
IEEE SYSTEMS, MAN AND CYBERNETICS SOCIETY SECTION

Received 26 November 2023, accepted 8 January 2024, date of publication 10 January 2024,
date of current version 19 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3352441

Consensus Control of Multi-Agent Systems
by Intermittent Brownian Noise
Stabilization Scheme
LIANGYI CAI 1,2,3, BO ZHANG 1,2,3, MALI XING1, HAOYI MO 4, AND XIN ZHOU 5
1School of Automation, Guangdong University of Technology, Guangzhou 510006, China
2Guangdong-HongKong-Macao Joint Laboratory for Smart Discrete Manufacturing (GDUT), Guangzhou 510006, China
3Key Laboratory of Intelligent Detection and the Internet of Things in Manufacturing, Ministry of Education (GDUT), Guangzhou 510006, China
4School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510006, China
5College of Systems Engineering, National University of Defense Technology, Changsha 410073, China

Corresponding author: Bo Zhang (zhangbo2018@gdut.edu.cn)

This work was supported in part by the Natural Science Foundation of Guangdong Province under Grant 2021A1515011343 and Grant
2021A1515012554; in part by the Scientific and Technological Planning Project of Guangzhou City under Grant 202201010251; and in
part by the National Natural Science Foundation of China under Grant 61803094, Grant 62273101, and Grant 72101263.

ABSTRACT This study explores the consensus of multi-agent systems in the presence of ambient noise
using intermittent Brownian noise stabilization. Firstly, the research provides a mathematical explanation of
multi-agent systems and intermittent stochastic noise, and establishes a sufficient condition for multi-agent
systems to achieve consensus using intermittent stochastic noise control input. Secondly, a consensus
criterion is proposed for a class of multi-agent systems that are affected by ambient noise. Finally, the
simulation results demonstrate that the intermittent stochastic noise stabilization technique can facilitate
the establishment of consensus in multi-agent systems.

INDEX TERMS Consensus, intermittent Brownian noise, multi-agent systems, stochastic stabilization.

I. INTRODUCTION
The natural phenomenon of coordinated flight observed in
creatures such as ants initially inspired humans to invent
multi-agent systems. Today, this concept is believed to
have numerous practical applications. Coordinated control of
multi-agent systems has become a popular topic in control
science and engineering, owing to advancements in computer,
complex network, and communication technologies. These
systems are frequently utilized in traffic networks, UAV
formation, and communication systems. Using a distributed
controller, multi-agent control enables numerous agents to
maintain consensus while following the lead agent. The
achievement of consensus in multi-agent systems implies that
the state of each participant remains consistent with that of
the leader throughout the movement process. The consensus
problem is the most important research object in multi-agent
system research.

The associate editor coordinating the review of this manuscript and

approving it for publication was Laura Celentano .

Vicsek published the first paper on multi-agent systems
consensus in 1995 [1]. He created a model to mimic the
consensus phenomenon, which occurs when a collection of
particles all move in the same direction. The theoretical basis
for multi-agent dynamic network consensus is established
in [2]. In some early studies, most of them focused on
deterministic systems [3], [4], [5], [6], [7], [8]. Among
them, the distributed consensus problem of multi-agent
systems on directed networks has been studied [7]. The
composite rotational consensus problem for second-order
multi agent systems with leader and non-uniform time
delays is studied [8]. However, because there are several
types of noises in reality, it is important to examine the
dynamic characteristics of multi-agent systems when random
noises are present. Itô introduced the idea of stochastic
differential equations in 1951, which was the first time a
mathematical model including random noise was formed,
and the stochastic analysis theory has significantly grown
since then. Numerous studies on multi-agent systems with
stochastic noise have been published, such as multi-agent
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systems with multiplicative noises, which were investigated
in stochastic consensus [9], [10]. Besides that, a novel con-
sensus stability condition of stochastic multi-agent systems
with communication noise was provided in the instance that
the consensus gain function did not meet the robustness
condition of the consensus stability [11]; the consensus
requirements of stochastic multi-agent systems with noise
and communication delays were presented [12].
Noises are often regarded as a type of interference in

