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ABSTRACT The use of wheeled mobile robots (MRs) with symmetrical structure in engineering is rapidly
increasing, with applications in various fields, such as industry, agriculture, forestry, healthcare, mining,
rehabilitation, search and rescue, household tasks, remote locations, and entertainment. As MRs become
more common, researchers are focusing on developing better ways to model and control these robots to
improve their performance and adaptability. The main challenges in this area include uncertain dynamics,
non-holonomic constraints, and various perturbations, which complicate the design of the control system.
This paper presents a new predictive control scheme for MRs that is independent of the dynamics and
the robot’s working environment. A Type-3 fuzzy logic system is developed to identify the MR dynamics
online. The designed predictive scheme improves accuracy and speeds up convergence, while also addressing
uncertainties and considering constraints on control input. Additionally, a chaotic-based system is proposed
for secure path planning, generating a complex and unpredictable reference trajectory that is useful for patrol
MR applications. The effectiveness of the suggested controller is demonstrated through simulations and
experiments.

INDEX TERMS Fuzzy control, constrained control, type-3 fuzzy logic, mobile robot, chaotic systems.

NOMENCLATURE
MR Mobile Robot.
SMC Sliding-Mode Controller.
FLS Fuzzy Logic System.
PI Proportional-Integral.
MPC Model-based Predictive Control.
T3 Type-3.
d ∈ R Perturbation.
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I. INTRODUCTION
Mobile robots (MR) application in engineering systems
is experiencing significant growth in recent years. This
expansion spans a diverse range of sectors including industry,
agriculture, forestry, mining, medicine, surgery, rehabilita-
tion, healthcare, search and rescue, domestic use, opera-
tion in hazardous locations, remote area deployment, and
entertainment. Wheeled MRs, which interact with surfaces
through their wheels, exemplify these systems and are subject
to non-holonomic constraints [33]. These constraints arise
because the wheels are designed to roll forward without
slipping, which limits their movement. Consequently, the
motion control of wheeled MRs for automated operations
presents several control challenges, including path following,
stability, and maintaining a consistent trajectory [18], [19].

Due to the wide applications of MRs, the control problem
of MRs has attracted great attention and many control
methods have been developed. For example, in [5] sliding-
mode controller (SMC) with gain adaptations for tracking
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problem of MRs was investigated. The designed SMC
compensated the external disturbances, and a kinematic
controller was also applied to consider the non-holonomic
constraints. In [29], first an integral backstepping controller
was designed, and then to obtain the asymptotic convergence
a recurve backstepping was developed. In [7], the wheeled
MRs by non-holonomic constraints were studied, with a focus
on analyzing the kinematic and SMC models.

An improved switching structure based on SMC was
employed to control the robot’s trajectory tracking, and the
reduction of pose error and the accuracy of control of linear
velocity and angular speed are studied. The fixed-time track-
ing control of MRs was studied in [24], and the fixed-time
control laws are proposed based on Lyapunov analysis.
Lyapunov’s theory was also used in other studies to guarantee
control system’s stability, e.g., [8]. It was shown that the
obtained settling time was independent to initial conditions,
which makes it more practical. The formation control of
MRs under non-holonomic restrictions was studied in [14].
The formation was converted into a consensus problem, and
speed inputs are computed using continuously distributed
protocols to decrease chattering. In [34], an adaptive SMC
was designed, the actuator saturation is taken into account,
and the asymptotic stability was studied.

In most classic controllers, such as the controllers men-
tioned above, MRs are taken into account and the controllers
are constructed using mathematical models. FLSs have a
wide applications in engineering, for example, explication of
crossroads order [28], robot manipulators [15], determination
of journeys order [26], control systems [4], and estimation
problems [27]. To estimate the dynamics of MRs and identify
the uncertain parameters and dynamics, some neuro-fuzzy
controllers have been also developed. For example, in [17] the
conventional SMC is combined with a Fuzzy Logic System
(FLS), and it is shown that FLS is effective in the control of
MRs.

A fuzzy proportional-integral (PI) control algorithm was
proposed in [35] to analyze the omnidirectional movement
of MRs. Experimental data verified that the fuzzy control
algorithm notably diminished yaw error and enhances
heading-regulation performance, outperforming traditional
PI control algorithms. The motion model of spherical MRs
was analyzed using FLSs in [12], and a fuzzy controller was
designed accordingly. The response of a fuzzy controller was
assessed in [1], and the computation time of an FLS-based
controller was taken into account and a technique was
developed to optimize the rules of FLS.

