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ABSTRACT Photovoltaics (PV) have attracted considerable attention owing to their longer lifespans and
higher generation potentials compared with other renewable energy sources. However, the intermittent
nature of PV systems can degrade the power quality, hindering their widespread adoption. To mitigate
the power-quality degradation resulting from the proliferation of PV, high forecasting accuracy is essential.
However, missing data during the development of forecasting models can degrade performance. Therefore,
appropriate imputation procedures are required. Typically, linear imputation is used. However, there is a
tendency for the performance of the forecasting model to decline owing to errors between the actual and
imputed values. In this study, we addressed missing PV power data using direct deletion, linear imputation,
k-nearest neighbors imputation, and Generative Adversarial Imputation Nets. Subsequently, to assess the
impact of weather variability on the imputation performance, we employed the ‘‘sky status’’ to categorize
the replaced data and analyze whether differences in imputation performance emerged. Finally, we developed
a PV forecasting model using the replaced data and evaluated its forecasting performance.

INDEX TERMS CNN-GRU, GAIN, KNN, missing data imputation, PV forecasting model.

I. INTRODUCTION
The importance of renewable energy resources is steadily
increasing because of global warming and rapid fossil-fuel
depletion [1]. In particular, photovoltaics (PV) have attracted
attention compared with other renewable energy sources
owing to their advantages of lowmaintenance and operational
costs, as well as long lifespans [9], [10].

However, PV generation is subject to significant variability
owing to various weather conditions including cloud cover,
solar irradiance, and temperature [21], [22]. The increased
variability in PV generation owing to worsening weather
conditions makes prediction difficult, thus emphasizing
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the increasing importance of advanced PV generation
forecasting [23].

As the importance of PV forecasting has been empha-
sized, related research is actively underway. In [38], a stacked
ensemble forecast approach was employed combining deter-
ministic models that consider the physical characteristics of
PV systems with ensemble models. This method demon-
strated a high predictive performance under both sunny and
cloudy conditions, outperforming traditional single models.
In [39], a probabilistic forecasting approach was adopted
using deterministic methods, such as clear-sky models and
partial shading detection, to calculate meteorological vari-
ables as input variables, with the aim of providing reliable
PV forecasts for energy management systems. In [40], a sea-
sonal multi-model based on extreme learning machines was
proposed to ensure accurate predictions for grid-connected
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PV systems and evaluated the distribution of prediction errors
across different seasons. In [41], a feed-forward artificial neu-
ral network (FF-ANN) prediction model utilizing real-time
monitored data logs and predicted solar irradiance was
introduced, facilitating the evaluation of the PV system oper-
ational efficiency based on predicted PV generation. In [42],
a hybrid deep learning approach combining wavelet packet
decomposition (WPD) and long short-term memory (LSTM)
was proposed to exploit hidden nonlinear relationships in PV
power. This approach exhibits superior performance under
various seasonal and weather conditions, particularly in sce-
narios with high variability, such as ‘‘cloudy’’ and ‘‘rainy’’
conditions. The study in [43] involved analyzing the spa-
tiotemporal correlations among distributed PV systems in the
same region, and developed a PV power predictionmodel that
integrated spatial similarity and temporal correlation into a
Bayesian network.

The introduction of renewable energy forecasting, includ-
ing PV forecasting, has improved the stability of power
system operations [24], [31]. In [20], the variables commonly
considered when developing PV generation forecasting mod-
els were investigated, with a focus on PV power, weather, and
solar irradiance.