control systems. Random noise, on the other hand, has
been found in certain studies to be helpful to system
stability. Khasminskii used two white noises to stabilize
a specific system [13], and Mao advocated, for example,
using the Brownian motion to stabilize and destabilize the
system [14]. In addition, a great number of results on
stochastic stabilization have emerged one after another [15],
[16], [17], [18], [19], [20], [21], [22]. On the other hand,
intermittent control research has progressed to a point where
significant accomplishments have been made [23], [24],
[25], [26], [27], [28]. Inspired by the foregoing conclusions,
an efficient approach for reducing the cost of control
systems, namely intermittent stochastic noise stabilization,
was discussed, where the stochastic noise is discontinuous
and disappears intermittently. For instance, Zhang et al.
studied the stabilization and destabilization of nonlinear
systems using intermittent stochastic noise [29], as well as the
stochastic stability of nonlinear systems using the intermittent
Brownian motion under random disturbance [30]. Using the
stochastic comparison principle, the Itô’s formula, and the
Borel-Cantelli lemma, Liu et al. investigated the stochastic
intermittent stabilization issue based on discrete-time or
delay time feedback [31], as well as stochastic stabilization
by use of hybrid control strategies [32]. However, with the
exception of [33], there have been few studies on multi-agent
stochastic intermittent stabilization. Wu et al. explored the
exponential consensus of multi-agent systems using ape-
riodically intermittent discrete-time state observation noise
in [33].

Motivated by the above discussion, this paper proposes
a stochastic intermittent noise stabilization technique to
address the consensus problem of multi-agent systems
affected by stochastic ambient noise. Initially, the multi-agent
systems with environmental noise are transformed into a
general stochastic differential system that requires stabi-
lization. Next, a discontinuous Brownian motion control
input is designed to stabilize the system in the presence
of continuous stochastic ambient noise disturbances, which
is a unique approach compared to previous studies. The
noise intensity can be altered by maintaining a fixed control
period, thereby modifying the lower limit of the selection
range of noise width. The contributions of this work are: the
application of intermittent stochastic noise to the stabilization
of multi-agent systems with environmental noise; the method
is convenient and flexible to select an appropriate control time
for intermittent control.

The remainder of the study is organized as follows.
Section II provides a comprehensive introduction to themath-
ematical representations, definitions, lemmas, and notations
utilized in this study. In Section III, the mathematical model
for multi-agent systems is presented, and the consensus of
generic multi-agent systems through intermittent stochastic
noise, including the associated consensus requirements,
is discussed. In Section IV, the consensus of multi-agent
systems impacted by environmental noise through intermit-
tent stochastic noise is addressed, and the corresponding
consensus conditions are proposed. Section V presents
simulation examples for different scenarios, and concluding
remarks are provided in the final section.

II. PRELIMINARIES
First, we’ll go through some of the notations that will be
utilized throughout this paper. N stands for the set of natural
numbers; C1,2([t0, ∞)×Rn

; R+) represents the family of all
nonnegative functions V (t, x) on [t0, ∞) × Rn is continuous
and differentiable first with respect to t , second with respect
to x. The notation |a| is the module of vector a. Let
(�,F , {Ft }t≤t0 , P) be a complete probability space with a
growing and right continuous filtration {Ft }t≤t0 , and Ft0
contains all P-null sets. The norm of A matrix is expressed as
∥A∥ =

√
λmax(ATA). The Kronecker product of two matrices

A and C is A⊗C , |λ(A)|min represents the minimum absolute
value of the non-zero eigenvalue of A. All functions are
assumed to meet the Lipschitz condition in this work.

The multi-agent systems is as follows

ẋi(t) = Px(t) + ui(t) (1)

where xi(t) ∈ Rn is the state of agent i, P ∈ Rn×n is the
system matrix, ui(t) ∈ Rm is the consensus protocol, i ∈ N ,
N = {1, 2, · · · ,N }, and N is the number of agents following
the leader agent. r(t) ∈ Rn is the state of the leader, and its
dynamic equation can be described as

ṙ(t) = Pr(t) (2)