A comprehensive FLS-based control system, as proposed
in [21], was developed for a two-wheeled balancing mobile
robot (MR). This control system incorporated three distinct
FLSs to manage position, balance, and directional control.
The controllers within this system utilized optimally deter-
minedmembership functions, whichwere refined through the
cross-entropy optimization method. The effectiveness of the
FLSs were demonstrated through real-time evaluation using
an STM32F4 microcontroller.

Recently, type-3 FLSs have been suggested for the control
and modeling of practical systems [22], [30]. For instance,
in [3], the dynamics were estimated using T3-FLSs, and it
was verified that T3-FLSs are more efficient in controlling
Mobile Robots (MRs) in complex, uncertain environments.
The path planning and following of MRs under practical
perturbations were studied in [31], where a T3-FLS controller
was suggested. Several experimental and simulation exam-
inations demonstrated the superior response of T3-FLSs.
In [6], besides the uncertain dynamics, the states of MRs
were also considered unknown, leading to the design of a
T3-FLS-based observer. A harmony search algorithm, uti-
lizing T3-FLSs, was designed in [25] and was used for
parameter estimation in a fuzzy control system for MRs.
In [23], a fractional-order controller was developed using
T3-FLSs, and new rules were suggested for the training of
T3-FLSs based on stability analysis. Table 1 summarizes the
studies carried out in this work.

The control algorithm utilized in the industry must
possess specific features, such as being user-friendly and
straightforward to adjust, as these serve as benchmarks for
its widespread industrial application. Although traditional
controllers are widely used in the industry, the varied
behavior of industrial processes restricts their utility. This
dynamic behavior is likely due to various factors, such as
the existence of zeros outside the stable region, unstable
poles, long and uncertain time-varying delays, and limitations
on the process variables. The predictive control algorithm
is a method designed to handle such complex processes,
where the base path, known as the prediction horizon,
is already established. The controller’s output must now
be determined so that the predicted output of the process
aligns as closely as possible with the base path. Numerous
methods falling under the umbrella of predictive control
have been presented so far, leading to better, more accurate
development and treatment. The most significant claim of
this algorithm is its applicability to non-linear processes
and its capability to maintain control [20]. Its ability to
manage non-linear functions, which may vary over time,
and under conditions with various restrictions on process
variables, distinguishes these controllers as unique and
superior compared to other methods. One of the effective
controllers within this category is model-based predictive
control (MPC).

The challenge with MPC is expressed as the need for
a controller to bring the system’s response to the desired
value in the ensuingmoment, using present-time information.
The predictive controller possesses a system model capable
of forecasting future behavior, known as a predictive
model [2]. In fact, the basis of predictive controllers is as
follows.

1) Forecasting model that determines future outputs for
a forecast horizon based on past outputs and past and
present inputs.

2) Predictive control whose purpose is to bring the output
to a desired value in the future.
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TABLE 1. A quick view on literature.

Advantages of using MPC are listed below.

• Using basic concepts of control in design
• Simple setting of the controller
• Ability to develop complex, non-minimum phase, and
delayed systems

• Easy expansion capability for multiple-input and
multiple-output systems

• To compensate for the naturally measurable disturbance
effect of a controller It includes feedforward.

• Easy implementation of the control law
• Including control signal constraints, output, and state,
in the design process (control optimal

• Very useful application for situations where the desired
path is known in the future (robotics)

Disadvantages of using MPC are listed below.

• Control signal calculation is more complicated than
classical controllers.

• Additional computational load for processes whose
dynamics do not change.

• High calculation volume for bound controllers.
• Hardware cost to upgrade classic controllers toMPC and
other advanced controllers.

• The need for a suitable model for the process.
• Impact of MPC benefits on the unavailability of the
accurate model.

• The problem of proving stability and robustness in
bound state and some non-linear systems.

MPC has been studied in several documented literature for
the control of MRs [13], [32]. However, in most studies, the
constraints are not considered. Also, the dynamic estimation
is simple and cannot be used for real-world situations. Thus,
the main contributions of the present paper are as follows.

• A new MPC strategy is introduced for MRs under both
non-holonomic constraints and input restrictions.

• A T3-FLS based strategy is suggested for predictions
and control for MRs with fully unknown dynamics.

• A chaotic-based path following is suggested, and it is
shown that MRs well track a chaotic reference.

• Both experimental and simulation examinations are
provided for evaluating the effectiveness of predictive
strategy and FLS-based controller.

