.

o High Availability: It improves application availability
by rerouting traffic from sick or overloaded servers to
healthy ones, guaranteeing uninterrupted service avail-
ability.

o Cost-Effectiveness: Maximizing the usage of current
resources through effective load balancing can save
operating expenses by preventing the need for needless
additional infrastructure.

o Optimal load Distribution: Load balancing ensures that
tasks are divided according to each server’s available
memory, which results in high efficiency.

VOLUME 12, 2024

D. Syed et al: Comparative Analysis of Metaheuristic Techniques for High Availability Systems

IEEE Access

« Compliance: It can assist in meeting specific regulatory
and compliance requirements by controlling where data
is stored and processed.

o Improved User Experience: By ensuring applications
are running smoothly and available when needed, load
balancing enhances the end-user experience.

In summary, load balancing in cloud computing is not just
about distributing workloads across multiple servers; it’s a
comprehensive strategy that touches upon various critical
aspects of cloud service delivery, from operational efficiency
and scalability to security and user satisfaction.

A. SERVICE MODELS OF CLOUD COMPUTING

A variety of service models are available to utilize cloud
computing. These services are created to have specific quali-
ties and meet the organization’s needs. These models include
Software as a Service (SaaS), Platform as a Service (PaaS)
and Infrastructure as a Service (IaaS) [10].

e In the scope of SaaS, a service provider allows the use
of one or more apps hosted on a cloud platform.

e InPaaS, a service provider provides users the resources
to operate on cloud infrastructure and support for Soft-
ware that the user has built or procured.

e The consumers in an IaaS model have been given the
ability to control processes regulate storage, connec-
tion, and other fundamental computing resources. They
are all helpful in managing arbitrary Software, includ-
ing operating systems and apps.

B. TYPES OF CLOUD COMPUTING

One or more deployment strategies can be used to launch the
services. To leverage various features of the cloud infrastruc-
ture, these models incorporate public, private, community,
and hybrid cloud [24]. The public cloud infrastructure is made
publicly available to major industrial groups or the public.
In the case of the private cloud, the enterprise that designs
the infrastructure cloud implementation is the only one with
access to it. A third party or the business itself can handle pri-
vate clouds. Numerous enterprises share a community cloud
infrastructure and serve a specific community with everyday
issues. It can be administered by the company or by a third
party, and it can be implemented off-site or on-site. At the
same time, there might be two or more clouds in a hybrid
deployment paradigm, such as private, public, or community
clouds.

C. CATEGORIZATION OF LOAD BALANCING ALGORITHMS
IN CLOUD COMPUTING

Two basic categories can be used to categorize load balancing
in cloud services [25]:

1) STATIC LOAD BALANCING

The static approach needs to consider the base station’s cur-
rent position. All the connections, as well as their attributes,
are known ahead of time. This sort of method’s operation is

VOLUME 12, 2024

based on predetermined knowledge. It is simple to implement
and is independent of appropriate levels of real-time data [10].

2) DYNAMIC LOAD BALANCING

The dynamic balancing strategy considers the state of the
system at run time. Changes in the structure of nodes are
the basis for its operation. Dynamic strategies are challeng-
ing to construct, but they optimally distribute resources and
optimize load once in place.

IIl. LITERATURE REVIEW

Many studies have been conducted to investigate and analyze
SI-based task scheduling methods in a cloud-based frame-
work for optimal load balancing [4]. Deepa and Cheelu [26]
presented a comparative study on static and dynamic load-
balancing algorithms. The static algorithms work correctly in
an environment with a low load shift. Round robin (RR), Min-
Min, Max-Min, and Opportunistic Load balancing algorithms
are examples of static algorithms. Chaczko et al. [27] dis-
cussed RR as the most straightforward scheduling algorithm
that promotes the idea of time frames. In this approach, the
total available time is sliced into different slots. Each VM has
a fixed slot to accomplish the assigned task(s). Ultimately,
a user can utilize only the given time slot. If the task is not
completed within the allocated period, the client is interrupted
and must wait for the next slot. In that way, this algorithm
picks the load randomly, so there is no check for underutiliza-
tion. A weighted round-robin was created to address some of
the problems with the round-robin algorithm [28].

Jobs are dispersed based on the weights supplied to each
server. Processors with more processing power are given a
higher value. As a result, the servers with the higher weights
will get more work. Servers will receive evenly distributed
traffic if all weights are equivalent. At the very first instance,
the Min-Min algorithm monitors and calculates the nodes’
minimum completion time. This minimum completion time
is then used to assign the task to a particular VM. This action
will go in a loop until all jobs are allocated to the VMs.

On the contrary, Max-min [26] employed the inverse
method of min-min, in which the task with the shortest com-
pletion time is prioritized. In this approach, the estimated
completion time of all jobs is calculated initially, and then a
job that requires the most time to finish is chosen. Opportunis-
tic is a static load balancing algorithm that does not consider
the VMs’ execution time or network load. It assigns jobs to
the VMs at random. Because it does not estimate the VMs’
execution time, task processing requires much time.

According to the discussion, more than static strate-
gies are needed for heavy load transmission. As a result,
to avoid the loopholes in the static approach, dynamic algo-
rithms are considered. These algorithms to distribute the
load have distinct policies such as transfer policy, selection
policy, position policy, and knowledge-based policy. In a
dynamic algorithm, advanced knowledge about the resource
and job is optional because the resource is continuously
monitored [29]. Larka et al. [30] suggested an approach for

7385

IEEE Access

D. Syed et al.: Comparative Analysis of Metaheuristic Techniques for High Availability Systems

reducing response time, expense, and throughput parameter
optimization. Thomas et al. [31] used a dynamic approach
to minimize makespan. However, they still need to mini-
mize makespan time for many tasks. Additional dynamic
algorithms that tackle the work scheduling problem in a
cloud context use heuristic approaches such as the max-min
algorithm and metaheuristic approaches such as ACO, GA,
PSO and ABC.

Dan et al. [32] utilized a genetic algorithm (GA) in com-
bination with a local search technique for optimal load
distribution. The core contribution of the proposed technique
is to minimize the makespan. It also lowers the number
of VMs who will miss their schedules. Furthermore, when
evaluated and confirmed against other current strategies, this
combination strategy enhanced the response time of VMs.
This algorithm ensures that the client job’s QoS requirements
are met. PSO is another dynamic algorithm inspired by a
swarm of flying birds. The swarm of flying birds searches
for a suitable landing spot, and determining which one to
use is difficult [33]. A variety of elements influence the
takeoff. The availability of food, as well as the threat of
predators, are among these considerations. Particle swarm
optimization integrates workload with decreased response
time for every assigned task, according to measurements of
the productivity of numerous different algorithms. PSO has
a lower cost of computing and is straightforward to compre-
hend and apply [34], [35]. It also works flexibly to deal with
the tradeoff involving convergence and divergence and, in the
end, provides the best answers to the complex problem of
load balancing in Cloud Computing. Ant colonies were the
inspiration for ACO [36]. With a group of VMs, look for
better alternatives to a particular problem. A weighted graph
is created to discover the best potential pathway. The load
balancer gradually produces solutions by travelling along the
graph. A speculative solution creation technique is a set of
constraints linked to nodes and networks, the values of which
are altered at runtime by the balancer.

ABC [37] is one of the most popular swarm intelligence-based

algorithms that efficiently solve complex optimization
problems; however, there seems to be some progress in
exploitation, but it is good in terms of exploration. ABC is
an exhaustive search algorithm that inspires investigation and
is used for severe challenges. GWO [38] is a job allocation
approach designed to balance load optimally. This algorithm
is based on how wolves hunt. The load-balancing approach is
broken down into four stages, just as wolves live in a group of
four. Mahato et al. [39] utilizes GWO to achieve optimal load
balancing in cloud computing. The target of this is to reduce
the makespan by continuously updating the load on VMs and
number of incoming tasks.

The summary of the various popular metaheuristic algo-
rithms used for load balancing in Cloud Computing based
on control parameters, performance constraints and prob-
lem applied are presented in Table 2. The overview of the
quality-of-service parameters targeted by various metaheuris-
tic algorithms is presented in Table 3.

7386

A case study of Amazon AWS [40] presents a novel
approach to load balancing based on many parameters by
utilizing the concept of BAT algorithm. The recommended
algorithm affects how the workload-sharing and task alloca-
tion between VMs in a data centre unfold effectively. There
are two distinct layers for modelling. The first section is
the pre-classification of the jobs in ascending order using
the ‘“Bat-algorithm” meta-heuristic. The second is assign-
ing work to a certain number of virtual machines (VMs)
with about equivalent performance. The suggested approach
provides the optimal amount of VMs to complete the task.
Depending on the task scales, it distributes jobs among VMs
with the certainty of a balanced load distribution. It increases
the total number of possible assignments of tasks to VMs
in either parallel or series manner. Lastly, consider the local
queue. Additionally, it can move tasks from one level to the
preceding one to avoid overloaded and underutilized VMs.

