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ABSTRACT The Chinese furniture market has a high demand for wood floors. Manual defect detection in
wood floors is inefficient and lacks stability in accuracy. It is necessary to conduct research on automatic
defect detection in wood floors. To improve the accuracy of detecting small defects in wood floors, this
paper proposed a new network based on YOLOV7. The new network is called the cascade center of gravity
YOLOV7 (CCG-YOLOvV7). This paper designed cascade efficient layer aggregation networks (C-ELAN),
streamlined the CBS, replaced the ELAN with the C-ELAN, introduced the rapid supervised attention
module to connect the backbone and head layers, and simplified the head layer of the YOLOV7 network.
These methods improved the detection accuracy and speed for detecting small defects on wood floor surfaces.
The improved network can effectively detect small defects on the wooden board surfaces, including knots,
scratches, and mildew. Compared to the original YOLOv7, CCG-YOLOV7 improves precision, recall, and
mean average precision by 2.1%, 1.6%, and 1.2%, respectively.

INDEX TERMS Deep learning, small target, wood floor defect detection, YOLOV7.

I. INTRODUCTION

Wood floor is a premium and environmentally-friendly
choice for home decoration. In recent year, the demand for
wood floor in furniture market has been steadily growing.
Due to the characteristics of the raw materials, wood floor : =
inevitably has defects such as knots, scratches, and mildews @) ®)

during the production process, as shown in Figure 1. These FIGURE 1. Images of solid wood floor defects: (a) scratch, (b) live-knot
defects affect the aesthetic appeal and product quality of ~ 2nddead-knot, () mildew.

wood floor. For businesses, detecting these defects early can
avoid the production of substandard goods, save production
costs, and enhance competitiveness. For consumers, it can
improve product quality and lifespan, thereby increasing con-
sumer satisfaction. These defects have small and random
shapes, and they are distributed irregularly on the surface
of the wood floor, without any regular pattern. Therefore,
accurate identification of these defects is crucial in the wood
floor production process.

Given the nature of wood floor as a commodity, non-
destructive testing methods are commonly used for defect
detection. Traditional non-destructive testing methods for
wood floor defect detection include manual inspection, elec-
trical testing [1], [2], laser scanning [3], [4], and ultrasonic
testing [5], [6]. However, traditional non-destructive test-
ing methods are susceptible to environmental influences,
expensive in terms of equipment, and require well-trained
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With the development of computer technology, more and
more researchers are applying computer vision and deep
learning methods [8], [9], [10] to wood floor defects detec-
tion. Hashim et al. [11] conducted a visual exploratory
analysis on the defects of lauan wood species, and the
results showed that they could significantly distinguish dif-
ferent defect categories. He et al. [12] designed a hybrid
total convolution neural network (Mix-FCN) for wood defect
recognition and localization and achieved an overall accuracy
0f 99.13%. Hu et al. [13] used the Mask R-CNN algorithm in
wood defect detection. The accuracy of defect identification
for knots, dead knots, and insect holes was 99.05%, 97.05%,
and 99.10%, respectively. Shi et al. [14] combined the Mask
R-CNN algorithm with the Glance network and achieved a
98.70% overall classification accuracy and a 95.31% mean
average precision. Mohammad et al. [15] applied Princi-
pal Component Analysis (PCA) technique in wood defect
detection, corresponding modeling and development process
was conducted for the PCA procedure. Silvén et al. [16]
implemented unsupervised clustering methods to detect and
identify wood defects. The achieved false detection and error
escape rates are low. Yang et al. [17] proposed a method
for detecting surface defects of solid wood panels based
on a Sigle Shot MultiBox Detector algorithm. The average
detection accuracy of the defects was 89.7%, and the aver-
age detection time was 90 ms. Wu et al. [18] proposed a
defect detection method based on affinity propagation clus-
tering, effectively improving the clustering speed with an
accuracy of 87.68%. Qi et al. [19] proposed a fast wood
defect detection method based on the BP neural network,
achieving an accuracy of 90%. With the rise of YOLO net-
work, some researchers have also applied YOLO network to
surface defect detection of wood floor. Tu et al. [20] pro-
posed a surface defects detection method based on improved
YOLOV3 for sawn lumbers. Urbonas et al. [21] employ a
pre-trained ResNet152 neural network model combined with
faster R-CNN to detect surface defects on wooden boards,
achieving an accuracy of 96.1%. Lim et al. [22] proposed a
lightweight object detection model based on the YOLOv4-
Tiny architecture for the detection of four types of wood
defects. The model led to better accuracy and inference speed.
Yang et al. [23] combined the deep learning feature extraction
method and extreme learning machine classification method
to establish a depth extreme learning machine model for
wood image defect detection. The wood defect recognition
accuracy reached 96.72%. These networks all performed
excellently on their respective datasets. However, the detec-
tion of small target defects on the surface of wood floor did
not perform well.

In this paper, we propose Cascade Center of Gravity
YOLOv7 (CCG-YOLO) based on the latest YOLOvV7 model
to improve the accuracy of wood floor defect detection to
address the issue of YOLO networks being less sensitive to
small objects. Building upon the existing YOLO network,
we have streamlined the CBS, the feature extraction module
of the YOLOV7 backbone, leading the network to focus
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more on shallow features and smaller targets. We proposed
Center Efficient Layer Aggregation Networks (C-ELAN) to
improve the performance of original ELAN module in the
backbone by introducing an algorithm named Cascade Center
of Gravity Batch Norm (CCG-BN). CCG-BN is designed to
normalize the centroid of features within the same batch.