FIGURE 1. Control scheme.

The paper is organized as follows. A general view is given
in Section II-A. The T3-FLS is described in Section II-B.
The controller is designed and analyzed in Section II-C. The
simulations and experimental studies are given in Section III.
The main results are summarized in Section IV.

II. MATERIALS AND METHODS
A. GENERAL VIEW
The general equations of non-holonomic MRs are considered
as [6], [9], and [33]:

ż1 = u1
ż2 = u2
ż3 = F(z) + z2u1 + d (1)

where z = [z1, z2, z3]T , and u1, u2 ∈ R represent control
signals. F(z) is a nonlinear function and d ∈ R denotes the
perturbation. F(z)+d is approximated by the use of adaptive
T3-FLS. So, the estimated system is written as:

ż1 = u1
ż2 = u2
ż3 = T3-FLS(z) + z2u1 (2)

A general view of the schemed controller is given in Fig. 1.
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B. TYPE-3 FLS
The dynamics are considered to be completely unknown,
and as a result, the T3-FLS is utilized for online dynamic
identification. T3-FLSs have been effectively employed in
estimation and prediction applications. This paper introduces
novel predictive controller using the T3-FLS model of MR.
The T3-FLS is demonstrated in this section.

1) The inputs variables for T3-FLS are output and input
of system in previous sample times. The general structure is
given in Fig. 2.

2) Two membership functions are considered for input
signals (�̃j

i, i = 1, .., n, j = 1, 2). The memberships are
obtained as:
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/H
�̃
j
i |αi

are the upper/lower

memberships for �̃
j
i at αi and ᾱi. C�̃
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The output fuzzy system f is written as [31]:
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)
nα∑
i=1

(
αi + ᾱi
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FIGURE 2. The T3-FLS structure.

FIGURE 3. Type-3 MF.
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C. CONTROL METHOD
In general, this algorithm, which belongs to controllers
based on the model, is a generalization of the methods of
pole placement and LQ optimal control; Besides eliminating
their weak points as much as possible and due to being
resistant, its greater ability is confirmed. In addition,
in multivariable processes where decoupling conditions are
established, by applying the predictive controller, different

basic paths can be optimally followed for each of the outputs
and unwanted disturbances in the output can be removed.
Predictive controllers are implemented in the time domain
and are effective for controlling many types of systems,
from simple dynamic systems to the most complex ones.
In general, a predictive controller is a controller that operates
based on the following principles:

• Using a model to predict the future outputs of the system
in a limited period of time (prediction horizon).

• Definition of an objective function, which is usually
a linear combination of the error and control signal
changes.

• Optimizing the objective function in order to find the
desired control signals.

• Apply the control signal obtained for the currentmoment
to the system and repeat the calculations for the next
moments.
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The impulse response model, step response, transformation
function, and state space are common models for predicting
system output. The objective function is chosen on the basis
that the future output of the system follows a desired reference
signal in the prediction horizon and at the same time the
control signal changes are minimal. Usually, a first-order
filter is used to smooth the reference signal and determine the
desired output. In some methods, the changes of the control
signal are not taken into account, so some other values of
the control signal itself are considered instead of its changes.
Generally, there are restrictions on control signals and system
outputs that must be considered in the optimization of the
criterion function. In the forecasting horizon, p future steps
are examined and in each calculation, the output of the system
is calculated up to the first step p. Control strategy in theMPC
controllers has the following steps.

1) First step:

• Determine the prediction horizon N
• Calculation of forecast outputs y(t + k|t) for k =

1, . . . ,N depends on two parts:

– The part dependent on the known values of the
past time of input and output

– The part dependent on the control signal in the
future time u(t + k|t) for k = 0, . . . ,N − 1.

2) Second step:

• Calculation of the control signal based on the
optimization of an objective function (reducing the
reference trajectory tracking error w(t + k))

• Choosing a square form for optimization criteria
(including tracking error, control signal size)

• Closed form for u: in linear system conditions,
without constraints and quadratic optimization
criteria.