IV. TARGETED ALGORITHMS FOR LOAD BALANCING IN
CLOUD COMPUTING BASED ON METAHEURISTICS

This study targets Genetic Algorithms (GA), Particle Swarm
Optimization (PSO), Ant Colony Optimization (ACO), Bat
Algorithm (BAT) and Gray Wolf Optimizer (GWO). Every
approach has unique characteristics and can be used for mul-
tiple aspects of comparative analysis related to load balancing
in cloud computing (See Table 2). Comprehending these
attributes is essential to realize that every algorithm may
exhibit distinct performance in diverse conditions.

GA is famous for reducing the makespan to a considerable
degree. For example, ACO is well known for its effectiveness
in path-finding and scheduling tasks, essential to cloud com-
puting load balancing [41], [42], [43]. GWO is also gaining
attention because of its improved convergence() [44], [45].
PSO is best suited for providing a globally optimized solu-
tion [46]. BAT is a well-suited algorithm for optimal resource
utilization [47].

The rationale for choosing these algorithms is based on
their inherent properties that align closely with the require-
ments of cloud load balancing. These algorithms were
selected because of their intrinsic qualities, which closely
match cloud load balancing requirements.

A. GENETIC ALGORITHM

According to Makasarwala et al. [48], the GA plays a critical
role in load balancing. Prioritization is used to begin popula-
tion activation. The time is used to determine the request’s
priority. The job’s duration determines it. The longer the
job, the more time it takes. The demand necessitates less
time and is made earlier. Chromosomes are selected based
on fitness functions. Based on this, mapping and swapping
is performed. After that, a chromosome is added to the new
population. It all will go in a loop until or unless the ter-
mination condition is met. This technique provides a better
average response time. Zhou et al. [49] presented an improved
version of GA by utilizing the concept of greedy strategy.
The idea is to track all the VMs in a loop. In that way,

VOLUME 12, 2024

D. Syed et al: Comparative Analysis of Metaheuristic Techniques for High Availability Systems

IEEE Access

TABLE 2. Comparisons between the targeted algorithms based on performance constraints, control parameters and problems applied.

Criteria GA PSO ACO Bat GWO
Based on Necessitates less Slow convergence. Stagnation phase. Mult‘iple iteratilons are Improved
performance knowledge of the Can stuck in local Exploration and required to achieve the convergence speed.
constraints targeted problem. optimum. exploitation rate. optimum solution. Limited solving

Designing operators
correctly can be
difficult.

Time consuming.

Statistics of mutation

The scope of the

Based on and crossover. problem.

control The fitness value Coefficients of

parameters scaling. acceleration.

The population's size. Number of particles.

Neighbour-hood
size.
Number of
iterations.
The variables that
scale the involvement
of the cognitive and
social elements.

Based on Timetabling and Optimization

prob.lems scheduling problems. problems

applied Global optimization visual effects.

Convergence speed is
slow.

Alpha
Beta
Evaporation rate

Solve challenging
optimal solution
situations using
approximations.

Population size
No. of Maximum
cycles

High-dimensional
problems.
Optimization
problems.

accuracy.
Poor local exploring
potential.

Initial position.
inertia weight.
Adjustment
coefficient.
Inertial weight and
other parameters.

Optimize
engineering design
problems.

problems.
Problem domains that
have a complex fitness
landscape.

NP-hard problems.
Integer programming
and minimax
problems,
Scheduling problems

if any VM is available at run time, the job can be shifted
to it from any overloaded VM. All these calculations are
made based on completion time. This method not only dis-
tributes the traffic in the most efficient way possible, but it
also increases resource utilization. Basu et al. [S0] proposed
another improved technique of GA. Every chromosome in the
population is regarded as a node in this approach. A node
is assigned to each VM. Every node’s VMs correspond to
a chromosome’s genetics. After performing crossover and
mutation processes, optimization techniques were applied to
acquire the resulting job allocation.

Saadat and Masehian [51] presented a hybridized
bi-modular technique for load balancing in the cloud using
a genetic algorithm. The proposed methodology has proven
superior to previous techniques regarding load balancing
and resource utilization. Although the second component
emphasizes incorporating fuzziness, the first module applies
Genetic Algorithm to identify the optimal task arrangements.
The objective function was successfully accomplished based
on their respective work queuing of detecting occupied server
configurations. The suggested architecture offers a fuzzy
performance for the availability of services.

GA provides robustness, reliability, and scalability in
a cloud computing environment. Computer tests are also
conducted in this study, with the best solution being dis-

VOLUME 12, 2024

played. As a result, the user acceptance rate improves.
Gulbaaz et al. [52] introduced a revolutionary load-balancing
system inspired by GA. This load balancer considers the
actual load measured in a million instructions allocated to
virtual machines (VMs).

Additionally stressed is the need for multi-objective
optimization to optimize makespan and load balancing.
Experiments use skewed, regular and uniform workload dis-
tributions with varying batch sizes. It has shown notable
progress compared to this enhanced version of GA to other
cutting-edge methods for makespan, throughput, and load
balancing. Goar et al. [53] further advanced the Improved
GA [52]. This Enhanced Improved GA is targeted to min-
imize the number of migrations. The proposed technique
makes the shifting of load faster and more reliable by adjust-
ing the estimation points for mutation. After performing
tests, this algorithm is better in many QoS requirements than
IGA [52].

B. PARTICLE SWARM OPTIMIZATION ALGORITHM

According to PSO, load balancing in Cloud systems is
presented by Alguliyev et al. [54]. The approach for
migrating tasks requires a lot of computational power
to a high-performance virtual machine. Each scheduling

7387

IEEE Access

D. Syed et al.: Comparative Analysis of Metaheuristic Techniques for High Availability Systems

TABLE 3. Review of metaheuristic algorithms based on performance constraints.

Authors [Reference] Algorithms RT T MS EC S RU
Makasarwala and Hazari [48] GA X v v X X X
Gulbaaz et al. [52] Improved GA X v v X X v
Alguliyev, et al. [54] PSO v X X X X v
Golchi et al. [57] IPSO v X v v X v
Valarmathi and Sheela [66] Hybrid PSO v X v X v v
Liand Wu [60] ACO v X X v X X
Ragmani et al. [62] Improved X X X X v

Fuzzy
ACO
Mosa et al. [67] BAT X X v X X X
Muthsamy and Chandran [68] Improved v X N X X v
Bat
Gohil and Patel [69] GWO N4 X v X X X
Sefati et al. [13] Improved Ng v Ng X v v
GWO

procedure is given a proportional weight to present its rel-
evance. These weights eventually aid in identifying the best
solution [55].

PSO is more effective when dealing with discrete problems
than other optimization approaches [56]. Golchi et al. [57]
targeted the issue associated with PSO, as PSO is particu-
larly receptive to initiating a state that disturbs the results’
quality. Therefore, an improved version of PSO is proposed.
This hybrid approach uses the firefly algorithm to limit the
range of search then in the second phase, optimal response is
accomplished by using the Improved PSO.

Mapetu et al. [58] presented another variation in PSO as
Binary PSO. The problem statement for this algorithm is to
save time. The allocation of jobs is performed after analyzing
the operational limitations. Its objective is to organize the
VMs that users use to complete a task. With adequate load
balancing and work scheduling, this notion gives scalability.
Miao et al. [59] presented an Adaptive Pbest discrete PSO to
overcome the randomness found in PSO. This algorithm first
found all the reasonable solutions, saved them, and used them
to update the best position of particles dynamically.

C. ANT_COLONY OPTIMIZATION ALGORITHM

ACO is a community-based metaheuristic technique for
quickly evaluating viable alternatives to complicated prob-
lems [36]. Li and Wu [60] consider the quality requirement
of users while assigning jobs. To improve the QoS the idea is
to impose the Project management approaches with Simple
ACO. The essential premise for choosing the appropriate job
scheduling priority for the ant colony algorithm is used to
achieve load balancing. In this context, the scheduler can
be compared to an ant and the scheduling phase to an ant
foraging activity.

7388

Gupta and Garg [61] also promoted ACO for load bal-
ancing. The idea is to use the starting time of a particular
task and compute the duration to complete that task. Using
the completion of these tasks, the beginning time of the
following task(s) can be determined. When all the activities
are completed, the total completion time is used to assign
tasks to VM(s).

The ant concept is used to assign tasks to only the available
resources. The fitness function is assessed for each node to
announce the search strategy. Then, after achieving the local
search for every node, it eventually leads to a global search
with better results.