The wood floor images used in this study were cap-
tured at Dehua TB New Decoration Material Co., Ltd. The
images were captured using an LT-400CL 3CMOS RGB line
scan industrial camera. Compared to area scan cameras, line
scan cameras are not only cost-effective but also capable of
high-speed image capture for moving objects, making them
suitable for industrial production lines. Based on the different
causes of wood floor defects, we classify the defects into two
categories: growth defects and processing defects. Generally,
growth defects can be further categorized as dead knots and
live knots, while processing defects include scratches and
mildews. A live knot is a knot in which the surrounding
wood structure has intact grain continuity and it has not
separated from the surrounding wood. On the other hand,
adead knot is a knot where the wood tissue has detached from
the surrounding wood. A scratch is a defect that occurs on the
surface of a wood floor during production or transportation.
Unlike cracks, scratches are limited to the surface of the
wood floor and do not result in a complete fracture of the
board. The size of these defects ranges from 40 x 30 to 60 x
130 pixels. The defects occupy a relatively small proportion
compared to the entire image. The position of defects in
the images appears randomly. The defects exhibit different
shapes. Figure 2 shows examples of dead knots, live knots,
scratches, and mildews.

FIGURE 2. Common defects of wood floor such as dead-knots, live-knots,
scratches and mildews.

Il. METHODOLOGY

The proposed Cascade Center of Gravity YOLOV7
(CCG-YOLOV7) is presented in Figure 3. The 3-channel
color images of solid wood floor are divided into squares with
the original height as the edge length. These squares are then
proportionally scaled to form images of size 640 x 640. It is
important to note that this operation does not result in any
cutting or cropping of edge defects. Then, 3 pairs of MP1 and
C-ELAN modules are sequentially concatenated, forming the
backbone of the proposed model. It should be noted that
the MP1 module has the same structure as in the original
YOLOV7 to half the size and double channel counts of feature
maps while extracting information at different depth. The
major difference lies on the design of the C-ELAN module
combining with the Rapid Supervised Attention Module
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FIGURE 3. The structure of CCG-YOLOV7.

(RSAM) that transmits features from paths of the backbone
at multiple scales.

We improved and simplified the head module of the origi-
nal YOLOV7, replacing it with outputs only containing 40 x
40 and 80 x 80. Therefore, the novel head we designed is
named Mini-Head. Coordinating with features from RSAM,
the succinct structure in Mini-Head focuses on small object
detection including dead-knots, live-knots, scratches, and
mildews. Below, we will provide a detailed explanation of
the modifications made to the backbone and head layers in
YOLOV7 network.

In Figure 3, the Conv denotes the convolution layer, the BN
denotes the batch normalization layer, and Silu denotes the
activation function. The CBS module consists of a Conv layer,
aBN layer, and a Silu layer, identical to the original YOLOV7.
In Figure 3, “CBS 1 x 1.1” denotes a 1 x 1 convolution with
a stride of 1. Similarly, “CBS 3 x 3.2” indicates a 3 x 3
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convolution with a stride of 2. The Rep module is divided into
train and inference modules. The inference module consists
of a 3 x 3 convolution with a stride of 1.

A. BACKBONE

In the original network, with 4 CBS modules stacked at the
beginning of the backbone, the subsequent ELAN and MP1
modules take in deep features that are not suitable for defects
in solid wood flooring, whose background is wood grain with
arelatively simple texture [24]. Besides, many defects on the
solid wood flooring are of small area, such as dead-knots and
live-knots, leading to a poor recall score when extracted by a
large receptive field from the deep layers. So, we simplified
the network architecture of this part and thus the feature
paths to head are moved to a shallower position. This enables
the network to focus more on shallow features and smaller
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targets, thereby improving the efficiency of training and the
accuracy of defect detection.

Figure 4 and Figure 5 display the overall distribution of
defects in the dataset used in this study. The calculation
formulas for y, width,and height in the Figure 4 are as follows:

Xd

x=2 (1)
w
yd
=2 2
y=1 )
idth
width = 20 3)
w
height,
height = % )

where, w and & represent the width and height of the image. x4
represents the coordinate of the defect in the width direction,
while y; represents the coordinate of the defect in the height
direction. widthy represents the width of the defect, and
height, represents the height of the defect. Figure 4 displays
the overall spatial distribution of defects in the dataset. The
heat map uses color intensity to represent the density of
defects in different locations. Darker colors indicate a higher
concentration of defects in that area. Figure 5 shows the
distribution of defect sizes. It can be observed from Figure 5
that the defects on the surface of the wooden floor are very
small in size. As can be seen in Figure 4, in the dataset used
in this study, the distribution of wood floor defects is random
across the entire image, and the proportion of defective pixels
in the entire image is relatively small. It should be noted that
the coordinates in the heatmaps of Figure 4 and Figure 5 are
relative coordinates.
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x

FIGURE 4. Heatmap of defect location distribution.
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FIGURE 5. Heatmap of defect size statistics.
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The defection distribution of solid wood floor is quite
different from that of objects in public datasets, lettuce pallets
Image Dataset. In contrast, the targets in general datasets like
ImageNet and COCO are typically located at the center of the
image, showing characteristics of a normal distribution. Sec-
ondly, the wooden floor defect dataset used marks targets like
bad spots and scratches, which have fairly fixed shape char-
acteristics. While, YOLOv7 network uses predefined anchor
boxes to detect objects of different sizes. Statistical analysis
reveals that the aspect ratio of the bounding boxes is either
close to a 1:1 square or a long and narrow shape greater than
1:5. Therefore, to leverage the YOLOV7 framework designed
for general object detection, it is necessary to transform
the wooden floor defect data, making it possess adjustable
bounding box distribution and shape characteristics.