Denote ei(t) = xi(t) − r(t), and e(t) = [eT1 (t), e
T
2 (t), · · · ,

eTN (t)]
T . In this paper, the random noise is applied to design

the consensus protocol as follows

ui(t) = c
N∑
j=1

aij[xj(t) − xi(t)] + [K (t)(Id ⊗ ei(t))]ξi(t)

where c is the gain constant, aij is the element of the adjacency
matrix A, aij = 0 or 1 for i ̸= j, aii = 0, ξi(t) ∈ Rd is
the Gaussian white noises which satisfies

∫ t
0 ξi(s)ds = Bi(t),

Bi(t) is the independent d-dimensional Brownianmotion, and
K (t) ∈ Rn×nd is the coefficient matrix of the linear noise
intensity function. Then, we can rewrite the error system to a
compact form as follows

de(t) = [(IN ⊗ P) − c(L ⊗ In)]e(t)dt

+ (IN ⊗ K (t))diag[Id ⊗ e1(t), Id ⊗ e2(t),

· · · , Id ⊗ eN (t)]dB(t)
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with the initial value e0 ∈ RnN , where L is the Laplacian
matrix that is symmetric, B(t) = [BT1 (t),B

T
2 (t), · · · ,BTN (t)]

T .
Furthermore, the error system can be reduced to

de(t) = F(t, e(t))dt + G(t, e(t))dB(t) (3)

where F(t, e(t)) = [(IN ⊗P)−c(L⊗In)]e(t), andG(t, e(t)) =

(IN ⊗ K (t))diag[Id ⊗ e1(t), Id ⊗ e2(t), · · · , Id ⊗ eN (t)].
Following that, a consensus definition of multi-agent

systems is presented as well as a lemma that will be applied.
Definition 1: The multi-agent systems consensus problem

is solved, namely, system (3) is almost surely (a.s.) exponen-
tially stable, if for any ei(t0) ∈ Rn

lim
t→∞

sup
1
t
log |e(t)| < 0 a.s.

Lemma 1 (Borel-Cantelli’s Lemma): (a) If Ak ∈ F and∑
∞

k=1 P(Ak ) < ∞, then P( lim
k→∞

supAk ) = 0 that is there

exist a set �θ ∈ F with P(�θ ) = 1 and an integer-valued
random variable k0 such that for every W ∈ �0 we have
W /∈ Ak whenever k ≥ k0(W ). (b) If the sequence Ak ∈ F is
independent and

∑
∞

k=1 P(Ak ) = ∞ then P( lim
k→∞

supAk ) = 1

that is there exist a set �0 ∈ F with P(�θ ) = 1 such that for
every W ∈ �θ . there exist a sub-sequence Aki such that the
W belongs to every Aki.
Lemma 2 [34]: Under the conditions imposed above, the

solution of system (3) obeys P{e(t; t0, e0) ̸= 0 on t ≥ 0} = 1
for all e(t0) ̸= 0.
Remark 1: For V ∈ C1,2([t0, ∞] × Rn

; R+), Define
an integral operator dV (t, x(t)) = LV (t, x(t))dt +

HV (t, x(t))dB(t) where LV (t, x) = Vt + Vx f (t, x) +
1
2Trace[g

T (t, x)Vxxg(t, x)], HV (t, x) = Vxg(t, x), Vt =
∂V
∂t ,

Vx = ( ∂V
∂x1

, ∂V
∂x2

, · · · , ∂V
∂xn

),

Vxx = (
∂2V

∂xi∂xj
)n×n =


∂2V

∂x1∂x1
· · ·

∂2V
∂x1∂xn

... · · ·
...

∂2V
∂xn∂x1

· · ·
∂2V

∂xn∂xn

 .

III. THE EFFECT OF STOCHASTIC INTERMITTENT NOISE
ON GENERAL MULTI-AGENTS
In this section, we will use intermittent stochastic noise to
design a suitable ui(t) to make system (3) get consensus.
The noise control input ui is designed as ui(t) = [K (t)(Id ⊗

ei(t))]ξi(t), where

K (t) =

{
K ′, t ∈ 1T1ℓ,
K ′′

= 0, t ∈ 1T2ℓ.

where 1T1ℓ = [ℓT , ℓT + τ ), 1T2ℓ = [ℓT + τ, (ℓ + 1)T ),
ℓ ∈ N , T > 0 is named the control period, and τ > 0 denotes
the noise width with T > τ . Denote that