3) Third step:

• Only u(t|t) is applied to the system.
• At themoment t+1, with the new information y(t+
1), the control signal is recalculated (restarting
from the first step)

A third-order non-holonomic system is considered as:

ẋ1 = u1
ẋ2 = u2
ẋ3 = f (x) + x2u1 + d (21)

The controller is designed for (21) such that the stability
is ensured. The control law is obtained in such a way that if
the initial conditions of the system are acceptable anywhere
in the space (�). Then this control law will bring the system
to the equilibrium point. First, the feedback linearization is
applied as:

u1 =
−f̂ (x) + V + α x1

x2
(22)

where f̂ (x) represents T3-FLS. Then we have:

ẋ1 = u1
ẋ2 = u2
ẋ3 = V + α x1 (23)

where

Ż =

 0 0 0
0 0 0
α 0 0

 Z +

 1 0 0
0 1 0
0 0 1

  u1
u2
V

 (24)

The dynamics are written as:Ż1
Ż2
Ż3

=

0 0 0
0 0 0
α 0 0

Z1Z2
Z3

+

1 0 0
0 1 0
0 0 1

u1u2
V

 (25)

By applying the controller, we can write:

ẋ1 = u1
ẋ2 = u2
ẋ3 = α Z1 + V (26)

where

A=

0 0 0
0 0 0
α 0 0

, B =

1 0 0
0 1 0
0 0 1

, C =

1 0 0
0 1 0
0 0 1


(27)

In discrete form, (27) is written as:

xt+1 = Ad (x)xt + Bd ut + D

yt+1 = Cd xt+1 (28)

The matrices Ad , Bd ,Cd are considered as:

Ad = eAT ≈ I + AT

Bd =

τ∫
0

eATBdτ ≈ BT

Cd = C (29)

where T denotes the sampling period. Considering T , we can
write:

Ad =

1 0 0
0 1 0
0 0 1

+

0 0 0
0 0 0
α 0 0

∗T , Dd =

00
d

∗T

Bd =

 1 0 0
0 1 0
0 0 1

∗T , Cd =

1 0 0
0 1 0
0 0 1

 . (30)

The following equations are used for prediction:

xk+1 = Ã xk + B̃1uk + D̃

yk+1 = C̃ xk+1 (31)

where

Ã =

[
Ad Bd
0p×n Ip×p

]
B̃ =

[
Bd
Ip×p

]
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C̃ =
[
Cd 0q×p

]
D̃ =

[
D

0p×1

]
xTk =

[
xTk uTk−1

]
(32)

where p denotes the number of inputs, q and n denote output
and states numbers, and for other matrices we have:

D̃ ∈ R[(n+p)× 1]

Ã ∈ R[(n+p)×(n+p)]

C̃ ∈ R[q×(n+p)]

B̃ ∈ R[(n+p)×p] (33)

The prediction horizon of output/control are shown by ny/nu.
By the use of (31) the n-step ahead is predicted as follows:

xk+n

= Ã
n
xk + Ã

n−1
B̃1uk + . . . + B̃uk+n−1 + Ã

n−1
D̃+ D̃

yk+n = C̃ xk+n (34)

The predicted output is written as:

ŷ = ξ ′ x̂ + ξ ′′ 1u + ξ ′′′ d (35)

where

1uT =
[
uk uk+1 · · · uk+n−1

]
(36)

ŷ =
[
yk+1 yk+2 · · · yk+ny

]
(37)

ξ ′
∈R(nyq)×n, ξ ′′

∈R(nyq)×(nup), ξ ′′′
∈R(nyq)×(nyn) (38)

where ŷ ∈ R(nyq)×1 is the vector of predicted output,
x̂ ∈ Rnyn+p is the estimated states using Kalman filter,
1 u ∈ Rnup×1 represents the changes of control input, and
d is the disturbance. ξ ′, ξ ′′ and ξ ′′′ are written as:

ξ ′
=

[
C̃Ã C̃Ã

2
· · · C̃Ã

ny
]T

(39)

ξ ′′
=


C̃B̃ 0 0 · · ·

C̃ÃB̃ C̃B̃ 0 · · ·

C̃Ã
2
B̃ C̃ÃB̃ C̃B̃ · · ·

C̃Ã
ny−1

B̃ C̃Ã
ny−2

B̃ · · · · · ·

0
0
0
C̃B̃

 (40)

ξ ′′′
=


C̃ 0 0 · · ·

C̃Ã C̃ 0 · · ·

C̃Ã
2

C̃Ã C̃ · · ·

C̃Ã
ny−1

C̃Ã
ny−2

· · · · · ·

0
0
0
C̃

 (41)

To derive the control signal, the cost function (42) is
minimized:

J = 1uTWu1u

+ (w− ŷ)TWy (w− ŷ) (42)

wherew ∈ R(ny q)×1 is the vector of reference in future times,
Wy ∈ R (nyq)×(nyq) is positive definite matrix that represents
the importance of tracking error, and Wu ∈ Rnu×nu is
positive definite matrix that shows the importance of control
effort. The matrices ξ ′, ξ ′′, and ξ ′′′ are updated in each
sample. By replacing ŷ form (35) into (42), 1u is obtained