Forecasting research is typically conducted under the
assumption of complete information, and the performance
of forecasting models is degraded by forecasting models
because of data gaps caused by communication errors and
other factors [27], [28], [29]. Performance degradation of
forecasting models can reduce the stability of power system
operations. Therefore, the importance of research on handling
missing data has steadily increased [16], [19], [26].
Various studies have been conducted to replace missing

values in PV forecasting. In [11], imputation methods were
applied to training and test datasets to analyze the impact
of missing weather data on the forecasting performance,
and a forecasting model was developed and compared with
a perfect information-based model. In [12], the irradiance
at locations that were not directly measured was estimated
using multiple linear regression (MLR)—a statistical-based
method—to replace the missing values in irradiance data
measured at nine weather stations. In [13], SolarGAN was
used to replace missing PV data, and the results indicated
its effectiveness across a wide range of missing data rates.
In [14], methods were proposed for detecting and replacing
errors in small-scale PV systems, which involve the utiliza-
tion of neighboring PV data when abnormal patterns are
identified. In [15], missing data were imputed to analyze the
performance and reliability of PV systems, and the authors
proposed the use of data inference techniques such as the
Sandia module temperature model (SMTM) for imputation
when the missing data rate exceeded 10%. In [16], the
impact of missing data on the estimation of the long-term
degradation rate of PV systems was analyzed, and missing
data were imputed using the Sandia PV Array Performance
Model (SAPM). In [17], research was conducted to address
the issue of missing irradiance data in tropical regions, and

suitable replacement methods based on weather types such
as ‘‘Sunny’’ and ‘‘Intermittent’’ were proposed. In [18], the
accuracies of replacement methods for missing irradiance
data were compared, and appropriate replacement meth-
ods were suggested for missing data such as minute and
hourly series. In [19], to replace missing values in PV data,
an approach combining a Naïve Super-Resolution Percep-
tion Convolutional Neural Network (SRPCNN) with linear
imputation was proposed, which achieved a imputation per-
formance improvement of over 30% compared to the existing
SRPCNN in various missing data rate scenarios.

Previous research in PV-related data imputation primarily
focused on replacement studies for situations with missing
data such as PV power, weather, and irradiance. However,
there has been limited analysis of the impact of missing PV
power data on model forecasting performance.

In this study, we analyzed the impact of missing PV power
data on the forecasting models. We developed models after
applyingmissing PV power data replacement in variousmiss-
ing data rate scenarios and evaluated the forecasting perfor-
mance. Additionally, to assess the differences in imputation
performance based onweather variability, we divided the data
into groups using ‘‘sky status’’ data provided by a meteoro-
logical agency and calculated the imputation performance.
Furthermore, using data with missing values, we developed
a forecasting model and analyzed the influence of missing
PV power data on the performance of the forecasting model.

The remainder of this paper is organized as follows.
Section II introduces the research design and methodologies
employed for the imputation and forecasting. Section III
presents the evaluation of the replacement performance for
different missing data rates. In Section IV, we assess and
analyze the forecasting models using imputed data. Finally,
Section V presents conclusions.

II. METHODOLOGY
The objective of this study was to analyze the impact of
missing PV power data on the performance of the forecasting
model, as shown in Fig. 1. Initially, faultless PV and weather
forecast data were categorized into training and test datasets.
During development of the forecasting model, missing data
were identified by intentionally introducing omissions into
the dataset with perfect information. The reason for introduc-
ing omissions was to evaluate the imputation and forecasting
performance. The missing data were replaced, and a fore-
casting model was developed and used to assess forecasting
errors.

A. DATA INGESTION
This study utilized data measured at a PV power plant and
weather forecast data provided by the Korea Meteorological
Administration. The PV power plant is located in Jeongseon
County, Gangwon Province, with solar panels installed at the
azimuth of 180◦, tilt angle of 20◦, and capacity of 1 MW.
The data used in the research were collected at one-minute
intervals using sensors installed in the inverters at the PV
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FIGURE 1. Research methodology.

power plant. Five variables from the measured data were
used: horizontal solar radiation, inclined solar radiation, mod-
ule temperature, outside temperature, and PV generation.
Horizontal solar radiation represents the direct solar irradi-
ance on the PV panels, whereas inclined solar radiation refers
to the solar irradiance perpendicular to the PV power plant.
The PV data measured at the solar power plant was uti-
lized at one-minute intervals, and for the development of the
prediction model, 15-minute averages were used. After the
pre-processing stepwith 15-min intervals, were reconstructed
into a dataset with perfect information, free from missing
data, for the period from January 1, 2022, to April 30, 2023.