Mη
=

[
0, · · · , 0,K ′T

η-th
, 0, · · · , 0

]T
where η-th represents the η-th element, and η = 1, 2, · · · , d .
Next, we will introduce a important theorem which can

solve the consensus problem of the multi-agent systems via
imtermittent stochastic noise stabilization scheme.
Theorem 1: For the error system (3), assume that there

exist constants k1 ∈ R, k2 > 0, k3 ≥ 0, such that for t ≥ 0
(i) 2T

+2
2 ≤ k1INn,

(ii) ∥K ′
∥ ≤

k3√
z ,

(iii) λ̂ ≥ 2k2
√

N
d ,

where 2 = (IN ⊗ P) − c(L ⊗ In), λ̂ = min1≤η≤d {|λ(MηT
+

Mη)|min}, and z is the number of non-zero eigenvalues of
(K ′)TK ′. Then, the following formula

lim
t→∞

sup
1
t
log |e(t)| ≤ −

[
(k22 − 0.5k23 )ν − k1

]
a.s. (4)

holds for all e0 ∈ RnN , where ν =
τ
T . In particular, if (k22 −

0.5k23 )ν − k1 > 0, i.e.

(a) 2k22 > k23 , ν ∈

(
k1

k22−0.5k23
, 1

)
∩ (0, 1),

(b) 2k22 = k23 , k1 < 0 and ν is an arbitrary number
belonging to (0, 1), or

(c) 2k22 < k23 , ν ∈

(
0, k1

k22−0.5k23

)
∩ (0, 1).

Then we say that system (3) solves the consensus problem.
Proof: By Lemma 2, for any e(0) ̸= 0, we have e(t) ̸=

0 for all t ≥ 0 almost surely. Hence, taking V (t, e) = |e|2,
we can apply Itô’s formula for t ≥ 0 to obtain

log |e(t)|2 = log |e0|2 +

∫ t

0
O(s, e(s))ds

−
1
2

∫ t

0
Y (s, e(s))ds+ U (t) (5)

where O(t, e(t)) =
2eT(t)F(t,e(t))+Tr[GT(t,e(t))G(t,e(t))]

|e(t)|2
,

Y (t, e(t)) =
4|eT(t)G(t,e(t))|2

|e(t)|4
, U (t) = 2

∫ t
0
eT(s)G(s,e(s))

|e(s)|2
dB(s)

is a continuous martingale with U (0) = 0. The quadratic
variation of this martingale is given by ⟨U (t),U (t)⟩ =∫ t
0 Y (s, e(s))ds. For an arbitrary σ ∈ (0, 1), letting ℓ =

0, 1, 2, · · · , by the exponential martingale inequality, we have

P

{
sup

0≤t≤(ℓ+1)T

[
U (t) −

σ

2
⟨U (t),U (t)⟩

]
>

2
σ
log(ℓ + 1)

}
≤

1
(ℓ + 1)2

(6)

By Lemma 1, we get that for almost all ω ∈ �, there exists
an integer ℓ0 = ℓ0(ω) such that if ℓ > ℓ0, U (t) ≤

2
σ
log(ℓ +

1)+ σ
2 ⟨U (t),U (t)⟩ holds for all 0 ≤ t < (ℓ+1)T . Therefore,

we acquire

log |e(t)|2 ≤ log |e0|2 +

∫ t

0
O(s, e(s))ds

−
1
2
(1 − σ )⟨U (t),U (t)⟩ +

2
σ
log(ℓ + 1)

Further more, for almost all ω ∈ �, when ℓT ≤ t < ℓT + τ

and ℓ > ℓ0

log ∥e(t)∥2 ≤ log ∥e0∥2 +

∫ τ

0
O(s, e(s))ds
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+

∫ T

τ

O(s, e(s))ds+

∫ T+τ

T
O(s, e(s))ds

+

∫ 2T

T+τ

O(s, e(s))ds+ · · · +

∫ t

ℓT
O(s, e(s))ds

−
1
2
(1 − σ )

[ ∫ τ

0
Y (s, e(s))ds

+

∫ T

τ

Y (s, e(s))ds+

∫ T+τ

T
Y (s, e(s))ds

+ · · · +

∫ t

ℓT
Y (s, e(s))ds

]
+

2
σ
log(ℓ + 1)