Ragmani et al. [62] proposed Improved ACO by including
fuzziness in ACO. This technique presents an optimal solu-
tion and is convenient for complex networks with massive
load. Simulation results show that this approach reduces the
response time to almost 81%. Junaid et al. [30] proposed a
Hybrid ACO to achieve multi-task scheduling. This algorithm
improves the QoS requirements by minimizing the makespan
and migration time.

D. BAT ALGORITHM

BAT is an optimization technique based on the echolocation
phenomenon. BATs utilize their hearing to track down their
prey. When bats make sound, they travel to various prey
available in frequency form. After collecting all of the signals,
they determine the distance using this frequency [63]. The
same concept may be applied to load balancing, where each
node runs independently and focuses on keeping coordi-
nation localized. The BAT approach was tested in VM by
Ullah et al. [47] to see if it enhances load balancing in cloud
environments. The concept is that whenever a job requires
entertainment, the best VM from all participating Nodes is
considered initially.

VOLUME 12, 2024

D. Syed et al: Comparative Analysis of Metaheuristic Techniques for High Availability Systems

IEEE Access

An improved BAT algorithm is presented to produce addi-
tional optimum and finer outcomes [64]. The algorithm must
be run iteratively for this to be feasible. The BAT algorithm
identifies the best server among the accessible servers when-
ever a task needs to be processed. Simultaneously, the load
scheduler determines the job form and resource requirements,
as well as the best virtual machine (VM) for the execution of
tasks. If the available server can meet the criteria, the load is
allocated; if it is too high, it is divided among other servers.
This method ensures load balancing by all servers occupied,
ensuring they are neither underloaded nor overloaded. Not
only does the proposed solution reduce response time, but it
also executes load balancing with minimal delays.

E. GRAY WOLF OPTIMIZATION ALGORITHM

The GWO approach begins by gathering all task and resource
details and determining whether or not the distribution
requirements have been met [65]. The scheduler is allotted a
resource after examining the best option. It aimed to minimize
the time it takes to manufacture anything, the total cost, and
the number of tasks that can be completed in the time allotted.

Gohil and Patel also suggest a combined approach of PSO
and GWO [69] to achieve the best availability of VM(s)
to balance load more efficiently. It is recommended in this
strategy first to apply GWO to generate the best position as
alpha, i.e. X,. After that, rather than determining the perfect
location, PSO is carried out with the help of alpha. As aresult,
establishing an objective function that efficiently manages
load in a cloud environment is the technique’s primary tar-
geted problem. The purpose of the proposed technique is to
add randomness in GWO to avoid premature convergence.

Xingjun et al. [70] presented a Fuzzy logic-based GWO
Algorithm to make the technique more effective. The main
target of this approach is to improve the response time by
managing load. The algorithms first find the overloaded
nodes. In case of the arrival of a request, the load is assigned
to those VMs that are not overloaded recently. To make GWO
stable, the researchers add fuzziness to the technique for
better load adjustment. Despite achieving a better response,
the convergence and degree of imbalance were not targeted
as QoS parameters. Ouhame et al. [71] targeted the problem
statement of failure in allocation method. In this first instance,
this research highlights the main two categories i.e., overuti-
lized and underutilized. The Gray wolf improves the search
strategy initially before being used by the ABC algorithm to
improve it further. As a whole, efficiency, stability, commu-
nication cost, and power consumption are all improved with
this hybrid methodology.

Table 3 presents a review of specific metaheuristic algo-
rithms based on performance constraints. Where; ‘R’ is the
Response Time, ‘T’ is the Throughput, ‘MS’ is the Makespan,
‘EC’ is the Energy Conservation, ‘S’ is the Scalability, and
‘RU’ is the Resource Utilization. It can be summarized as:

o The algorithms that adhere to real-time constraints are
PSO, Bat, and ACO. It implies that they might be appro-

VOLUME 12, 2024

priate for applications that need real-time processing or
swift responses.

« High throughput is only demonstrated by GA and GWO.
Specific algorithms may be more effective when pro-
cessing significantly high traffic quickly.

« GA, PSO, BAT, and GWO possess improved makespan
efficiency. It suggests that computers with fewer mem-
ory resources would benefit more from these techniques.

o The only algorithms that adhere to minimal energy con-
sumption limits are ACO and GWO. In applications
where energy is a concern, they might be selected.

« Both PSO and Improved GWO exhibit scalability,
allowing them to grow to do additional tasks to VM
assignments or to manage sudden traffic spikes.

« High resource utilization is observed for Improved GA,
PSO, TIPSO, Hybrid PSO, Fuzzy ACO, Improved Bat,
and Improved GWO. It demonstrates that they can use
system resources effectively.

From here, it can be concluded that different algorithms,
such as PSO and GWO, exhibit distinct limitations and are
scalable. At the same time, improved GA is noteworthy
for its throughput and utilization of resources, but it’s not
scalable or energy efficient. PSO and its variants (PSO,
IPSO, and Hybrid PSO) have good real-time performance
and efficient use of resources but poor throughput and energy
efficiency. The real-time performance, makespan efficiency,
and resource utilization of GWO and its enhanced version are
exceptional. Its modified version offers substantial through-
put as well. The BAT algorithm and its enhanced version
(although they lack other QoS) perform well in real-time and
makespan.

V. RESEARCH METHODOLOGY

The research methodology is designed to provide a com-
prehensive and systematic evaluation of metaheuristic algo-
rithms in the context of cloud computing, offering significant
insights into their application for enhancing the performance
and reliability of cloud-based systems (See Figure 2).

The study first selects several prominent metaheuristic
algorithms for analysis, including the GA, PSO, ACO, Bat
Algorithm, and GWO. The rationale for this choice is
its applicability and possible effectiveness concerning load
balancing in cloud computing configurations. The study
simulates a cloud computing infrastructure by establish-
ing a virtual environment with CloudAnalyst, a well-known
simulation tool. With the help of this tool, a variety of config-
urations and scenarios typical of cloud systems in the actual
world can be modelled. The CloudAnalyst environment is
used to implement each of the chosen algorithms. It entails
setting up the algorithms to specifically deal with the issue of
load balancing amongst virtual machines in a cloud configu-
ration. Every algorithm can dynamically remap resources in
response to varying loads according to the implementation.
The study evaluates each algorithm’s performance through a
series of experiments carried out with CloudAnalyst.

7389

IEEE Access

D. Syed et al.: Comparative Analysis of Metaheuristic Techniques for High Availability Systems

| Selection of metaheuristic algorithms |

v

Setup the configuration of cloud environment using CloudAnalyst

!

| Implementation of metaheuristic algorithms in CloudAnalyst |

v

| Perform experimentation on CloudAnalyst |

!

Perform comparative analysis

v

Declare evaluation and insights

FIGURE 2. Process flow of the proposed methodology.

These tests simulate various load scenarios and cloud
configurations to comprehend the behaviour of the algo-
rithms under different circumstances. Significant perfor-
mance parameters are recorded for each experiment, includ-
ing Total Response Time (TRT) and Data Centre Processing
Time (DCPT). The collected data is examined to evaluate
how well the algorithms perform regarding various metrics.
Finding each algorithm’s advantages and disadvantages con-
cerning response time and processing time across various
cloud configurations is the primary goal of the analysis.

Based on the comparative analysis, the paper assesses how
well each method performs in cloud computing environments
in terms of establishing effective load balancing. We derive
some insights into how these algorithms may be coupled or
utilized to create novel load-balancing schemes that meet the
changing needs of cloud computing environments. The study
aims to provide practical insights that can guide the creation
of more sophisticated and specialized load-balancing systems
for cloud computing.

VI. PERFORMANCE EVALUATION AND CONSIDERATIONS
This section presents the performance analysis of the targeted
metaheuristic-based load balancing algorithms in terms of
overall response time and data centre processing time through
simulations.

A. CLOUD ANALYST

For the experimental analysis, cloud analyst [72] is used,
designed to help researchers and practitioners manage and
simulate the cloud environment. It allows users to quickly and
easily assess the requirements of large-scale Cloud applica-
tions in terms of geographic distribution [73]. It is made up of
three parts: the data center (DC), the user base (UB), and the

7390

Internet (IR). The domains’ representation of cloud analyst is
demonstrated in Figure 3, while Figure 4 depicts the basic
operation of load balancer on which Sl-based algorithms
are applied. Figure 5 shows the cloud analyst’s environ-
ment picture [74]. It allows you to simulate DC deployment,
UB availability, and how tasks are distributed to different
DCs with different costs. This application aids in the man-
agement of appropriate load balancing across multiple UBs
with accompanying DC and internet connections.