1) CCG-BN

We proposed Center Efficient Layer Aggregation Networks
(C-ELAN) to improve the performance of original ELAN
module in the backbone by introducing an algorithm named
Cascade Center of Gravity Batch Norm (CCG-BN). CCG-
BN is designed to normalize the centroid of features within
the same batch. The centroid of the grayscale image is usually
defined as follows:

Xe = - ©)
w
> > Finij
i=1j=1
h w
>, (j > Fin,i,j)
=1\ i=1
yo="0 0 ©)

where, Fj, ; j is the grayscale value of the pixel at coordinates
(i, j) in the image, in which i is the coordinate in the width
direction, and j is the coordinate in the height. x. and y, are
the coordinates of the gravity of center along the axes of width
and height of the image. For color images, we succinctly
define the centroid as a linear combination of the centroid
coordinates in the 3 channels. We vectorize the original cen-
troid formula for the image to facilitate parallel acceleration
of computations:

3
Fiaenea = flatien’ (F}<) )
2x3 2 sx(3s)
Rn™"” = Rm™" x Fﬂattened
leXS
O flatten>* ([ ™ ] X SIX3) (8)
Rm,**
[xc] — Rn2><3 X W3X1 (9)
Ye

12...¢

11---1
where, $1%3 = [% ng EL,]], Rm?** = |: :|,
Rm} *% is a row vector consisting of all elements in the first
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row of matrix. Rm”>** and Rm;” is a row vector consisting
of all elements in the second row of matrix Rm>**. w3*! is
a learnable parameter used for linear transformation of the
centroid coordinates in each channel, resulting in the compu-
tation of the centroid position of the color image. The matrix
an”X3 is a three-channel color image for which the cen-
troid is to be computed. The function flatten® represents
the flattening of the third channel dimension, resulting in a
two-dimensional matrix that contains only the first and sec-
ond channels. The function flatten>* represents the flattening
of the second channel and the fourth channel dimension,
resulting in a two-dimensional matrix where the second chan-
nel is merged into the first channel of the matrix, and the
fourth channel is merged into the third channel. Based on
the above analysis, we have designed a method to shift the
centroid of the image by transforming pixel values. This
method includes learnable parameters that can specify the
position of the image centroid after the shift, allowing the
image features to automatically adjust during the training
process as needed by the network. The algorithm for centroid
shift is as follows:

w h
(e =x0) 2 3 Finij

i=1j=1

Fout,i = Fin,ij + o, — %h (10)
w h
(e = ye) 22 2 Finij
i=1j=1
Fourj = Finij + — (11)
hwy,. — 5w
Four = Fout,i + Fout,j (12)

where, F,,, ; represents the feature after centroid normaliza-
tion in the width direction, F,,, ; is the feature after centroid
normalization in the height direction, and F,,; is the output
of the module. x. and y/ are learnable parameter vectors,
each containing scalars equal to the number of input feature
channels.

2) C-ELAN

In the YOLOV7 network, the Enhanced Local Attention
(ELAN) layer is a special attention mechanism used to
enhance the network’s perception of local regions. The
ELAN Ilayer adjusts the weights of feature maps adaptively,
increasing the focus on regions of interest and improving
the accuracy of object detection. To improve the detection
accuracy of small target defects in the YOLO network, it is
necessary to enhance the depth of the ELAN layer. Therefore,
we propose the Center Efficient Layer Aggregation Networks
(C-ELAN) layer.

The C-ELAN is designed as a feature exactor that bring
the output to larger receptive field and deeper-level features.
The C-ELAN module is presented in Figure 6. As shown in
Figure 6, the C-ELAN module consists of 13 convolutional
layers, 2 SiLU activation layers, 2 ReLLU activation layers,
2 CCG-BN layers, and 2 stacking computation along the axis
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FIGURE 6. Structure of C-ELAN.

of the channels. The number of feature channels is doubled
when it flows to the output layer.

The input 3-dimensional feature flows through a convolu-
tional layer with 3 x 3 x c kernel size, which keeps the size
and channels unchanged. Then, it is normalized by CCG-BN
and SiLU activation function. In the C-ELAN module, R2Us
are used to route gradients to 2 different paths: the forward
path and the residual path. Adjusting the gradient propagation
path enhances the effective utilization of network parameters,
and enables different computational units to learn diverse
information, thereby achieving higher parameter utilization
efficiency. Then, the feature map is fed to an identical struc-
ture, and the new output is aggregated with the residual output
of the previous R2U module to form a residual feature with
twice the number of channels.

Simultaneously, another 2 convolution layers with kernel
size of 3 x 3 x (¢/2) and paddings of 1 perform channel
compression on the input feature. This operation generates
2 independent outputs with a half channel number. The
presence of the above-mentioned strategy ensures that the
learning capability of C-ELAN is stable enough to avoid
degradation during training. The reason is that the gradient
directly determines and propagates information to update
the weights in each branch. Finally, the features from the
3 branches and the residual-aggregated features from each
R2U module are stacked together to form a feature map with
four times the number of channels. Then, a 3 x 3 convolutional
layer with a stride of 2 is applied to obtain an output with
a reduced spatial size compared to the input features, while
doubling the number of channels.