On the other hand, it follows that

eT (s)F(t, e(s)) = eT (s)[(IN ⊗ P) − c(L ⊗ In)]e(s)

= eT (s)
(

2T
+ 2

2

)
e(s)

≤ k1|e(s)|2 (7)

When hT ≤ s < hT + τ , h = 0, 1, · · · , ℓ, it is derived that

Tr
[
GT (s, e(s))G(s, e(s))

]
= λ1

[
GT (s, e(s))G(s, e(s))

]
+ · · ·

+ λdN
[
GT (s, e(s))G(s, e(s))

]
≤ zλmax

[
GT (s, e(s))G(s, e(s))

]
= z∥G(s, e(s))∥2

≤ z∥K ′
∥
2
|e(s)|2 (8)

It can be obtained that Tr
[
GT (s, e(s))G(s, e(s))

]
≤ k23 |e(s)|

2

(8) and condition (ii). So when hT ≤ s < hT + τ , h =

0, 1, · · · , ℓ, we have

O(s, e(s)) ≤ 2k1 + k23 (9)

On the other hand,

eT (s)G(s, e(s))

= eT (s)(IN ⊗ K ′)

diag[Id ⊗ e1(s), Id ⊗ e2(s), · · · , Id ⊗ eN (s)]

=
[
eT1 (s)K

′(Id ⊗ e1(s)), · · · , eTN (s)K
′(Id ⊗ eN (s))

]
=

[[
eT1 (s)K

′(eT1 (s), 0, · · · , 0)T ,

· · · , eT1 (s)K
′(0, · · · , 0, eT1 (s))

T ]
,

· · · ,[
eTN (s)K

′(eTN (s), 0, · · · , 0)T ,

· · · , eTN (s)K
′(0, · · · , 0, eTN (s))

T ]]
Let

eηi (s) =
[
0, · · · , 0, eTi (s)

η-th
, 0, · · · , 0

]T
where i ∈ N , η-th represents the η-th element, and η =

1, 2, · · · , d .Then eT (s)G(s, e(s)) can be rewritten as

eT (s)G(s, e(s)) =

[
e1T1 (s)M1e11(s), · · · , edT1 (s)Mded1 (s),

e1T2 (s)M1e12(s), · · · , edT2 (s)Mded2 (s),

· · · ,

e1TN (s)M1e1N (s), · · · , edTN (s)MdedN (s)
]

As a consequence, we have

|eT (s)G(s, e(s))|2 =

N∑
i=1

d∑
η=1

[
eηTi (s)W ηeηi (s)

]2
≥

N∑
i=1

d∑
η=1

[∣∣∣∣λ(
W ηT

+W η

2

)∣∣∣∣
min

|ei(s)|2
]2

≥
d λ̂2

4N

[ N∑
i=1

|ei(s)|2
]2

=
d λ̂2

4N
|e(s)|4

where λ̂ = min1≤η≤d {|λ(MηT
+ Mη)|min}. In like wise,

we attain by Theorem 1 that

|eT (s)G(s, e(s))|2 ≥ k22 |e(s)|
4

From condition (iii), we get |eT(s)G(s, e(s))| ≥ k2|e(s)|2.
So when hT ≤ s < hT + τ , h = 0, 1, · · · , ℓ, it follows
that

Y (s, e(s)) ≥ 4k22 (10)

When hT + τ ≤ s < (h + 1)T + 1, h = 0, 1, · · · , ℓ,
G(s, e(s)) = 0, and therefore

O(s, e(s)) ≤ 2k1 Y (s, e(s)) = 0 (11)

From (9), (10) and (11), if ℓT ≤ t < ℓT + τ , we get that

log |e(t)|2

≤ log |e0|2 + (2k1 + k23 )τ + 2k1(T − τ ) + · · ·

+ (2k1 + k23 )(t − ℓT ) −
1
2
(1 − σ )

[
4ℓk22τ

+ 4k22 (t − ℓT )
]
+

2
σ
log(ℓ + 1)

= log |e0|2 + (2k1 + k23 )ℓτ + (2k1 + k23 )(t − ℓT )