Graphical User Interface
hJ

Simulator
¥

User Base

Load ;)
Balancing e | >/ N ﬁ {
Strategy (See : {)

tegy 5 Intermet by J A
Dataqmr =

Figure 3) & o
— Internet Cloudlet
Coniraller |
: |
CloudSim |
Datacenter Region CloudApp Service
> ﬁ 4 Broker
CloudSim VM

FIGURE 3. Domains’ representation of CloudAnalyst.

UBn

N R

N

{?EV P‘I,E,ﬁ_ = E(@«

VM Index Table

VM == Available or
Overloaded

FIGURE 4. Working of load balancing algorithm in CloudAnalyst.

B. CONFIGURATION OF SIMULATION

The configuration of the various components of the cloud
analyst tool is required to analyze various load-balancing
policies. As shown in Tables 4-7, the settings for user base
configuration, application deployment configuration, data

VOLUME 12, 2024

D. Syed et al: Comparative Analysis of Metaheuristic Techniques for High Availability Systems

IEEE Access

TABLE 4. Configuration of user bases.

Name REGION RPUPH DSPR PHS PHE APU AOPU
(bytes) (GMT) (GMT)
UB1 0 60 100 3 9 1000 100
UB2 1 60 100 3 9 1000 100
UB3 2 60 100 3 9 1000 100
UB4 3 60 100 3 9 1000 100
UBS 4 60 100 3 9 1000 100
UB6 5 60 100 3 9 1000 100
TABLE 5. Configuration of application deployment.
Data Center No. oF VMs Image Size Memory Bandwidth
DCl1 5 10000 512 1000
DC2 5 10000 512 1000
DC3 5 10000 512 1000
DC4 5 10000 512 1000
DC5 5 10000 512 1000
DC6 5 10000 512 1000
TABLE 6. Configuration of data centers.
Name R Architecture OS VM CPV MC e DC PHUs
($/Hr) ($/s) ($/s) ($/Gb)
DC1 0 X86 Linux Xen 0.1 0.05 0.1 0.1 1
DC2 1 X86 Linux Xen 0.1 0.05 0.1 0.1 1
DC3 2 X86 Linux Xen 0.1 0.05 0.1 0.1 1
DC4 3 X86 Linux Xen 0.1 0.05 0.1 0.1 1
DC5 4 X86 Linux Xen 0.1 0.05 0.1 0.1 1
DC6 5 X86 Linux Xen 0.1 0.05 0.1 0.1 1
TABLE 7. Physical hardware details.
D Memory Storage (Mb) Available No. of Processors Processor Speed VM Policy
(MB)
0 204800 100000000 1000000 4 10000 Time shared
1 204800 100000000 1000000 4 10000 Time shared
2 204800 100000000 1000000 4 10000 Time shared
3 204800 100000000 1000000 4 10000 Time shared

centre configuration, and load balancing policy have all been
configured. For the various user bases, we chose different
parts of the world. As in Figure 5, the simulated scenario
shows six different datacenters and six user bases placed in
different geographical locations on the map. Also, for the
simulation, we chose 10 for the user grouping factor in user
bases, 10 for request grouping factor in Data Centers and
100 for the executable instruction length per request.

VOLUME 12, 2024

Where; ‘RPUPH’ is the request per user per Hour, ‘DSPR’
is the Data size per request, ‘PHS’ is the Peak Hours Start,
‘PHE’ is the Peak Hours End, ‘APU’ is the Average Peak
Users and ‘AOPU’ is the Average Off-Peak Users (See
Table 4).

Where; ‘OS’ is the Operating System, ‘VM’ is the Virtual
machine used, ‘CPV’ is the Cost per VM used, ‘MC’ is
the Memory Cost, ‘SC’ is the Storage Cost, ‘DTC’ is the

7391

IEEE Access

D. Syed et al.: Comparative Analysis of Metaheuristic Techniques for High Availability Systems

TABLE 8. Comparison of load balancing algorithms in term of Overall Response Time (RT) (UB=10 and DC=5).

Algorithms No. oF UBs No.of DCs No. of VMs Overall RT
Ant Colony Optimization 10 5 25 100.02
Particle Swarm Optimization 10 5 25 100.33
Genetic 10 5 25 100.65
Bat 10 5 25 100.50
Gray Wolf Optimization 10 5 25 100.21

8 Oy -0 %
e

Contaure
smuanin
Ol biavsat
[Ly——

FIGURE 5. Various regions, user bases and data centres worldwide are
depicted.

Data Transfer Cost and ‘PHU’ is the Physical Hardware Unit
(Table 6).

C. SIMULATION RESULTS

The best way to test an algorithm in cloud computing is
through simulation and virtual experimentation. For each
VM load balancing scheduling algorithm, the parameters
described in the configuration section were employed indi-
vidually, and the metrics were calculated based on the results.
The testing criteria are divided into five scenarios to obtain
the results.

1) SCENARIO 1

In the first scenario we have initialized user bases (UBs),
datacenters (DCs) and virtual machines (VMs) as 10, 5 and
25, respectively (see Table 8). After analyzing it, we have
found that based on response time, the performance of ACO
outperforms all of them, as shown in Figure 6.

2) SCENARIO 2

In the second scenario, we have initialized the values user
bases, data centers, and virtual machines as 20, 5 and 25,
respectively (see Table 9). After analyzing it we have found
that based on response time, the performance of ACO outper-
forms among all of them as shown in Figure 6.

7392

o &
& &, ime (wi
i Overall Response Time (with 10 UBs)
Q H Overall Response Time (with 20 UBs)

FIGURE 6. Overall Response Time when UBs=10 and 20 with DCs=5 and
VMs = 25. (See Table 8 and 9).

TABLE 9. Comparison of load balancing algorithms in term of Overall
Response Time (UB=20 and DC=5).

Algorithm No. No. No. Overal
s OF of of IRT
UB DC VM
S s s

Ant Colony 20 5 25 100.15
Optimization
Particle Swarm 20 5 25 103.49
Optimization
Genetic 20 5 25 106.68
Bat 20 5 25 105.59
Gray Wolf 20 5 25 102.14
Optimization

Table 8 demonstrates that when the UB is 10, ACO is 0.31
% superior to PSO, 0.63 % better than GA, 0.48% better than
Bat, and 0.19 % faster than GWO regarding overall response
time. The acquired results of ACO over others enhance when
the UB is increased from 10 to 20.

Table 9 demonstrates that when the UB is 20, ACO is
3.34% better than PSO, 6.52 % better than GA, 5.43 % better
than Bat, and 1.99 % better than GWO in terms of overall
response time.

3) SCENARIO 3

In the third scenario, we have initialized the values of user
bases, data centres and virtual machines as 10, 5 and 25,
respectively (see Table 10). After analyzing it we have found

VOLUME 12, 2024

D. Syed et al: Comparative Analysis of Metaheuristic Techniques for High Availability Systems

IEEE Access

TABLE 10. Comparison of load balancing algorithms in terms of overall
data center processing time(dcpt) (UB=10 and DC=5).

Algorithm No. No. No. Overal
s OF of of 1
UB DC VM DCPT
S s s
Ant Colony 10 5 25 5.56
Optimization
Particle Swarm 10 5 25 7.12
Optimization
Genetic 10 5 25 8.61
Bat 10 5 25 9.39
Gray Wolf 10 5 25 6.06
Optimization

that on the basis of datacenter processing time, the perfor-
mance of ACO outperforms among all of them as shown in
Figure 7.

%5'\0 D Overall Data Center Processing Times (with 10 DCs)
u Overall Data Center Processing Times (with 20 DCs)

FIGURE 7. Overall data centre processing times when DCs=5 and 10 with
UBs=5 and VMs = 25. (See Table 10 and 11).

4) SCENARIO 4

In the fourth scenario, we have initialized the values
of user bases, data centres and virtual machines as 10,
10 and 25, respectively (see Table 11). After analyzing
it, we have found that based on data centre processing
time, the performance of ACO outperforms all of them,
as shown in Figure 7. The algorithm successfully balances
the load based on the accessibility of the central memory
unit.

Table 10 demonstrates that when the DC is 10, ACO is
28.06 % superior to PSO, 54.85% better than GA, 68.88%
better than Bat, and 8.99 % faster than GWO regarding overall
data centre processing time. The acquired results of ACO
over others enhance when the DC is increased from 10 to 20.
Table 11 demonstrates that when the UB is 20, ACO is 28.92
% better than PSO, 53.01% better than GA, 67.47 % better
than Bat, and 8.43% better than GWO in overall data centre
processing time.

VOLUME 12, 2024

TABLE 11. Comparison of load balancing algorithms in terms of overall
data center processing time (DCPT) (UB=10 and DC=10).