Weather forecast data were obtained from an open por-
tal operated by the Korea Meteorological Administration.
Weather forecast data was obtained from an open meteo-
rological data portal operated by the Korea Meteorological
Administration [44]. The short-term forecasts provided by
the KoreaMeteorological Administration were updated every
3 h. These short-term forecasts cover a time range starting
from 6 h after the data update time and extending up to 79 h
into the future. In this study, the weather forecast data were
based on the forecast data closest to the prediction time. Data
on sky status and estimated precipitation for the Jeongseon
County area, where the power plant is located, were down-
loaded in the CSV format.Weather forecast data was obtained
from an open meteorological data portal operated by the
Korea Meteorological Administration [46]. Weather forecast
data were calculated through numerical weather prediction
by the Korea Meteorological Administration, and then ana-
lyzed using the perfect prog method (PPM) before being
made available to the public [47]. The sky status indi-
cates the number of clouds in the sky and ranges from one

to four: 1 represents the ‘‘sunny’’ state with the least amount
of clouds, while 4 represents the ‘‘cloudy’’ state with the most
clouds.

B. IMPUTATION METHODOLOGY
For handling missing data, we applied four commonly
used imputation methods: direct deletion, linear imputa-
tion, k-nearest neighbor (KNN) imputation, and Generative
Adversarial Imputation Nets (GAIN).

Direct deletion involves removing all rows containing
missing values and using only the completely measured
data [32]. However, this data processing method can lead to
significant information loss when there is a large amount of
missing data, adversely affecting subsequent analyses. In this
study, direct deletion was used to assess its impact on the
predictive performance when the data were removed without
replacement.

Linear imputation involves replacing missing values using
nearby data points [33]. It is typically used when missing
data must be imputed over short intervals, and the imputation
performance declines as the length of continuous missing
data increases.

In the KNN imputation method, the results of calcula-
tions using distance measurement formulas, e.g., Euclidean
distance, are employed for replacement. Missing data are
replaced using the values of the k-nearest neighbors [4].
The KNN algorithm is generally recognized as suitable for
imputing missing values in time-series data, such as power
consumption data [5].

GAIN is a modified version of the generative adversarial
network (GAN) model [6]. A hint generator is added to
the generator and discriminator components used in GAN.
The generator is responsible for replacing missing values,
whereas the discriminator determines whether the input data
are real or generated by the generator [7]. Finally, the hint
generator provides a hint matrix to the discriminator, assisting
in discriminating the generated data [8].

C. FORECASTING MODEL
In this study, a convolutional neural network–gated recurrent
unit (CNN-GRU) model was employed as the forecasting
model. The convolutional neural network (CNN) model was
designed to remove noise from the input data and extract
important features [34]. The structure of a CNN includes
convolution, pooling, and fully connected layers. The con-
volution layer processes the input data through convolution
operations to remove the noise present in the input data
and produces activation maps. The output activation maps
undergo feature extraction and dimension reduction in the
pooling layer [44]. Generally, methods such as max pooling
and average pooling are considered; in this study, the max
pooling method was adopted. Finally, the dimension-reduced
activation maps are passed through the fully connected layer
to produce the ultimate output.
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The gated recurrent unit (GRU) is a variation of the long
short-term memory (LSTM) network. A GRU comprises the
reset gate layers, update gate layers, and candidate layers. The
reset gate layer determines how much previous information
should be forgotten, while the update gate layer determines
how much previous information should be retained [45]. The
update gate layer simultaneously performs the roles of the
input and forget gate layers of the LSTM. It has a higher learn-
ing speed than LSTM because the forget and input gates are
combined into a single gate [35]. The CNN-GRU model is a
hybrid model that combines the CNN and GRU. During train-
ing, the input data processed using the CNN model undergo
convolution operations to remove noise [2]. After feature
extraction, the data undergo dimension reduction through
pooling layers and are then processed through GRU layers to
model the temporal features [3]. The output layer was used to
derive the prediction results through a connected layer. Fig. 2
illustrates the architecture of the CNN-GRU model used in
this study.