+ 2k1(T − τ ) − 2(1 − σ )
[
k22ℓτ

+ k22 (t − ℓT )
]
+

2
σ
log(ℓ + 1)

≤ log |e0|2 + k23 (ℓ + 1)τ + 2k1t − 2(1 − σ )k22ℓτ

+
2
σ
log(ℓ + 1)

By the same way, if ℓT + τ ≤ t < (ℓ + 1)T and ℓ > ℓ0,
we obtain

log |e(t)|2 ≤ log |e0|2 +

∫ τ

0
O(s, e(s))ds+

∫ T

τ

O(s, e(s))ds

+

∫ T+τ

T
O(s, e(s))ds+

∫ 2T

T+τ

O(s, e(s))ds+· · ·

+

∫ t

ℓT+τ

O(s, e(s))ds−
1
2
(1−σ )

[ ∫ τ

0
Y (s, e(s))ds

VOLUME 12, 2024 8529



L. Cai et al.: Consensus Control of Multi-Agent Systems by Intermittent Brownian Noise Stabilization Scheme

+

∫ T

τ

Y (s, e(s))ds+

∫ T+τ

T
Y (s, e(s))ds+ · · ·

+

∫ t

ℓT+τ

Y (s, e(s))ds
]

+
2
σ
log(ℓ + 1)

Then, we attain

log |e(t)|2 ≤ log |e0|2 + (2k1 + k23 )(ℓ + 1)τ + 2k1(T − τ )(ℓ

+ 1) − 2(1 − σ )ℓk22τ +
2
σ
log(ℓ + 1)

≤ log |e0|2 + k23 (ℓ + 1)τ + 2k1t − 2(1 − σ )k22ℓτ

+
2
σ
log(ℓ + 1)

It follows that

1
t
log |e(t)|2 ≤

k23 (ℓ + 1)τ

ℓT
+ 2k1 − 2

(1 − σ )k22ℓτ

T (ℓ + 1)

+
log |e0|2 +

2
σ
log(ℓ + 1)

ℓT
We can deduce that

lim
t→∞

sup
1
t
log |e(t)|2 ≤

[
k23 − 2(1 − σ )k22

]
ν + 2k1 a.s.

As a result, we can get

lim
t→∞

sup
1
t
log |e(t)| ≤

[1
2
k23 − (1 − σ )k22

]
ν + k1 a.s.

Because σ > 0 is arbitrary, we further achieve that

lim
t→∞

sup
1
t
log |e(t)| ≤ −

[
(k22 − 0.5k23 )ν − k1

]
a.s.

If (k22 − 0.5k23 )ν − k1 > 0, then it is apparent that

lim
t→∞

sup
1
t
log |e(t)| < 0 a.s.

According to Definition 1, system (3) is almost surely
exponentially stable, that is, the multi-agent systems achieves
consensus. ■
Remark 2: It can be noted here that if the parameter k1 is

nonnegative, it means that the system without controller is
unstable. To prove that the theorem can make the unstable
system stable, it is necessary to ensure (k22 − 0.5k23 )ν >

k1 > 0. It can be seen that the larger the parameter k1 and
k3, the greater the resistance to overcome, and the larger the
parameter k2, the stronger the control effect. Therefore, when
the number of nodes controlled N is larger, the Gaussian
white noise dimension d in the controller must also be
increased to ensure that a larger k2 makes k22 −0.5k23 positive
and as large as possible.

IV. THE EFFECT OF STOCHASTIC INTERMITTENT NOISE
ON MULTI-AGENTS WITH ENVIRONMENTAL NOISE
Environmental noise, such as electromagnetic interference
in the environment, may be seen in real life. As a result,
the multi-agent systems with ambient random noise must be
worth considering. Then system (1) can be gneralized into

dxi(t) = Pxi(t)dt + ui(t)dt +

N∑
j=1

aijαijxi(t)dWi(t)

where αij is the noise interference density coefficient, J is the
noise interference matrix, and αij is the element in the matrix
J . Therefore, the error system evolves into

de(t) = F(t, e(t))dt + g(t)dW (t) + G(t, e(t))dB(t) (12)

where G(t, e(t)) and F(t, e(t)) are defined by the same
way in Section III. αij ∈ R, Wi(t) ∈ R, W (t) =