Algorithm No. No. No. Overal
S OF of of 1
UB DC VM DCPT
S s s

Ant Colony 10 10 25 8.3
Optimization
Particle Swarm 10 10 25 10.7
Optimization
Genetic 10 10 25 12.7
Bat 10 10 25 13.9
Gray Wolf 10 10 25 9
Optimization

5) SCENARIO 5

The fifth scenario behaves as an exceptional scenario. Addi-
tionally, this scenario also highlights the main contribution of
this work. We have varied the values of user bases from 20 to
200 and then to 500 and initialized the data centres and
virtual machines as 5 and 10, respectively (see Table 12 and
Table 13). After analyzing it, we have found that based on
overall response time, the performance of ACO degrades in
case of a spike in the incoming user requests, as shown in
Figure 8, due to the issue of slow convergence. In case of a
sudden spike in traffic, GWO outperforms the others. PSO
and Bat Algorithms also show improved results. PSO proved
its scalability by outperforming Bat, increasing user retention
from 200 to 500.

& O Overall Response Time (with 200 UBs)
Q% m Overall Response Time (with 500 UBs)

FIGURE 8. Overall response times when DCs=5 and VMs= 10 with UBs=
200 and 500, respectively. (See Table 12 and 13).

Table 12 demonstrates that when the incoming user
requests are increased from 10 to 200, ACO degrades
compared to the previous results. In this scenario, GWO out-
performs. GWO is 11.88% superior to ACO, 10.86% better
than PSO, 16.01% better than GA and 10.47% faster than
BAT regarding overall response time.

The acquired results of GWO over others enhance when
the traffic spike is further increased from 200 to 500. Table 13
demonstrates that when the UB is 500, GWO is 11.6 % better
than ACO, GWO s 8.1 % better than PSO, 45.11% better than

7393

IEEE Access

D. Syed et al.: Comparative Analysis of Metaheuristic Techniques for High Availability Systems

TABLE 12. Comparison of load balancing algorithms in terms of overall
response time (RT) (UB=500, DC=5 and VMs = 10).

Algorith No No. No. Overa
ms . of of IIRT
OF DC V
UB S Ms
S
Ant Colony 200 5 25 895.1
Optimization 6
Particle Swarm 200 5 25 887.2
Optimization 5
Genetic 200 5 25 928.4
6
Bat 200 5 25 884.1
6
Gray Wolf 200 5 25 800.3
Optimization 3

TABLE 13. Comparison of load balancing algorithms in terms of overall
response time (RT) (UB=200, DC=5 and VMs = 10).

Algorithm No. No. No. Overall
s of of of RT
UB DC VM
s s s
Ant Colony 500 5 25 1005.6
Optimization 7
Particle Swarm 500 5 25 974.25
Optimization
Genetic 500 5 25 1307.6
7
Bat 500 5 25 974.45
Gray Wolf 100 5 25 901.14
Optimization

GA and 8.13% better than Bat in terms of overall response
time.

6) COMPARATIVE PERFORMANCE ANALYSIS

From the results in Tables 8,9, 10 and 11, we can interpret that
no matter how many user bases and data centres are increased,
ACO performs much superior among GWO, BAT, PSO and
Genetic Algorithms. The performance of PSO and GA rises
in tandem with the variety of tasks, but PSO is significantly
less expensive than GA. Regarding overall response time and
data processing time, GWO provides a higher level of service
than PSO and GA.

On the other hand, Tables 12 and 13 (See Figure 8) con-
clude that in case of high user retention (i.e., when the UBs are
increased to a considerable degree) ACO eventually degrades
because of its slow convergence. In case of a sudden spike
in traffic, GWO outperforms because of reduced conver-
gence. Additionally, BAT provides improved optimal results
in case of high user retention as compared PSO. But, in the
longer term, when the user requests are further increased
from 200 to 500 UBs, PSO outperforms BAT algorithm
by providing a globally optimized solution. BAT degrades
because of its premature convergence.

7394

1400
1200
1000
800 —| B
600 — B
400 | |
200 | |
o (EW. Tm. W oW Twm
%&\OQ é\oc‘ ; &Q@ g ;‘6‘6\ %\00
& & ¢ ¢ & ‘
o o & & & ©iOverall RT (with 10 UBs)
@oﬁ\ _‘;b‘@ & &% mOverall RT (with 20 UBs)
& @‘59'% ° Overall RT (with 200 UBs)
@ Overall RT {with 500 UBs)

FIGURE 9. Variations in overall response times with respect to changing
no. of UBs.

Figure 9 presents the variations in response time of the tar-
geted algorithms with respect to the changing number of UBs.
From this figure it is evident that when UBs rise from 10 to
20 in the case of ACO, the response time is largely constant.
On the other hand, when UBs increase from 20 to 200 and
500, response times significantly increase. This implies that
the ACO might find it difficult to effectively manage a high
volume of incoming requests. In the case of PSO, response
times increase in proportion to UBs, much like ACO does.
The slow increase shows that PSO can grow at a faster rate
than ACO. The response time increases noticeably as UBs
are higher, indicating potential scalability issues. GA demon-
strates a notable increase in response time when UBs increase
from 20 to 200 and from 200 to 500. GA might therefore not
handle a high rate of incoming requests efficiently. In con-
trast, the BAT Algorithm exhibits a consistent rise in response
time and an increase in UBs, analogous to the PSO. At higher
UB levels, there is a discernible increase in response time,
although it appears to manage moderate increases in UBs very
well. While GWO shows comparatively stable response times
when the number of UBs rises from 10 to 20. As the incoming
traffic rises from 20 to 200, the response time also increases,
although not as significantly as in some other algorithms.
When UBs hit 500, there’s an obvious rise, but it’s still lower
than some other approaches.

VII. CONCLUSION AND FUTURE WORK
Allocation of resources is a significant and visible chal-
lenge in the cloud-based environment. The effectiveness
of a cloud environment is determined by load-balancing
algorithms, which assign appropriate VMs to incoming
tasks. This research aims to compare the contributions
of several metaheuristic or swarm-based load-balancing
approaches in cloud systems. The technique was tested in
a CloudSim variant with a graphical interface called Cloud
Analyst.

The outcomes are examined for various data centres (DCs)
and user bases (UBs). When the ACO is compared to the
GA, GWO, BAT, and PSO for varying DCs and UBs, the

VOLUME 12, 2024

D. Syed et al: Comparative Analysis of Metaheuristic Techniques for High Availability Systems

IEEE Access

performance research shows that the ACO delivers the best
Response Time as compared to all the other discussed tech-
niques. When DC is set to 5, the ACO produces high DCPT,
whereas PSO and GWO yield the same DCPT. The highest
DCPT is observed in GA. The ACO creates DCPT that
is nearly comparable to PSO when the quantity of DC is
boosted. As a result of the preceding results, ACO could
be investigated for crucial time-sensitive purposes such as
patients’ records information systems, infrastructure manage-
ment systems etc. or applications that require rapid reaction
for the given work. An interesting observation from this
research is the performance of the Ant Colony Optimization
(ACO) algorithm under conditions of high user retention.
While ACO is known for its efficiency in terms of response
time, the study reveals its potential degradation under certain
high-load conditions. This finding is vital for CSPs with high
user retention and consistent heavy loads, as it indicates the
need for alternative solutions or hybrid algorithms that can
maintain performance under such circumstances. It must be
considered that convergence is another critical factor, no mat-
ter how much reduced response time is achieved through an
algorithm in a particular scenario if user retention is high.
The reason for the sudden degradation of ACO is its slow
convergence.

On the contrary, GWO outperforms in case of a sudden
spike in traffic because of its improved convergence. Due to
the efficient resource utilization of BAT algorithm, it out-
performs PSO in high user requests. Eventually, when the
user requests increased globally, the PSO provided more opti-
mized results in case of high user retention compared to BAT
algorithm. These observations proved that PSO is providing
the globally optimized solution, and BAT can experience
premature convergence in case users continuously increase
incoming requests. By providing empirical data on how dif-
ferent algorithms perform under various conditions, CSPs can
optimize their resources according to the specific demands
of their infrastructure and user base. It helps improve overall
system efficiency, response times, and resource management.