TABLE 2. Simulation conditions.

as:

1u=

(
ξ ′′T Wyξ

′′
+Wu

)−1
ξ ′′TWy

(
w− ξ ′x − ξ ′′′ d

)
(43)

To consider the constraints on inputs and outputs, the cost
function is written as:

J = (yt+1\t − rt+1\t )T Q (yt+1\t − rt+1\t )

+ 1ut\t T R1ut\t + ut\t T R2 ut\t (44)

where

min
1 ut\t

J (45)

umin
t|t ≤ ut|t ≤ umax

t|t

1 umin
t|t ≤ 1 ut|t ≤ 1umax

t|t

ymin
t+1|t ≤ yt+1|t ≤ ymax

t+1|t (46)

The constraints on magnitude of input control are written as:[
I

−I

]
ut\t ≤

[
umax
−umin

]
(47)

To formulate the constraint 1 umin ≤ 1 ut\t ≤ 1 umax,
we can write:

ut\t = s1ut\t + c ut−1 (48)

where

1 ut\t = s−1 ut\t + s−1c ut−1 (49)

The constraint ymin ≤ yt+1\t ≤ ymax is written as:

yt+1\t = pt + Ft 1 ut\t (50)

It can be also simplified as

yt+1\t = pt + Ft ut\t (51)

Then we can write:[
Ft

−Ft

]
ut\t ≤

[
ymax − pt

−ymin + pt

]
(52)

The constraints above are written as:

A ut\t ≤ b (53)
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The matrices A and b are obtained as:

A =


s

−s
I

−I
Ft

−Ft

 , b =



umax
t\t − c ut−1

umin
t\t + c ut−1

1 umax
t\t

1 umin
t\t

ymax
t+1\t − pt
ymin
t+1\t + pt


(54)

The relation between 1 ut\t and ut\t is written as:

ut\t = s1ut\t + c ut−1 (55)

where

s =


I 0 0 · · · 0
I I 0 · · · 0
...

...
...

...
...

I I I · · · I

 , c =


I
I
...

I

 (56)

Equation (55) is written as:

1 ut\t = s2 1ut\t + c2 ut−1 (57)

where

s =



I 0 0 · · · 0
−I I 0 · · · 0

0 −I I
... 0

...
...

... · · ·
...

0 0 0 · · · −I

 , c =


I
0
...

0

 (58)

Considering s2 = s−1 and c2 = s−1 c, we can write:

ut−1|t = (I − s2) ut|t + c2 ut−1 (59)

The prediction model is considered as:

ut+1|t = pt + Ft1ut|t (60)

where pt is a part of past outputs and inputs, andFt is constant
matrix.

III. RESULTS AND DISCUSSION
In this section, the designed predictive controller is evaluated.
The effect of uncertainties and constraints is investigated.
An augmented model based on (31) and (32) is constructed
for the plant, and the by prediction of output signals
the control input is obtained. The system parameters are
considered as given in Table 2.

A. NON-CONSTRAINED CONDITION
For the first scenario, it is assumed that there are no
constraints on outputs and input signals. This means that the
system is free to move and respond to any changes in the
environment without any limitations. The trajectories of x1,
x2 and x3 are depicted in Fig. 4.

As can be seen, all the states with different initialization,
in a limited time and with a high convergence speed, track the
desired path and converge without any overshoot. The control

FIGURE 4. Trajectories of x1, x2, and x3 for the non-constrained case.

FIGURE 5. Trajectories of u1, u2, and u3 for the non-constrained case.

signals are shown in Fig. 5. It can be seen that all input signals
are smooth and implementable, with no fluctuations. This
indicates that the system is stable and robust, and can respond
to any changes in the environment without any issues.

B. CONSTRAINED CONDITION
For the second scenario, we consider the following
constraints:

−2 ≤ u ≤ 2 (61)

The trajectories of x1, x2 and x3 are depicted in Fig. 6. As can
be seen, all the states with different initialization, in a short
time are converged to the desired path there is no overshoot
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FIGURE 6. Constrained case: Trajectories of x1, x2, & x3.

FIGURE 7. Constrained case: Trajectories of u1, u2, & u3.

in signals. The control signals are shown in Fig. 7. It can be
seen that all input signals are between the constraints, and the
signals are smooth and implementable, with no fluctuations.
This indicates that the system is stable and robust, and can
respond to any changes in the environment without any
issues.