FIGURE 2. CNN-GRU hybrid model architecture.

D. EVALUATION INDEX
To evaluate the imputation performance, the coefficient of
determination (R2) was used. Various indices were employed
to assess the forecasting performance including R2 and
the root mean square error (RMSE), relative root mean
squared error (rRMSE), normalized root mean squared error
(nRMSE), mean absolute error (MAE), mean relative devi-
ation (MRD), and root mean squared deviation (RMSD),
as defined by (1)–(7), respectively. Here, yt represents the
actual PV power, ŷt represents the forecasted PV power,
ȳt represents the mean of the actual PV power, n represents
the number of forecasted data points, P t represents the fore-
casted PV power of the reference model, P̂t represents the
predicted generation of the imputed-data-based forecasting
model, and Ptotal represents the PV installation capacity.
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R2 ranges from 0 to 1, with values closer to 1 indicating a
higher accuracy. The RMSE represents the standard devia-
tion of the estimation errors [36]. The rRMSE is obtained
by dividing the RMSE by the mean [37]. The nRMSE is
calculated by dividing the RMSE by the difference between
themaximum andminimum values of themeasured data [25].
The MAE reflects the difference between the measured and
predicted values and is less sensitive to outliers than the
RMSE [30]. The MRD and RMSD were used to assess the
differences between the reference model and the imputation-
based model [11].

III. IMPUTATION OF MISSING DATA
A. DATA INTRODUCTION
In this study, experiments were conducted using data from
a 1-MW-capacity PV power plant in Jeongseon-gun, Gang-
won Province, South Korea. To compare the performance
of the forecasting models based on different data imputation
methods, five variables measured at the PV power plant were
used as input variables: direct radiation, diffuse radiation,
module temperature, outside temperature, and PV power.
Additionally, two variables provided by a meteorological
agency—estimated precipitation and sky status—were used
as input variables. The estimated precipitation represents the
amount of precipitation within 1 h. The sky status indicates
the number of clouds in the sky and ranges from 1 to 4, with
1 representing the least cloudy conditions (clear sky) and
4 representing the cloudiest conditions.

The data used in this study were collected from January 1,
2022 to April 30, 2023. The forecasting model was developed
using data collected in 2022, and to evaluate its performance,
data from January 1, 2023 to April 30, 2023 were used for
testing.

B. MISSING DATA GENERATION
To create missing data conditions, missing data with rates
of 10%, 20%, and 30% were generated using perfect PV
data. An example of the missing PV power data is shown
in Fig. 3. Missing data were randomly generated in 15-min
intervals from the normally measured PV power data. The
black solid line and blue dots represent the measured actual
PV power and artificially missing PV power, respectively.
The missing values were randomly generated throughout the
entire 2022 dataset used in the forecasting model. To prevent
bias in the results, missing data were generated five times,
and the imputation and forecasting results were examined.
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FIGURE 3. Example of missing PV power data: missing data rate of 30%.

C. IMPUTATION OF MISSING DATA
Missing data rates of 10%, 20%, and 30% were considered,
and the linear, KNN, and GAIN imputation methods were
applied.

1) APPLYING IMPUTATION METHOD BASED ON MISSING
DATA
Linear imputation was performed using the na.approx() func-
tion provided by the Zoo package in R. Fig. 4 illustrates
an example of missing data, where red and blue represent
missing and imputed data, respectively. After five experi-
ments, the average imputation performance for missing data
rates of 10%, 20%, and 30% was calculated, resulting in R2

values of 0.871, 0.866, and 0.865, respectively. Examining
the imputed results for the period from 2022-08-01 12:30 to
2022-08-01 13:00, within which there were continuous miss-
ing data, revealed differences between the measured PV
power and imputed PV power. These results indicate that the
use of linear imputation for long-termmissing data in periods
of high PV power volatility may be unsuitable.

FIGURE 4. Linear imputation trial results: missing data rate of 30%.