As a result, all work can be accomplished in the future
by developing a hybrid metaheuristic approach to get around
the shortcomings of metaheuristic algorithms discussed in
this presented performance analysis. The complexity of mod-
els and processes in cloud computing causes considerable
changes in the allocation of virtual machines to new tasks.
This research will be extended in the long term to include
various QoS criteria like throughput, energy, cost, and latency
for different network strategies. The challenges associated
with load balancing, like heterogeneous endpoints, geograph-
ically distributed servers, single point of failure, virtualized
migrations, management of storage and retrieval, capacity
scaling, algorithms’ performance, and so on, can be addressed
in the future by utilizing some cutting-edge load balancing
techniques; specifically, when combined with new QoS met-
rics and algorithm complex evaluation aspects [50]. Because
cloud computing is grappling with increasing data, meta-
heuristic or swarm task scheduling techniques must advance

VOLUME 12, 2024

in domains [51], [52] such as machine learning, artificial
intelligence, IoT and blockchain.

Fault control, prevention, and workload transfer character-
istics, which receive little emphasis in modern load-balancing
techniques, are crucial for future studies and development.
These would have been incorporated into the current system
to increase its efficacy. Flexibility, another essential compo-
nent of cloud technology, allows for the automated allocation
and distribution of resources. As such, how resources might
be utilized or planned to be released by keeping the same
efficiency as a conventional criterion. Furthermore, deciding
when to relocate and how much workload to monitor is
still an essential research aspect. Developing evaluations in
a cloud setting is frequently problematic due to the need for
more accurate knowledge [75]. Future load can be calculated
by looking at the current process parameters and the past
demands. Therefore, it would be preferable to do studies that
concentrate on load predictions. A detailed understanding of
the tradeoff between the efficient utilization of the necessary
hardware architecture and resource dependability is needed
for a virtualized environment. Although heterogeneous load
movement is a highly intriguing research field, its viability
and affordability must first be established in future studies.

REFERENCES

[1] M. De Donno, K. Tange, and N. Dragoni, ““Foundations and evolution of
modern computing paradigms: Cloud, 10T, edge, and fog,” IEEE Access,
vol. 7, pp. 150936-150948, 2019.

[2] V. Arulkumar and N. Bhalaji, “RETRACTED ARTICLE: Performance
analysis of nature inspired load balancing algorithm in cloud envi-
ronment,” J. Ambient Intell. Humanized Comput., vol. 12, no. 3,
pp. 3735-3742, Mar. 2021.

[3]1 D. A. Shafig, N. Z. Jhanjhi, and A. Abdullah, “Load balancing techniques
in cloud computing environment: A review,” J. King Saud Univ. Comput.
Inf. Sci., vol. 34, no. 7, pp. 3910-3933, 2022.

[4] M. A. Elmagzoub, D. Syed, A. Shaikh, N. Islam, A. Alghamdi, and
S. Rizwan, “A survey of swarm intelligence based load balancing tech-
niques in cloud computing environment,” Electronics, vol. 10, no. 21,
p- 2718, Nov. 2021.

[5] M. Ala’anzy and M. Othman, “Load balancing and server consolidation
in cloud computing environments: A meta-study,” IEEE Access, vol. 7,
pp. 141868-141887, 2019.

[6] R.Kumar and N. Agrawal, “Analysis of multi-dimensional industrial IoT
(IIoT) data in edge-fog-cloud based architectural frameworks: A survey
on current state and research challenges,” J. Ind. Inf. Integr., vol. 35,
Oct. 2023, Art. no. 100504.

[7]1 E.S. Prity, K. A. Uddin, and N. Nath, “Exploring swarm intelligence opti-
mization techniques for task scheduling in cloud computing: Algorithms,
performance analysis, and future prospects,” Iran J. Comput. Sci., vol. 6,
p. 1-22, 2023.

[8] A. E S. Devaraj, M. Elhoseny, S. Dhanasekaran, E. L. Lydia, and
K. Shankar, “Hybridization of firefly and improved multi-objective par-
ticle swarm optimization algorithm for energy efficient load balancing in
cloud computing environments,” J. Parallel Distrib. Comput., vol. 142,
pp. 3645, Aug. 2020.

[9] R.M. Singh, L. K. Awasthi, and G. Sikka, ‘“Towards metaheuristic schedul-
ing techniques in cloud and fog: An extensive taxonomic review,” ACM
Comput. Surv., vol. 55, no. 3, pp. 1-43, Mar. 2023.

[10] D. Syed, N. Islam, M. H. Shabbir, and S. B. Manzar, “Applications of big
data in smart health systems,” in Handbook of Research on Mathematical
Modeling for Smart Healthcare Systems. Hershey, PA, USA: IGI Global,
2022, pp. 52-85.

[11] B.Kruekaew and W. Kimpan, “Multi-objective task scheduling optimiza-
tion for load balancing in cloud computing environment using hybrid
artificial bee colony algorithm with reinforcement learning,” IEEE Access,
vol. 10, pp. 17803-17818, 2022.

7395

IEEE Access

D. Syed et al.: Comparative Analysis of Metaheuristic Techniques for High Availability Systems

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

7396

A. Thakur and M. S. Goraya, “RAFL: A hybrid metaheuristic based
resource allocation framework for load balancing in cloud comput-
ing environment,” Simul. Model. Pract. Theory, vol. 116, Apr. 2022,
Art. no. 102485.

S. Sefati, M. Mousavinasab, and R. Z. Farkhady, “‘Load balancing in cloud
computing environment using the grey wolf optimization algorithm based
on the reliability: Performance evaluation,” J. Supercomput., vol. 78, no. 1,
pp. 18-42, Jan. 2022.

A. Gopu and N. Venkataraman, ““Virtual machine placement using multi-
objective bat algorithm with decomposition in distributed cloud: MOBA/D
for VMP,” Int. J. Appl. Metaheuristic Comput., vol. 12, no. 4, pp. 62-77,
Oct. 2021.

H. Singh, S. Tyagi, P. Kumar, S. S. Gill, and R. Buyya, “Metaheuristics
for scheduling of heterogeneous tasks in cloud computing environments:
Analysis, performance evaluation, and future directions,” Simul. Model.
Pract. Theory, vol. 111, Sep. 2021, Art. no. 102353.

S. K. Bothra and S. Singhal, “Nature-inspired metaheuristic scheduling
algorithms in cloud: A systematic review,” Sci. Tech. J. Inf. Technol., Mech.
Opt., vol. 21, no. 4, pp. 463472, Aug. 2021.

J. Zhou, U. K. Lilhore, T. Hai, S. Simaiya, D. N. A. Jawawi,
D. Alsekait, S. Ahuja, C. Biamba, and M. Hamdi, ‘“Comparative analysis
of metaheuristic load balancing algorithms for efficient load balanc-
ing in cloud computing,” J. Cloud Comput., vol. 12, no. 1, pp. 1-21,
Jun. 2023.

S. R. Jena, R. Shanmugam, K. Saini, and S. Kumar, “Cloud comput-
ing tools: Inside views and analysis,” Proc. Comput. Sci., vol. 173,
pp- 382-391, Jan. 2020.

Y. Zhang, S. Wang, and G. Ji, “A comprehensive survey on particle
swarm optimization algorithm and its applications,” Math. Problems Eng.,
vol. 2015, pp. 1-38, Feb. 2015.

P. Singh, M. Dutta, and N. Aggarwal, “A review of task scheduling
based on meta-heuristics approach in cloud computing,” Knowl. Inf. Syst.,
vol. 52, no. 1, pp. 1-51, Jul. 2017.

D. A. Shafig, N. Z. Jhanjhi, A. Abdullah, and M. A. Alzain, “A
load balancing algorithm for the data centres to optimize cloud
computing applications,” [EEE Access, vol. 9, pp.41731-41744,
2021.

P. Kumar and R. Kumar, “Issues and challenges of load balancing tech-
niques in cloud computing: A survey,” ACM Comput. Surv., vol. 51, no. 6,
pp. 1-35, Nov. 2019.

K. Geeta and V. K. Prasad, “Multi-objective cloud load-balancing with
hybrid optimization,” Int. J. Comput. Appl., vol. 45, no. 10, pp. 611-625,
Oct. 2023.

G. Annie Poornima Princess and A. S. Radhamani, “A hybrid meta-
heuristic for optimal load balancing in cloud computing,” J. Grid Comput.,
vol. 19, no. 2, pp. 1-22, Jun. 2021.

S. Jain and A. K. Saxena, “A survey of load balancing challenges in cloud
environment,” in Proc. Int. Conf. Syst. Model. Advancement Res. Trends
(SMART), Nov. 2016, pp. 291-293.

T. Deepa and D. Cheelu, “A comparative study of static and dynamic
load balancing algorithms in cloud computing,” in Proc. Int. Conf.
Energy, Commun., Data Analytics Soft Comput. (ICECDS), Aug. 2017,
pp. 3375-3378.

Z. Chaczko, V. Mahadevan, S. Aslanzadeh, and C. Mcdermid, ‘‘Availabil-
ity and load balancing in cloud computing,” in Proc. Int. Conf. Comput.
Softw. Model., Singapore, 2011, pp. 134-140.