[W1(t),W2(t), · · · ,Wi(t)]T, g(t) = diag[g1(t), g2(t), · · · ,

gi(t)], and gi(t) =
∑N

j=1 aijαijei(t). aijαij is each element of
the environmental noise interference matrix J . Bi(t) andWi(t)
are two different Brownian motions.
Theorem 2: For the error system (12), assume that there

exist constants k1 ∈ R, k2 > 0, k3 ≥ 0, k4 ≥ 0, such that
(i) 2T

+2
2 ≤ k1INn,

(ii) ∥K ′
∥ ≤

k3√
z ,

(iii)λ̂ ≥ 2k2
√

N
d ,

(iv) max
i∈N

∑N
j=1 aijαij ≤ k4,

for t ≥ 0, where 2, λ̂, M and z are the same definition as
Theorem 1. Then, the following formula

lim
t→∞

sup
1
t
log |e(t)| ≤ k1 + (0.5k23 − k22 )ν + 0.5k24 a.s.

holds for all e0 ∈ RnN , where ν =
τ
T . In particular, if (k22 −

0.5k23 )ν − 0.5k24 − k1 > 0, i.e.

(a) 2k22 > k23 , ν ∈

(
2k1+k24
2k22−k23

, 1
)

∩ (0, 1),

(b) 2k22 = k23 , k1 < 0, and ν is an arbitrary number

belonging to (0, 1), or (c) 2k22 < k23 , ν ∈

(
0,

2k1+k24
2k22−k23

)
∩ (0, 1).

Then we say that system (12) solves the consensus
problem.

Proof: By Lemma 2, for any e0 ̸= 0, it can be deduced
that e(t) ̸= 0 for all t ≥ 0 a.s.. Hence, taking V (t, e) = |e|2,
we may utilize Itô’s formula for t ≥ 0 to obtain

log |e(t)|2 = log |e0|2 +

∫ t

0
O1(s, e(s))ds

−
1
2

∫ t

0
Y1(s, e(s))ds+

∫ t

0
O2(s, e(s))ds

−
1
2

∫ t

0
Y2(s, e(s))ds+ U (t) + I (t) (13)

where O1(t, e(t)) =
eT(t)F(t,e(t))+Tr[GT(t,e(t))G(t,e(t))]

|e(t)|2
,

Y1(t, e(t)) =
4|eT(t)G(t,e(t))|2

|e(t)|4
, Y2(t, e(t)) =

4|eT(t)g(t)|2

|e(t)|4
,

O2(t, e(t)) =
eT(t)F(t,e(t))+|g(t)|2

|e(t)|2
,U (t) = 2

∫ t
0
eT(s)G(s,e(s))

|e(s)|2
dB(s),

I (t) = 2
∫ t
0
eT(s)g(s)
|e(s)|2

dW (s) is a continuous martingale with
U (0) = 0, I (0) = 0.
If ℓT ≤ t < ℓT + τ , we achieve that

log |e(t)|2

≤ log |e0|2 +

∫ t

0
O1(s, e(s))ds−

1
2

∫ t

0
Y1(s, e(s))ds

+

∫ t

0
O2(s, e(s))ds+ U (t) + I (t)
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= log |e0|2 +

∫ τ

0
O1(s, e(s))ds+

∫ T

τ

O1(s, e(s))ds

+

∫ T+τ

T
O1(s, e(s))ds+

∫ 2T

T+τ

O1(s, e(s))ds+ · · ·

+

∫ t

ℓT
O1(s, e(s))ds−

1
2

[ ∫ τ

0
Y1(s, e(s))ds

+

∫ T

τ

Y1(s, e(s))ds+

∫ T+τ

T
Y1(s, e(s))ds+ · · ·

+

∫ t

ℓT
Y1(s, e(s))ds

]
+

∫ t

0
O2(s, e(s))ds

+ U (t) + I (t)

Using the method in Theorem 1, when hT ≤ s < hT + τ ,
and h = 0, 1, · · · , ℓ, we have

O1(s, e(s)) ≤ 2k1 + k23
Y1(s, e(s)) ≥ 4k22
O2(s, e(s)) ≤ 2k1 + k24 (14)