B. HEAD

Concatenation and Bottleneck Structure (CBS) layer plays a
role in feature fusion and dimension adaptation between the
backbone and head layers. The CBS layer first concatenates
the feature maps from the backbone layer and the head layer
along the channel dimension to achieve feature fusion across
different scales. Then, it reduces the number of channels in
the feature maps using a bottleneck structure, which helps to
reduce the computational complexity. To improve the detec-
tion speed of YOLOV7 network for small target defects, it is
necessary to introduce channel attention mechanism to adap-
tively adjust the weights of feature map channels. Therefore,
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we replaced the CBS module with the Rapid Supervised
Attention Module (RSAM) to achieve this.

Rapid Supervised Attention Module is designed to trans-
fer features from the backbone layer to the mini-head
layer at multiple scales. Rapid Supervised Attention Module
(RSAM) improves upon the Multi-Stage Progressive Image
Restoration (MRPNet), proposed by Zamir et al. [25]. The
Supervised Attention Module (SAM) used in MRPNet to pass
features to the next stage includes the Locally Supervised
Predictions (LSP) structure for generating attention maps,
appropriately suppressing features with smaller amounts of
information in the current stage. The SAM structure is shown
in Figure 7 The input is the image input feature F?AXA;’”;C
from the previous stage, where 4 and w are its height and
width, and c¢ is the number of channels. At the same time,
SAM takes a low-quality (Degraded) image input FZ;ZQ? 2
which, when added to the convoluted F? Afwvf’ijc, computes the
repaired image and calculates the loss function. To introduce
features into the next stage, a 1 x 1 pointwise 2D convolu-
tion is used to transform the repaired image, and an image
attention map is calculated using the Sigmoid function. This
is then multiplied by Fé’ A>jl/IM,/i;<C to apply the attention map, and
finally, the residual structure of Fé‘ AXAX:” is adopted to form the

LSP structure, outputting the image output feature Fg:;;?(ofﬂ

required for the next stage. The structure of RSAM is shown
in Figure 8. Compared to SAM, RSAM replaces the image
feature Fﬁggfﬂ‘ i therefore, it directly adds the input feature
matrix FZ;‘VA%SZ to reduce one convolution that reduces the
number of channels. The size of the convolution kernel on
the path from F2X*3 to Fiy< s 1, with both stride and
padding set to 1, so the size and channel count of the output
from this convolution layer are consistent with the input.
Another convolution layer on the lower path in the figure
has the same parameters as the aforementioned convolution,
and the size of its output feature also satisfies # x w x 3. Since

7 hxwx3 .
the input feature F.2 Y undergoes one less convolution,

if the output features FZ?X,; 30m is output directly after the first

sum, there would be no learnable parameters in the RSAM
structure. Hence, F%XNXI?{M is used directly as the output
features. The parameter count of RSAM is approximately
2.5% of the SAM with an 80-channel input using the same
convolution kernel size, which is why it is called the Rapid
Supervised Attention Module.
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In the YOLOV7 network, the role of the head layer is to
process the feature maps extracted from the backbone layer
and output the final detection results. The head layer con-
sists of a series of convolutional layers and fully connected
layers, responsible for transforming the feature maps into pre-
dicted bounding boxes, class probabilities, and confidences.
To make it focus more on shallow-level features and smaller
objects, we need to decrease the depth of the head layer.

We simplified the head layer to the mini-head layer, allow-
ing it to focus more on shallow features and smaller targets,
thereby improving the efficiency of training and the accuracy
of defect detection. As shown in Figure 9, the grid of 20 x
20 is deleted from the original head, making it less complex
and more effective. The output of the head is refactored to
2 different features with size of 80 x 80 x 9 x 3 and 40 x 40 x
9 x 3, to speed up the inference speed of the model. Each of
the features consists of information of the detected defects,
including the grid shape, 3 bounding boxes (height, width,
and center coordinates), defect type, and confidence score.
With the elimination of the 20 x 20 output and its associated
output structure from the original YOLOvV7, the parameter
count in the head is reduced by 72% compared to its origi-
nal value. This optimization has significantly improved the
efficiency of our modified YOLOV7 network for the task of
defect detection in solid wood floor.

SPPCSPC Q
| Eg—
Up
Stack ELAN-H
ELAN-H Stack T

Up MP

T
Stack a
ELAN-H —g o
]2

FIGURE 9. Structure of mini-head.

Ill. RESULT & DISCUSSION

A. TRAINING STRATEGIES

During the training process of the CCG-YOLOV7 network,
we utilized the data augmentation technique of copy-pasting
a small object into various positions in an image to create new
annotated samples, which helps improve the model’s ability
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to detect small defects and does not result in an increase in
the number of training samples. The pasted small object can
undergo scaling, flipping, rotation, and other random trans-
formations. This method increases the contribution of small
objects to the loss calculation during training by increasing
the number of small objects in each image and matching
anchor boxes. To enhance the robustness and generaliza-
tion ability of the model, we adopt this data augmentation
technique during the model training process. The training
hyperparameters in the experiment are shown in Tablel.

TABLE 1. The training hyperparameters in the experiment.

Hyperparameters Value
Epoch 300
Initial learning rate 0.01
Batch size 8
Momentum 0.913
Wight decay 0.0005
Loss function BCE, CloU

The dataset used in this study consists of 3473 images.
Among these, there are 698 images that contain only the
dead-knots defect, 752 images that contain only the live-knots
defect, 623 images that contain only the scratches defect,
and 522 images that contain only the mildews defect, and
694 images do not contain any defects as negative samples.
Additionally, there are 184 images that contain multiple types
of defects.