W. Wang and G. Casale, “Evaluating weighted round Robin load balancing
for cloud web services,” in Proc. 16th Int. Symp. Symbolic Numeric
Algorithms Scientific Comput., Sep. 2014, pp. 393-400.

M. Kumar and S. C. Sharma, “Dynamic load balancing algorithm for
balancing the workload among virtual machine in cloud computing,” Proc.
Comput. Sci., vol. 115, pp. 322-329, Jan. 2017.

A. V. Lakra and D. K. Yadav, ‘““Multi-objective tasks scheduling algorithm
for cloud computing throughput optimization,” Proc. Comput. Sci., vol. 48,
pp. 107-113, Jan. 2015.

A. Thomas, G. Krishnalal, and V. P. J. Raj, “Credit based scheduling
algorithm in cloud computing environment,” Proc. Comput. Sci., vol. 46,
pp. 913-920, Jan. 2015.

S. Dam, G. Mandal, K. Dasgupta, and P. Dutta, “Genetic algorithm and
gravitational emulation based hybrid load balancing strategy in cloud com-
puting,” in Proc. 3rd Int. Conf. Comput., Commun., Control Inf. Technol.
(C3IT), Feb. 2015, pp. 1-7.

(33]

(34]

(35]

(36]

(371

(38]

(39]

[40]

(41]

[42]

(43]

[44]

[45]

[46]

(47]

(48]

(49]

[50]

(51]

[52]

(53]

E. J. Ghomi, A. M. Rahmani, and N. N. Qader, “Service load balancing,
task scheduling and transportation optimisation in cloud manufactur-
ing by applying queuing system,” Enterprise Inf. Syst., vol. 13, no. 6,
pp. 865-894, Jul. 2019.

S. E. Dashti and A. M. Rahmani, “Dynamic VMs placement for energy
efficiency by PSO in cloud computing,” J. Experim. Theor. Artif. Intell.,
vol. 28, nos. 1-2, pp. 97-112, Mar. 2016.

S. Ghafir, M. A. Alam, F. Siddiqui, and S. Naaz, “Load balancing in
cloud computing via intelligent PSO-based feedback controller,” Sustain.
Comput., Informat. Syst., vol. 41, Jan. 2024, Art. no. 100948.

E. J. Ghomi, A. M. Rahmani, and N. N. Qader, “Load-balancing algo-
rithms in cloud computing: A survey,” J. Netw. Comput. Appl., vol. 88,
pp. 50-71, Jun. 2017.

A. A. S. Farrag, S. A. Mahmoud, and E. S. M. El-Horbaty, “Intelligent
cloud algorithms for load balancing problems: A survey,” in Proc. IEEE
7th Int. Conf. Intell. Comput. Inf. Syst. (ICICIS), Dec. 2015, pp. 210-216.
D. Patel, M. K. Patra, and B. Sahoo, “GWO based task allocation for load
balancing in containerized cloud,” in Proc. Int. Conf. Inventive Comput.
Technol. (ICICT), Feb. 2020, pp. 655-659.

D. P. Mahato, “Grey wolf optimizer for load balancing in cloud comput-
ing,” in Research Advances in Network Technologies. Boca Raton, FL,
USA: CRC Press, 2023, pp. 205-221.

Y. Fahim, H. Rahhali, M. Hanine, E. H. Benlahmar, E. H. Labriji,
M. Hanoune, and A. Eddaoui, “Load balancing in cloud computing
using meta-heuristic algorithm,” J. Inf. Process. Syst., vol. 14, no. 3,
pp. 569-589, 2018.

M. Sumathi, N. Vijayaraj, S. P. Raja, and M. Rajkamal, “HHO-ACO
hybridized load balancing technique in cloud computing,” Int. J. Inf.
Technol., vol. 15, no. 3, pp. 1357-1365, Mar. 2023.

V. S. Kushwah, S. K. Goyal, and A. Sharma, ‘“Maximize resource uti-
lization using ACO in cloud computing environment for load balancing,”
in Soft Computing: Theories and Applications: Proceedings of SoCTA.
Berlin, Germany: Springer, 2020, pp. 583-590.

K. Kavitha and S. C. Sharma, “Performance analysis of ACO-based
improved virtual machine allocation in cloud for IoT-enabled healthcare,”
Concurrency Comput., Pract. Exper., vol. 32, no. 21, p. e5613, Nov. 2020.
B. H. Abed-alguni and N. A. Alawad, “Distributed grey wolf optimizer for
scheduling of workflow applications in cloud environments,” Appl. Soft
Comput., vol. 102, Apr. 2021, Art. no. 107113.

N. Yuvaraj, T. Karthikeyan, and K. Praghash, “An improved task allocation
scheme in serverless computing using gray wolf optimization (GWO)
based reinforcement learning (RIL) approach,” Wireless Pers. Commun.,
vol. 117, no. 3, pp. 2403-2421, Apr. 2021.

M. S. Al Reshan, D. Syed, N. Islam, A. Shaikh, M. Hamdi,
M. A. Elmagzoub, G. Muhammad, and K. Hussain Talpur, “A fast con-
verging and globally optimized approach for load balancing in cloud
computing,” IEEE Access, vol. 11, pp. 11390-11404, 2023.

A. Ullah, M. H. Khan, and N. M. Nawi, “BAT algorithm used for load
balancing purpose in cloud computing: An overview,” Int. J. High Perform.
Comput. Netw., vol. 16, no. 1, pp. 43-54, 2020.

H. A. Makasarwala and P. Hazari, “Using genetic algorithm for load
balancing in cloud computing,” in Proc. 8th Int. Conf. Electron., Comput.
Artif. Intell. (ECAI), Jun. 2016, pp. 1-6.

Z. Zhou, F. Li, H. Zhu, H. Xie, J. H. Abawajy, and M. U. Chowdhury,
“An improved genetic algorithm using greedy strategy toward task
scheduling optimization in cloud environments,” Neural Comput. Appl.,
vol. 32, no. 6, pp. 1531-1541, Mar. 2020.

S. Basu, G. Kannayaram, S. Ramasubbareddy, and C. Venkatasubbaiah,
“Improved genetic algorithm for monitoring of virtual machines in cloud
environment,” in Smart Intelligent Computing and Applications. Berlin,
Germany: Springer, 2019, pp. 319-326.

A. Saadat and E. Masehian, “Load balancing in cloud computing using
genetic algorithm and fuzzy logic,” in Proc. Int. Conf. Comput. Sci.
Comput. Intell. (CSCI), Dec. 2019, pp. 1435-1440.

R. Gulbaz, A. B. Siddiqui, N. Anjum, A. A. Alotaibi, T. Althobaiti,
and N. Ramzan, “Balancer genetic algorithm—A novel task scheduling
optimization approach in cloud computing,” Appl. Sci., vol. 11, no. 14,
p. 6244, Jul. 2021.

V. Goar, M. Kuri, R. Kumar, and T. Senjyu, Advances in Information
Communication Technology and Computing. Berlin, Germany: Springer,
2021.

VOLUME 12, 2024

D. Syed et al: Comparative Analysis of Metaheuristic Techniques for High Availability Systems I E E EACC@SS

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

R. M. Alguliyev, Y. N. Imamverdiyev, and F. J. Abdullayeva, “PSO-based
load balancing method in cloud computing,” Autom. Control Comput. Sci.,
vol. 53, no. 1, pp. 45-55, Jan. 2019.

R. Agarwal, N. Baghel, and Mohd. A. Khan, “Load balancing in cloud
computing using mutation based particle swarm optimization,” in Proc.
Int. Conf. Contemp. Comput. Appl. (IC3A), Feb. 2020, pp. 191-195.

A. Rezaee Jordehi and J. Jasni, “Particle swarm optimisation for dis-
crete optimisation problems: A review,” Artif. Intell. Rev., vol. 43, no. 2,
pp. 243-258, Feb. 2015.

M. M. Golchi, S. Saraeian, and M. Heydari, “A hybrid of firefly and
improved particle swarm optimization algorithms for load balancing in
cloud environments: Performance evaluation,” Comput. Netw., vol. 162,
Oct. 2019, Art. no. 106860.

J. P. B. Mapetu, Z. Chen, and L. Kong, “Low-time complexity and low-
cost binary particle swarm optimization algorithm for task scheduling and
load balancing in cloud computing,” Int. J. Speech Technol., vol. 49, no. 9,
pp. 3308-3330, Sep. 2019.

Z. Miao, P. Yong, Y. Mei, Y. Quanjun, and X. Xu, “A discrete PSO-
based static load balancing algorithm for distributed simulations in a
cloud environment,” Future Gener. Comput. Syst., vol. 115, pp. 497-516,
Feb. 2021.