KNN imputation was performed using the ‘‘knn.reg()’’
function from the ‘‘caret’’ package in R. The parameter ‘‘k’’
was varied from 1 to 9 to determine the optimal k value, which
was found to be 7. An example of the results obtained with k
set as 7 is shown in Fig. 5. Similar to Fig. 4, the red and blue
points represent the missing and imputed data, respectively.
The average imputation performance for the five experi-
ments exhibited R2 values of 0.975, 0.977, and 0.976 for
the missing data rates of 10%, 20%, and 30%, respectively.
This represents an average performance improvement of
0.109 compared with the commonly used linear imputation
method.

GAIN was implemented using the ‘‘keras’’ library in
Python to construct the generator, discriminator, and hint
generator. The parameter settings are presented in Table 1.

FIGURE 5. KNN imputation trial results: missing data rate of 30%.

TABLE 1. Generator and discriminator model configurations.

An example illustrating the imputation performance is
shown in Fig. 6. The average imputation performance for
each case was calculated, and R2 values of 0.924, 0.916,
and 0.941 were obtained for missing data rates of 10%,
20%, and 30%, respectively. The imputation performance of
GAIN was approximately 0.060 times higher than that of
linear imputation. Analyzing the imputation results for the
data corresponding to August 1, 2022, as shown in Fig. 6,
revealed cases in which the replaced PV power was higher or
lower than the actual PV power. Furthermore, compared with
KNN and GAIN, linear imputation exhibited higher variabil-
ity in imputation performance. The variability was calculated
as the difference between the highest and lowest imputa-
tion performance values obtained from the experiments. The
imputation performance variability for KNN imputation was
0.007, 0.005, and 0.009 sequentially for missing data rates
of 10%, 20%, and 30%, respectively, whereas for GAIN
imputation, it was 0.021, 0.045, and 0.027, respectively.

FIGURE 6. GAIN trial results: missing data rate of 30%.

2) IMPUTATION CONSIDERING SKY STATUS
We analyzed the impact of cloud cover on the imputation
performance. The sky status variable was categorized into
three groups: sky status 1 was labeled as ‘‘Sunny,’’ status 4
was labeled as ‘‘Cloudy,’’ and other values were labeled as
‘‘Partly cloudy.’’
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Table 2 presents the imputation results for each sky-
state category. Linear imputation consistently exhibited
lower performance than the other imputation methods across
all sky-state categories. In particular, for the ‘‘Cloudy’’

TABLE 2. Comparison of imputation performance according to sky status
classification (R2).

category, the imputation performance exhibited a sharp
decline. Therefore, linear imputation is not suitable for impu-
tation in situations with high variability in PV power.

KNN imputation consistently outperformed the other
imputation methods—particularly when the sky state was
‘‘Partly cloudy’’ or ‘‘Cloudy.’’ At a missing data rate of 30%,
when the sky state was ‘‘Partly cloudy,’’ the R2 values
were 0.861, 0.977, and 0.944 for linear, KNN, and GAIN,
respectively. For the ‘‘Cloudy’’ category, the values were
0.816, 0.987, and 0.934, respectively. These results suggest
that KNN-based imputation is appropriate for situations with
significant weather variability.

IV. RESULTS OF PV FORECASTING MODEL
A. RESULTS OF PV FORECASTING MODEL DEVELOPED
USING PERFECT INFORMATION
To analyze the impact of missing data on the forecasting
models, we developed a forecasting model using perfect
information. In the development of the forecasting model,
the data points before 7 AM and after 8 PM were excluded
because the PV power during these periods tended to be close
to or equal to zero.