To build and test the proposed defect detection model, the
collected dataset of 3473 wood floor images were divided
into three parts: training set, testing set, and validation set,
in a ratio of 3:1:1, as shown in Table 2. The training set is
used to train the constructed network, the testing set is used
to evaluate the network, and the validation set is used for final
assessment.

TABLE 2. Dataset split for training, validation, and testing.

Defects Training Validation Test
Classes Set Set Set
Dead-knots 418 140 140
Live-knots 450 151 151
Scratches 373 125 125
Mildews 314 104 104
Multiple 110 37 37

defects
Negative 416 139 139
samples

B. EXPERIMENT OF SOME METHODS APPLYING

TO YOoLOV7

To build and test the proposed defect detection model, the
collected dataset of 3473 wood floor images were divided into
three parts: training set, testing set, and validation set, in a

VOLUME 12, 2024

TABLE 3. Hardware and software parameters of the experimental
environment.

Name Parameter
Memory 32.00 GB
CPU Intel Core 17-8700 CPU
@3.2GHz
Graphics card NVIDLA GeForce RTX
3080 Ti
System Windows 10
Environment Python3.6, TensorFlow-GPU
Configuration 1.14.0, Pytorch
12 12
validation loss validation loss
10 10
training loss training loss
8 8
4 4
2 2
o : 0
1 101 201 1 101 201
Epoch Epoch
(@) (b)
n validation loss
12
10 training loss " validation loss
8 e training loss
&s ge
4 4
2 2
0 0 :
1 101 Epoch 201 ! o Epoch o
(c) (@

FIGURE 10. The training process of the different methods introduced into
YOLOv7(a) YOLO-RSAM result, (b) YOLO-C-ELAN result, (c) YOLO-NC result,
(d) YOLO-mini-head.

ratio of 3:1:1. The training set is used to train the constructed
network, the testing set is used to evaluate the network, and
the validation set is used for final assessment. The training
platform specifications are presented in Table 3.

In order to improve the detection performance of the
YOLOV7 model, several methods that may affect the detec-
tion performance were employed. A comparison was made
between these methods and the original YOLOv7 model
to observe whether these methods had a positive effect on
enhancing the detection performance of YOLOv7. Figure 10
displays the variation curves of the network training loss
and validation loss after training and testing under the same
conditions.

In Figure. 10, YOLO-RSAM represents the independent
integration of the RSAM module into the YOLO network.
YOLO-C-ELAN indicates the replacement of all ELAN mod-
ules in the original YOLO network with C-ELAN modules.
YOLO-NC signifies the simplification of the backbone layer
by removing four CBS modules. YOLO-mini-head denotes
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TABLE 4. The comparison of classical algorithms.

Methods P(%) R(%) mAP (%)
SSD 75.6 76.4 77.5
Faster R- 87.6 87.7 87.9
CNN
YOLOVvVS 89.3 90.7 90.9
YOLOv6 89.7 91.4 91.5
YOLOv7 90.6 93.2 93.6

the replacement of the head layer in the original YOLO
network with the mini-head. Also, Precision(P), Recall(R),
and mean average precision (mAP) are selected as the main
evaluation indexes which are defined as follows:

. TP
Precision = ——— (13)
TP + FP
TP
Recall = ——— (14)
TP + FN
N
. 1
mean Average Precision = N ZAPi (15)

i=1

where, TP refers to the number of samples where posi-
tive samples are correctly classified; FP means the number
of negative samples which are correctly classified as neg-
ative, and FN indicates the number of positive samples
which are incorrectly classified as negative. AP is the area
abounded by the Precision — Re call curve which represents
the detection accuracy of one kind of wood floor defects.
mean Average Precision(mAP) refers to the overall detection
accuracy of all defects categories. As shown in Figure 8§,
during the training of 200 epochs, the loss curves of all the
aforementioned models on the validation set and training set
become relatively flat, indicating that the model training has
converged.

We conducted comparative experiments with some clas-
sic detection networks. From Table 4, it can be observed
that compared to other classical algorithms, the YOLOv7
demonstrates superior performance in wood floor defect
detection.

C. ABLATION EXPERIMENT

We conducted an ablation experiment to investigate whether
the fusion of these modules could further enhance the perfor-
mance of the YOLOV7 network. Using the original YOLOv7
network as the baseline, we introduced RSAM, mini-head,
and C-ELAN in separate experiments. The results of this
experiment are presented in Table 5.

In the table 5, T represents the average detection time
for 100 images, measured in milliseconds. From the table,
it can be observed that the detection accuracy improves when
NC and C-ELAN modules are individually integrated into
the network. Additionally, the detection speed significantly
increases when the RSAM module is integrated with the
mini-head into the network. However, the introduction of
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mini-head and NC results in a decrease of 0.1% in P, 3.3%
in R, and 1.4% in mAP. The introduction of mini-head and
C-ELAN results in a decrease of 1.3% in P, 1.5% in R,
and 1.2% in mAP. The mini-head is composed of a series
of convolutional and fully connected layers, responsible for
transforming the feature map into predicted bounding boxes,
class probabilities, and confidence scores. In comparison to
the original head layer, the mini-head layer eliminates the
20 x 20 grid, which includes detected defect information.
Therefore, when the backbone focuses too much on either
shallow or deep image features, the network’s detection
accuracy decreases. With the integration of C-ELAN, NC,
and the mini-head into the network, both the detection
accuracy and speed have been improved. Further introducing
RSAM resulted an improvement of 2.1% in P, 1.6% in R, and
1.2% in mAP. And detection speed of the network improves
to 19ms. This is because the RSAM module adaptively
adjusts the weights of the feature map channels, connecting
the feature maps between the backbone and the mini-head
layer, achieving feature fusion across different scales. There-
fore, we choose to apply RSAM, C-ELAN, mini-head, and
NC to the YOLO network based on these results. The
figure 11 shows the curves of YOLOv6, YOLOvV7 and
CCG-YOLOvV7.