To better see the superiorly of type-3 FLS-based controller
a comparison is carried out with some other types of fuzzy
controllers such as type-1 fuzzy-based SMC [17] and type-2
fuzzy-based SMC [16]. In these methods, the stability is
analyzed using the SMC theorem and they are applied to
the MR systems. The comparisons in Table 3 show that the
suggested scheme along with the theory of powerful T3-FLS

TABLE 3. Comparison of RMSE.

FIGURE 8. Chaotic reference: Trajectories of x1, x2, & x3.

results in a more accurate response. The outputs well follow
the reference signals.

C. CHAOTIC REFERENCE
For the third scenario, the reference is assumed to be a chaotic
signal. For outputs x1, x2 and x3 the references are considered
to be x11, x12 and x13 that are generated by the following
equations.

ẋ11 = 35x12x13 + 35 (x12 − x11)
ẋ12 = −5x11x1325x11 + x12 + x14
ẋ13 = x11x12 − 4x13
ẋ14 = −100x12

(62)

The trajectories of x1, x2 and x3 are depicted in Fig. 8.
The phase portraits are depicted in Fig. 9. The outputs
track the chaotic references very well. The plots in Fig. 9
show that the outputs closely follow the chaotic references,
indicating that the proposed control scheme is effective
in tracking unpredictable paths. The stochastic nature of
the reference path makes it difficult to predict, which is
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FIGURE 9. Chaotic reference: Phase portrait in 2D (top panels) and 3D
(the bottom panel) dimensions.

a desirable feature for secure patrol robotic applications.
The control signals are shown in Fig. 10. Similar to the
previous examinations, the controller inputs are smooth and
implementable. These findings suggest that the introduced
scheme can be employed to a wide range of plants with
unpredictable dynamics, making it a promising approach for
various real-world applications.

D. EXPERIMENT
The suggested controller is applied on a practical robot
(see Fig. 11). The robot communicates with the laptop is a
radio module called NRF24L01. This module uses GFSK
modulation and has a frequency of 2.4 GHz, making it easier
to transmit signals through walls and other objects. It can
transmit heavy data such as audio or video at a maximum
rate of 2 MB per second. The laptop receiver is connected
to a microcontroller using the SPI protocol, which is then
connected to the laptop through a USB to serial converter.
MATLAB software communicates with the microcontroller
through a virtual serial port with a baud rate of 9600. The
robot’s microcontroller is also connected to the NRF24L01
module using the SPI protocol, as well as Sharp sensors. The
same microcontroller is connected to the motor controller
using UART serial communication. An angular acceleration
sensor is also connected to the motor controller using the
I2C protocol. The motor drivers have three control pins: EN,
direction, and pulse/step, which rotate the motor one step for

FIGURE 10. Chaotic reference: Trajectories of u1, u2, & u3.

FIGURE 11. Experiment: Implementation setup.

FIGURE 12. Experiment: Path tracking performance.

each pulse received. The performance of path following is
given in Fig. 12. It is seen that the suggested controller has a
good efficiency in real-world situations.

The estimation part of this paper can be developed using
other intelligent systems, and other modeling approaches
like, hybrid modeling approach [11], non-singular control
systems [16], and new decision-making based modeling
systems [10].

IV. CONCLUSION
In this paper, a new control scheme is applied for
MRs. Besides the non-holonomic constraints, some other
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restrictions are also considered in input control. Also,
the dynamics are supposed to be entirely unknown.
A T3-FLS is developed for the estimation of unknown
dynamics. Three simulation examples and one practical
experiment are provided to show the designed controller’s
effectiveness. In the first example, the controller is applied
to a plant with non-holonomic constraints with unknown
dynamics. It is shown that the suggested controller results
in an accurate response without overshoot, and with smooth
control signals. In the second example, the controller is
applied to a plant with non-holonomic constraints with
unknown dynamics and input constraints. Similarly, the
results show that even in spite of complex constraints and
perturbations the suggested controller well tracks a pulse
reference. In the third simulation example, the reference
signal is considered to be a chaotic reference. All reference
signals of the outputs are generated by a chaotic system. The
results show that the system well tracks the chaotic path and
demonstrates that the designed controller can be applied for
secure robotic parol applications. Finally, in the experimental
examination, the suggested controller is applied to a real
MR, and it is shown that MR follows a designed path with
acceptable accuracy.
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