The forecastingmodel was based on the CNN-GRUmodel,
predicting PV power 1 h ahead at 15-min intervals. We used
the Adam optimizer with the MAE as the loss function. The
batch size was set as 32. We set the number of epochs as
100 but employed an ‘‘early stop’’ mechanism, which halted
training if the model’s error did not decrease. The key hyper-
parameter sets for each layer are as follows: for the CNN,
the padding was set to ‘same’ to ensure identical number of
input and output data. Setting ‘same’ prevents information
loss caused by data reduction. For the GRU, both the kernel
initializer and recurrent initializer were set to ‘he-normal’ to
initialize the weights. The reason for choosing ‘he normal’
for weight initialization is the better prediction performance
compared with other weight initialization methods. In partic-
ular, when using the ‘glorot’ method for weight initialization,
the prediction results tended to converge to 0. The parameters
of the forecasting model are presented in Table 3.

TABLE 3. Forecasting model parameters.

The forecasting results of the prpposed model are pre-
sented in Fig. 7. The forecasting model yielded an R2 value
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FIGURE 7. Forecasting results before the generation of missing data.

of 0.933. For the ‘‘Sunny,’’ ‘‘Partly cloudy,’’ and ‘‘Cloudy’’
sky statuses, the, R2 scores were calculated as 0.946, 0.922,
and 0.910, respectively. The forecasting performance for
‘‘Partly cloudy’’ and ‘‘Cloudy’’ was lower than that for
‘‘Sunny,’’ with differences of 0.024 and 0.036, respectively,
in the R2 scores. The performance results for each index are
presented in Table 4.

TABLE 4. Reference model results.

B. RESULTS OF PV FORECASTING MODEL DEVELOPED
USING IMPUTED DATA
We developed forecasting models for each missing data
case to evaluate the forecasting performance. The parameters
for the model development are consistent with those pre-
sented in Table 3. We developed forecasting models for each
imputation method using the data generated from the five
experiments. Subsequently, we categorized the forecasting
results for each imputation method and the missing data rate
and calculated the average forecast PV power. The forecast-
ing performance was evaluated, and the results are shown
in Fig. 8.

As shown in Fig. 8(a), regarding R2, the KNN and GAIN
models outperformed the existing linear and direct deletion
methods. When the missing data rate was 30%, the R2 values
of direct deletion, linear, KNN, and GAIN for the all-sky
statuswere 0.930, 0.930, 0.935, and 0.934, respectively. In the
missing data rate range of 10–30%, the KNN-based model
exhibited the best performance among the models exam-
ined, whereas the linear-based model exhibited the lowest
performance.

Regarding the RMSE, rRMSE, and nRMSE, as shown
in Figs. 8(b)–(d), the performances of the KNN- and
GAIN-based models were lower than that of the direct
deletion-based model at the missing data rate of 10%; how-
ever, it improved as the missing data rate increased. When the

sky status was ‘‘cloudy’’ and the missing data rate was 30%,
KNN outperformed GAIN.

As shown in Fig. 8(e), the KNN-based model exhibits the
best performance at missing data rates of 10% and 20%,
whereas the GAIN-based model exhibits the best perfor-
mance at 30%. The performance of the direct deletion-based
model decreased as the rate of missing data increased. When
the four indices (RMSE, rRMSE, nRMSE, and MAE) were
compared, differences were observed in the results of the
GAIN-based model. For the ‘‘cloudy’’ sky status, the per-
formance of the GAIN-based model declined as the missing
data rate increased; however, this model exhibited the best
performance at 30%. The MAE is less sensitive to outliers,
but the other three indicators exhibit a characteristic of being
sensitive to outliers. More specifically, it is suspected that
the performance of the GAIN model declined for all three
indicators, owing to the presence of outliers in the forecasting
results.

Figs. 8(f) and (g) present the forecasting performance
results in terms of RMSD and MRD. These two indices
are associated with the deviation between the reference and
imputation-applied models, reflecting the similarity of the
compared models. For the all-sky status, the RMSD at the
missing data rate of 10% was 37.60 for direct deletion and
40.80 for KNN, whereas in the 30% interval, it was 56.96 and
35.88, respectively. For MRD, with 10% missing data, it was
6.17 for direct deletion and 6.55 for KNN, whereas with 30%
missing data, it was 10.81 and 5.93, respectively. As the miss-
ing data rate increased, direct deletion exhibited an increasing
deviation from the reference model, whereas KNN exhibited
the opposite trend, with the deviation decreasing as the rate
increased.