D. EXPERIMENT UNDER DIFFERENT LIGHT CONDITION

In industrial production processes, continuous and prolonged
operation can cause a decrease in the intensity of the light
source. We defined the illuminance range of 4600 lux -
6100 lux as strong lighting, 4400 lux - 4600 lux as moderate
lighting, and 3300 lux - 4400 lux as weak lighting. The num-
bers of images captured under strong, weak, and moderate
lighting conditions were 98, 103, and 112, respectively. These
images were utilized to evaluate the detection performance
of the CCG-YOLOV7 network under diverse lighting condi-
tions. These images, taken under different light intensities,
feature defects like knots, scratches, and mildews, with only
a few defects presented in each image. The experiments
were conducted using the images under different lighting
conditions. The experimental results are presented in Table 7.
Figure 11 showcases partial visual results of wood floor
defect detection under different lighting conditions using the
CCG-YOLOvV7 model.

As shown in Table 6, when using images captured under
strong lighting conditions for detection, the CCG-YOLOV7
model exhibited no decrease in P and mAP, with a slight
decrease of 0.1% in R. However, when using images captured
under weak lighting conditions for detection, the CCG-
YOLOv7 model showed a decrease of 0.1% in P and mAP,
with no decrease in R. From the results in Table 6, it can be
observed that the proposed CCG-YOLOv7 model achieves
high detection accuracy under different lighting conditions.
Compared with the Faster R-CNN, the CCG-YOLOv7 model
possesses sufficient robustness to detect wood floor defects
under varying lighting conditions, enabling prolonged indus-
trial production.
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TABLE 5. Ablation experiment of RSAM, mini-head, NC and C-ELAN.

RSAM C-ELAN mini-head NC P(%) R(%) mAP (%) T(ms)
90.6 93.2 93.6 38
J 91.8 93.4 93.9 37
J 90.7 93.5 93.7 25
~ 91.5 93.7 94.2 41
J 90.7 93.3 93.8 23
N J 90.5 89.9 91.2 25
~ J 89.3 91.7 92.4 29
~ N, J 90.8 93.7 94.1 29
v V v v 92.7 94.8 94.8 19

TABLE 6. The detection results of CCG-YOLOv7 and Faster R-CNN under
different tilt angle conditions.

Base Light P(%) R(%) mAP(%)
Model Condition

Weak 92.0 94.3 94 .4
CCG- Normal 92.1 94.3 94.5
YOLOvV7 Strong 92.1 94.2 94.5
Weak 86.9 86.9 87.1
Faster Normal 87.6 87.7 87.9
R-CNN Strong 87.1 87.3 87.4

TABLE 7. The detection results of CCG-YOLOv7 under different tilt angle
conditions.

Base Tilt P(%) R(%) mAP(%)
Model Angle
Small 92.1 94.3 94.4
CCG- Normal 92.1 94.3 94.5
YOLOvV7 Big 92.0 94.1 94.2
Y= —

FIGURE 11. Curve diagram of the evaluation index.

E. EXPERIMENT UNDER DIFFERENT TILT ANGLE

To validate the tolerance of CCG-YOLO to skewed images
during the wood floor sorting process, we selected images
with different tilt angles from the test set for testing. The
numbers of images captured under small, big, and normal
tilt angle conditions were 63, 87, and 78, respectively. These
images were utilized to evaluate the detection performance of

VOLUME 12, 2024

(b)

(©)

FIGURE 12. The visualization results of detecting wood floor defects
under different light conditions by using the CCG-YOLOv7 model:(a) weak
light, (b) normal light, (c) strong light.

the CCG-YOLO network under different tilt angle conditions.
These images, taken under different tilt angle, feature defects
like knots, scratches, and mildews, with only a few defects
presented in each image. Table 7 presents the experimental
results for detecting skewed images.

As shown in Table 7, when using images with smaller tilt
angles for detection, the CCG-YOLOV7 model exhibited no
decrease in precision and recall, with a slight decrease of
0.1% in mAP. However, when using images with larger tilt
angles, the RDEYOLOv7 model showed a decrease in preci-
sion, recall, and mAP by 0.1%, 0.2%, and 0.3% respectively.
The experimental results indicate that the impact of image tilt
angle on the CCG-YOLOV7 model is negligible and can be
disregarded.

10583



IEEE Access

W. Cui et al.: CCG-YOLOV7: A Wood Defect Detection Model for Small Targets

live-knots0.74- =" tl

FIGURE 13. The detection results of images with different tilt angle by
using the CCG-YOLOv7. Conditions: (a)big tilt angle, (b)small tilt angle,
(c) normal tilt angle.