G. Li and Z. Wu, “Ant colony optimization task scheduling algorithm for
SWIM based on load balancing,” Future Internet, vol. 11, no. 4, p. 90,
Apr. 2019.

A. Gupta and R. Garg, “Load balancing based task scheduling with ACO
in cloud computing,” in Proc. Int. Conf. Comput. Appl. (ICCA), Sep. 2017,
pp- 174-179.

A. Ragmani, A. Elomri, N. Abghour, K. Moussaid, and M. Rida,
“An improved hybrid fuzzy-ant colony algorithm applied to load bal-
ancing in cloud computing environment,” Proc. Comput. Sci., vol. 151,
pp. 519-526, Jan. 2019.

J. Chételat, M. B. C. Hickey, A. J. Poulain, A. Dastoor, A. Ryjkov,
D. McAlpine, K. Vanderwolf, T. S. Jung, L. Hale, E. L. Cooke, and
D. Hobson, ““Spatial variation of mercury bioaccumulation in bats of
Canada linked to atmospheric mercury deposition,” Sci. Total Environ.,
vol. 626, pp. 668—677, Jun. 2018.

B. Raj, P. Ranjan, N. Rizvi, P. Pranav, and S. Paul, “Improvised bat
algorithm for load balancing-based task scheduling,” in Progress in Intel-
ligent Computing Techniques: Theory, Practice, and Applications. Berlin,
Germany: Springer, 2018, pp. 521-530.

G. Natesan and A. Chokkalingam, “An improved grey wolf optimization
algorithm based task scheduling in cloud computing environment,” Int.
Arab J. Inf. Technol., vol. 17, pp. 73-81, Jan. 2020.

R. Valarmathi and T. Sheela, “Ranging and tuning based particle swarm
optimization with bat algorithm for task scheduling in cloud computing,”
Cluster Comput., vol. 22, no. S5, pp. 11975-11988, Sep. 2019.

M. A. Mosa, A. S. Anwar, and A. Hamouda, “A survey of multiple
types of text summarization with their satellite contents based on swarm
intelligence optimization algorithms,” Knowl.-Based Syst., vol. 163,
pp. 518-532, Jan. 2019.

G. Muthsamy and S. R. Chandran, “Task scheduling using artificial bee
foraging optimization for load balancing in cloud data centers,” Comput.
Appl. Eng. Educ., vol. 28, no. 4, pp. 769-778, Jul. 2020.

B. N. Gohil and D. R. Patel, “A hybrid GWO-PSO algorithm for load
balancing in cloud computing environment,” in Proc. 2nd Int. Conf. Green
Comput. Internet Things (ICGCloT), Aug. 2018, pp. 185-191.

L. Xingjun, S. Zhiwei, C. Hongping, and B. O. Mohammed, ““A new fuzzy-
based method for load balancing in the cloud-based Internet of Things
using a grey wolf optimization algorithm,” Int. J. Commun. Syst., vol. 33,
no. 8, p. e4370, May 2020.

S. Ouhame, Y. Hadi, and A. Arifullah, “A hybrid grey wolf optimizer and
artificial bee colony algorithm used for improvement in resource allocation
system for cloud technology,” Int. J. Online Biomed. Eng. (iJOE), vol. 16,
no. 14, p. 4, Nov. 2020.

B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “CloudAnalyst:
A CloudSim-based visual modeller for analysing cloud computing envi-
ronments and applications,” in Proc. 24th IEEE Int. Conf. Adv. Inf. Netw.
Appl., Apr. 2010, pp. 446-452.

V. Behal and A. Kumar, “Cloud computing: Performance analysis of
load balancing algorithms in cloud heterogeneous environment,” in
Proc. 5th Int. Conf. Next Gener. Inf. Technol. Summit, Sep. 2014,
pp. 200-205.

VOLUME 12, 2024

[74] S. M. Shetty and S. Shetty, “Analysis of load balancing in cloud data
centers,” J. Ambient Intell. Hum. Comput., vol. 10, no. 1, pp. 1-9, 2019.

[75] 1. Behera and S. Sobhanayak, “Task scheduling optimization in hetero-
geneous cloud computing environments: A hybrid GA-GWO approach,”
J. Parallel Distrib. Comput., vol. 183, Jan. 2024, Art. no. 104766.

DARAKHSHAN SYED received the Master of
Engineering (M.Eng.) degree in computer net-
working and performance evaluation from the
NED University of Engineering and Technology.
She is currently pursuing the Ph.D. degree with
the Computer Science Department, Bahria Univer-
: sity, Karachi. She is a Lecturer with the Computer
‘s Science Department, Bahria University. She is
; / . an Experienced Tutor of computer courses, such

. A, as programming languages, information security,
artificial intelligence, software engineering, and mobile application and
development. She was a Research Assistant with a demonstrated history of
working in the education management industry.

GHULAM MUHAMMAD SHAIKH received
the B.E. degree in computer systems and the
M.E. degree in communication systems and net-
works from the Mehran University of Technology,
Jamshoro, and the Ph.D. degree in parallel pro-
cessing from the Beijing Institute of Technology,
Beijing, China. He joined the Computer Science
Department, Bahria University, Karachi Campus,
as an Associate Professor. After the Ph.D. degree,
he has published more than 25 research articles in
different international and nationally recognized journals. He is an Expert
in multi-discipline domains, such as cloud computing, networking, artificial
intelligence, machine learning, SDN, the Internet of Things (IoT), and
robotics. He conducts workshops on cloud computing.

HANI MOHAMMED ALSHAHRANI received
the bachelor’s degree in computer science from
King Khaled University, Abha, Saudi Arabia,
the master’s degree in computer science from
California Lutheran University, Thousand Oaks,
CA, USA, and the Ph.D. degree from Oak-
land University, Rochester, MI, USA. Currently,
he is an Associate Professor of computer science
and information systems with Najran University,
Najran, Saudi Arabia. His current research inter-
ests include smartphones, the IoT, crowdsourcing security, and privacy.

MOHAMMED HAMDI received the bachelor’s
degree in computer science from Jazan University,
Jazan, Saudi Arabia, in 2009, and the Master of
Science and Doctor of Philosophy (Ph.D.) degrees
in computer science from Southern Illinois Uni-
versity, Carbondale, IL, USA, in 2013 and 2018,
respectively. He is currently an Associate Profes-
sor and the Dean of the College of Computer
Science and Information Systems, Najran Uni-
versity. His research interests include databases,
query optimization, data mining, big data, and security.

7397

IEEE Access D. Syed et al

.. Comparative Analysis of Metaheuristic Techniques for High Availability Systems

MOHAMMAD ALSULAMI received the Ph.D.

degree in computer science and engineering from

“'!) the University of Connecticut, Storrs, CT, USA.

E He has been teaching graduate and undergraduate

e students in computer science and engineering for

i the past 14 years. He is currently an Assistant

M Professor with the College of Computer Science

and Information Systems, Najran, Saudi Arabia.

He has published many research articles in inter-

national journals and reputed international con-

ferences. His current research interests include cloud computing, the IoT,
machine learning, and underwater systems.

ASADULLAH SHAIKH (Senior Member, IEEE)
received the B.Sc. degree in software development
from the University of Huddersfield, U.K., the
M.Sc. degree in software engineering and man-
agement from Goteborg University, Sweden, and
the Ph.D. degree in software engineering from
the University of Southern Denmark. He was a
Researcher with UOC Barcelona, Spain. He is
currently a Professor, the Head of research and-
graduate studies, and the Coordinator of seminars
and training with the College of Computer Science and Information Systems,
Najran University, Najran, Saudi Arabia. He has more than 140 publi-
cations in the area of software engineering in international journals and
conferences. He has vast experience in teaching and research. His current
research interests include UML model verification, UML class diagrams
verification with OCL constraints for complex models, formal verification,
and feedback techniques for unsatisfiable UML/OCL class diagrams. He is
an Editor of International Journal of Advanced Computer Systems and
Software Engineering (IJACSSE) and on the International Advisory Board
of several conferences and journals. Further details can be obtained using
www.asadshaikh.com.

7398

SYED RIZWAN received the master’s degree in
engineering (computer science and technology)
from the Harbin Institute of Technology, China.
He is currently a Lecturer with the Faculty of
Engineering, Science and Technology, Iqra Uni-
versity, Karachi, Pakistan. His goal as a Teacher
is to ensure that students are well prepared to
serve their society and community, especially as
professional engineers or computer scientists. His
research interests include machine learning, artifi-

cial intelligence, cloud computing, and blockchain technology. He possesses
good skills in MATLAB, Python, and Weka.

VOLUME 12, 2024