Table 5 summarizes the forecasting results and presents
the preferred imputation models for each case. The preferred
method is defined as the imputation model that exhibits the
best performance within each column or row.

C. ANALYSIS OF FORECASTING ERROR WITH RESPECT TO
SKY STATUS
Finally, we compared and analyzed the time-specific fore-
casting errors of the reference model developed using perfect
information with those of each imputation-applied model.
The forecasting errors were calculated by subtracting the PV
power forecasted by the imputation-applied model from that
forecasted by the reference model. A positive error indicated
that the reference model forecasted a higher value than the
imputation model.

The time-specific forecasting errors are shown in Fig. 9.
The black line inside the boxes represents the median of the
errors, whereas the edges of the boxes represent the 25th and
75th percentiles.

Comparedwith the referencemodel in Fig. 9, for all the sky
statuses, the linear imputation exhibited the smallest error at a
missing data rate of 10%, whereas KNN and GAIN exhibited
the smallest errors at 30%. At 10%, KNN and GAIN had
the largest errors, whereas at 30%, direct deletion had the
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TABLE 5. Preferred imputation methods for different missing data rates and forecasting error calculation methods.

FIGURE 8. Comparison of power forecasting errors for different imputation methods.

largest error. When the sky status was ‘‘Sunny,’’ the average
errors at 10% were –2.673, –1.258, –5.167, –2.934 for direct
deletion, linear, KNN, and GAIN, respectively. At 30%,

they were –8.369, –5.051, –2.487, and –2.150, respectively.
These results are consistent with the MRD findings presented
in Fig. 8(e).
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FIGURE 9. Comparison of the forecasting errors for different imputation
methods.

V. CONCLUSION
We analyzed the impact of replacing missing PV power
data on the results of forecasting models. Missing data were
randomly generated in PV data with perfect information
and were subsequently imputed using linear, KNN, and
GAIN methods. Forecasting models were developed using
the imputed data, and their performance was evaluated using
seven indices. Regarding the imputation performance, KNN
exhibited the highest R2 at missing data rates of 10%, 20%,
and 30%, with values of 0.975, 0.977, and 0.976, respectively.
However, when forecasting models were developed using the
imputed data and compared, direct deletion performed the
best at 10%, whereas the KNN and GAIN models performed
better at 20% and 30%. The results for different missing data
rates and evaluation indices indicate that KNN is generally
a good imputation method but also highlight the importance
of selecting the appropriate imputation method depending on
the situation.

In addition, the errors between the reference and
imputation-applied models were consistent with the results
of the MRD analysis. As the missing data rate increased,
the average errors of KNN and GAIN, which excelled in
PV power imputation, decreased. This reflects the impact of
missing PV power data on the performance of the forecasting
models; i.e., the importance of the imputation performance
increases with the missing data rate.

Our study has the following limitations:
First, since this study targeted only one PV plant, the

generalizability of the research results is limited. In future
studies, we plan to apply interpolation methods to a large
number of PV plants to generalize an appropriate imputation
method for PV plants.

Second, since this study primarily focused on analyzing the
impact of missing PV power data on the forecasting model,
we did not consider the issues of missing data and diversity
in weather forecasts. However, PV power-forecasting models
require various input variables, including weather forecasts,
PV power, and solar irradiance. Therefore, we anticipate that
additional research will simultaneously address the missing
data issues of the key variables used in PV power forecasting
models.

Third, there is a limitation in using only a short-term PV
dataset. The data used in this study covers the period from
January 1, 2022, to April 30, 2023. The period used for model
validation is limited to January 1, 2023, to April 30, 2023.
Due to the short duration of analysis, there is a limitation
in not considering the seasonal characteristics of PV power.
In future work, we plan to conduct additional research that
takes into account the seasonal characteristics of PV power.

In future research, we plan to improve the forecasting
performance through ensemblemethods that combine various
imputation methods for missing PV data.
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