IV. CONCLUSION

This study proposes a wood floor defect detection method
called CCG-YOLOvV7, which can accurately detect small
defects on the surface of wood floors. YOLOvV7 introduces
RSAM, mini-head, and C-ELAN to replace the CBS mod-
ules connecting the backbone and head layers, as well as
the head layer and ELAN, resulting in improved detection
performance. It has been demonstrated that CCG-YOLOvV7
can increase P, R, and mAP by 2.1%, 1.6%, and 1.2%,
respectively. CCG-YOLOV7 is constructed by incorporating
C-ELAN, RSAM, mini-head, and removing certain CBS
modules in YOLOv7. Through the analysis of experimental
results, the following findings are obtained: Compared to
the original YOLOv7, CCG-YOLOvV7 improves P, R, and
mAP by 2.1%, 1.6%, and 1.2%, respectively. CCG-YOLOv7
also demonstrates good performance in detecting wood floor
surface defects under different lighting conditions, which is of
significant importance in industrial production. Furthermore,
CCG-YOLOV7 is capable of detecting surface defects on
inclined images. The experiments confirm that the proposed
CCG-YOLOV7 method is effective for wood floor defect
detection.

REFERENCES

[1] A. Mohammadabadi and R. Dugnani, “Detection of wood defects using
low acoustic impedance-based PZT transducers,” J. Indian Acad. Wood
Sci., vol. 17, no. 2, pp. 107-113, Dec. 2020.

[2] M. Radwan, N. Becker, D. V. Thiel, and H. G. Espinosa, “In-line wood
defect detection using simple scalar network analyzer,” Sensors, vol. 22,
no. 23, p. 9495, Dec. 2022.

10584

[3] Z. Ai, Y. Lin, Z. Xu, Y. Zhu, and L. Wu, “Wood broken defect detection
with 3D laser scanning,” in Proc. China Autom. Congr. (CAC), Nov. 2022,
pp. 6513-6517.

[4] Y. Yang, Z. Chen, Y. Liu, Y. Li, Z. Hu, and B. Gou, “Detection system
for U-shaped bellows convolution pitches based on a laser line scanner,”
Sensors, vol. 20, no. 4, p. 1057, Feb. 2020.

[5] U. Hilbers, J. Neuenschwander, J. Hasener, S. J. Sanabria, P. Niemz, and
H. Thoemen, “Observation of interference effects in air-coupled ultrasonic
inspection of wood-based panels,” Wood Sci. Technol., vol. 46, no. 5,
pp. 979-990, Sep. 2012.

[6] M. Tiitta, V. Tiitta, M. Gaal, J. Heikkinen, R. Lappalainen, and L. Tomppo,
“Air-coupled ultrasound detection of natural defects in wood using fer-
roelectret and piezoelectric sensors,” Wood Sci. Technol., vol. 54, no. 4,
pp. 1051-1064, Jul. 2020.

[71 Y. Fang, L. Lin, H. Feng, Z. Lu, and G. W. Emms, “Review of the use
of air-coupled ultrasonic technologies for nondestructive testing of wood
and wood products,” Comput. Electron. Agricult., vol. 137, pp. 79-87,
May 2017.

[8] Y. Quan, Z. Li, C. Zhang, and H. Ma, “Object detection model based on
deep dilated convolutional networks by fusing transfer learning,” IEEE
Access, vol. 7, pp. 178699-178709, 2019.

[91 W.Li, Z. Li, X. Yang, and H. Ma, “Causal-ViT: Robust vision transformer
by causal intervention,” Eng. Appl. Artif. Intell., vol. 126, Nov. 2023,
Art. no. 107123.

[10] S. Chen, Z. Li, and Z. Tang, “Relation R-CNN: A graph based relation-
aware network for object detection,” IEEE Signal Process. Lett., vol. 27,
pp. 1680-1684, 2020.

[11] U.R.Hashim, S.Z.M. Hashim, A. K. Muda, K. Kanchymalay, I. E. A. Jalil,
A. N. Anuar, and M. H. Othman, “Extraction and exploratory analysis of
texture features on images of timber defect,” Adv. Sci. Lett., vol. 24, no. 2,
pp. 1104-1108, Feb. 2018.

[12] T. He, Y. Liu, Y. Yu, Q. Zhao, and Z. Hu, “Application of deep convolu-
tional neural network on feature extraction and detection of wood defects,”
Measurement, vol. 152, Feb. 2020, Art. no. 107357.

[13] K. Hu, B. Wang, Y. Shen, J. Guan, and Y. Cai, “Defect identification
method for poplar veneer based on progressive growing generated adver-
sarial network and MASK R-CNN model,” BioResources, vol. 15, no. 2,
pp. 3041-3052, Mar. 2020.

[14] J. Shi, Z. Li, T. Zhu, D. Wang, and C. Ni, “Defect detection of industry
wood veneer based on NAS and multi-channel mask R-CNN,” Sensors,
vol. 20, no. 16, p. 4398, Aug. 2020.

[15] M. M. Tafarroj, H. Kalani, M. Moavenian, and A. Ghanbarzadeh, “An
application of principal component analysis method in wood defects
identification,” J. Indian Acad. Wood Sci., vol. 11, no. 1, pp. 33-38,
Jun. 2014.

[16] O. Silvén, M. Niskanen, and H. Kauppinen, “Wood inspection with non-
supervised clustering,” Mach. Vis. Appl., vol. 13, nos. 5-6, pp. 275-285,
Mar. 2003.

[17] Y. Yang, H. Wang, D. Jiang, and Z. Hu, “Surface detection of solid wood
defects based on SSD improved with ResNet,” Forests, vol. 12, no. 10,
p. 1419, Oct. 2021.

[18] D.-Y. Wu and N. Ye, “Wood defect recognition based on affinity propaga-
tion clustering,” in Proc. Chin. Conf. Pattern Recognit. (CCPR), Oct. 2010,
pp. 1-5.

[19] D. Qi, P. Zhang, and L. Yu, “Study on wood defect detection based
on artificial neural network,” in Proc. IEEE Conf. Cybern. Intell. Syst.,
Sep. 2008, pp. 951-956.

[20] Y. Tu, Z. Ling, S. Guo, and H. Wen, “An accurate and real-time surface
defects detection method for sawn lumber,” IEEE Trans. Instrum. Meas.,
vol. 70, pp. 1-11, 2021.

[21] A. Urbonas, V. Raudonis, R. Maskelitinas, and R. DamasSeviCius,
“Automated identification of wood veneer surface defects using
faster region-based convolutional neural network with data
augmentation and transfer learning,” Appl. Sci., vol. 9, no. 22, p. 4898,
Nov. 2019.

[22] W.-H. Lim, M. B. Bonab, and K. H. Chua, “An optimized lightweight
model for real-time wood defects detection based on YOLOv4-tiny,” in
Proc. IEEE Int. Conf. Autom. Control Intell. Syst. (I2CACIS), Jun. 2022,
pp. 186-191.

[23] Y. Yang, X.Zhou, Y. Liu, Z. Hu, and F. Ding, ‘“Wood defect detection based
on depth extreme learning machine,” Appl. Sci., vol. 10, no. 21, p. 7488,
Oct. 2020.

VOLUME 12, 2024



W. Cui et al.: CCG-YOLOV7: A Wood Defect Detection Model for Small Targets

IEEE Access

[24] C.-Y. Wang, A. Bochkovskiy, and H.-Y.-M. Liao, “YOLOV7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023,
pp. 7464-7475.

[25] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang,
and L. Shao, “Multi-stage progressive image restoration,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 14816-14826.

WENQI CUI received the B.S. degree from the
College of Mechanical and Electronic Engineer-
ing, Nanjing Forestry University, Nanjing, China,
in 2020, where he is currently pursuing the M.S.
degree. His research interests include the appli-
cation of intelligent algorithms in industry, image
data processing, and time series prediction.

ol
ai‘

|

ZHENYE LI was born in Yangzhou, Jiangsu,
China, in 1997. He received the bachelor’s degree
in engineering from Nanjing Forestry University,
in 2019, where he is currently pursuing the mas-
ter’s degree.

His research interests include the application
of intelligent algorithms in industry, image data
processing, and hyperspectral analysis. He was a
recipient of the International Association of Geo-
magnetism and Aeronomy Young Scientist Award
for Excellence, in 2008, and the IEEE Electromagnetic Compatibility Soci-
ety Best Symposium Paper Award, in 2011.

ANNING DUANMU received the bachelor’s
degree in mechanical and electronic engineering
from Nanjing Forestry University, where he is
currently pursuing the master’s degree in control
science and engineering. His research interests
include computer vision, deep learning, and image
processing. In this study, he was responsible for
proofreading the manuscript.

SHENG XUE was born in Huaian, Jiangsu, China,
in 2000. He received the bachelor’s degree in engi-
neering from Nanjing Forestry University, in 2022,
where he is currently pursuing the master’s degree.
His research interests include the application of
intelligent algorithms in industry and image data
processing.

VOLUME 12, 2024

YIREN GUO received the B.S. degree from the
College of Mechanical and Electronic Engineer-
ing, Nanjing Forestry University, Nanjing, China,
in 2020, where he is currently pursuing the M.S.
degree. His research interests include the appli-
cation of intelligent algorithms in industry, image
data processing, and time series prediction.

CHAO NI was born in Nanjing, Jiangsu, China,
in 1979. He received the B.S. degree in automa-
tion from the Nanjing University of Science and
Technology, Nanjing, in 2001, and the Ph.D.
degree in control theory and control engineering
from Southeast University, Nanjing, in 2008. From
October 2017 to November 2018, he was a Visiting
Scholar with the University of Maryland, College
Park, MD, USA. He is currently an Associate Pro-
fessor with the Automation Department, Nanjing
Forestry University, China. His research interests include artificial intelli-
gence in industrial application, data processing, and spectroscopy analysis.

TINGTING ZHU received the Ph.D. degree
in pattern recognition and artificial intelligence
from the School of Automation, Southeast
University, in 2019. She was a Visiting Stu-
dent with the Department of Atmospheric and
Oceanic Sciences, McGill University, Canada,
from 2017 to 2018. She is currently with the Col-
lege of Mechanical and Electronic Engineering,
Nanjing Forestry University, China. Her current
research interests include machine learning, data
processing and modeling, renewable energy generation forecast, and climate
feedback. She achieved a fellowship jointly awarded by Fonds de Recherche
du Quebec—Nature et Technologies (FRQNT) and the China Scholarship
Council.

YAJUN ZHANG received the B.S. degree in elec-
trical engineering from the Shanghai Institute of
Technology, in 2014, the M.S. degree in control
science and engineering from Donghua Univer-
sity, in 2017, and the Ph.D. degree in control
science and engineering from Southeast Univer-
sity, in 2021. He is currently a Lecturer with the
School of Mechanical and Electronic Engineering,
Nanjing Forestry University, Nanjing, China. His
research interests include production systems con-

trol, supply chain management, and deep learning.

10585