When hT + τ ≤ s < (h+ 1)T + 1, and h = 0, 1, · · · , ℓ, one
has G(s, e(s)) = 0. Then it can be acquired that

O1(s, e(s)) ≤ 2k1
Y1(s, e(s)) = 0

O2(s, e(s)) ≤ 2k1 + k24 (15)

From (14) and (15), if ℓT ≤ t < ℓT + τ , we get that

log |e(t)|2

≤ log |e0|2 + (k1 + k23 )τ + k1(T − τ )

+ (k1 + k23 )τ + k1(T − τ ) + · · · + (k1 + k23 )(t − ℓT )

− 2k2ℓτ + (k1 + k24 )t + U (t) + I (t)

≤ log |e0|2 + 2k1t + k23 (ℓ + 1)τ + k24 t − 2k22ℓτ

+ U (t) + I (t)

By the same way, if ℓT + τ ≤ t < (ℓ + 1)T , we also get
the same conclusion. Then it follows that

log |e(t)|2 ≤ log |e0|2 + 2k1t + k23 (ℓ + 1)τ

+ k24 t − 2k22ℓτ + U (t) + I (t)

So, it is easy to attain

1
t
log |e(t)|2 ≤

log |e0|2

t
+ 2k1 +

k23 (ℓ + 1)τ

ℓT

+ k24 −
2k22ℓτ

(ℓ + 1)T
+
U (t)
t

+
I (t)
t

By the conditions (ii) and (iii)

lim
t→∞

⟨U (t),U (t)⟩
t

≤ 4k23 a.s.

lim
t→∞

⟨I (t), I (t)⟩
t

≤ 4k24 a.s.

According to the strong law of large numbers ( [34]), we can
get

lim
t→∞

U (t)
t

= 0, lim
t→∞

I (t)
t

= 0 a.s.

FIGURE 1. The topology of multi-agents.

FIGURE 2. Systems without control input and environmental noise.

So we can get

lim
t→∞

sup
1
t
log |e(t)|2 ≤ 2k1 + k23ν + k24 − 2k22ν a.s.

namely

lim
t→∞

sup
1
t
log |e(t)| ≤ k1 + (0.5k23 − k22 )ν + 0.5k24 a.s.

If (k22 − 0.5k23 )ν − 0.5k24 − k1 > 0, it is acquired that

lim
t→∞

sup
1
t
log |e(t)| < 0 a.s.

According to Definition 1, system (12) is almost surely
exponentially stable, that is, the multi-agent systems achieves
consensus. ■
Remark 3: The environmental noise in this context differs

significantly from the stochastic noise input of the noise
controller. The latter is a control input intended to ensure
consensus among multi-agent systems, while the former can
negatively impact system stability and must be overcome.
As a result, the estimated value k4 of the ambient noise level
occupies the same position in the stability criteria as the
estimated value k3 of a portion of the noise control input.
This scenario is detrimental to system stability, and the value
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FIGURE 3. Systems with intermittent stochastic noise control input by
∥K ′∥ = 13.5204.

of k4 must be kept sufficiently low. Conversely, a positive
relationship exists between the estimate of the controller
noise input, k2, and the system stability. Therefore, it must
be set at a sufficiently high level to satisfy the equation
(k22 − 0.5k23 )ν − 0.5k24 − k1 > 0 and ensure the consensus
of the multi-agent systems.

V. THE SIMULATION RESULTS
Two examples are presented in this section to demonstrate the
practicality of the algorithm designed in this study. Assume
that the number of followers N is 4, ei(t) is a 2-dimensional
vector, and the topological relationship between the followers
is

A =


0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 0


and the topological relationship graph is shown as follows

The initial values are supposed as e1(0) = (0.7, 0.2)T,
e2(0) = (0.9, 0.4)T, e3(0) = (1, 0.1)T, e4(0) = (0.4, 0.3)T,
gain constant c is 1, and

P =

(
−1 2
1 −1

)
Thus the Laplacian matrix can be attained that

L =


1 0 0 −1
0 2 −1 −1
0 −1 2 −1

−1 −1 −1 3


The final errors will not approach zero in this case, indicating
that multi-agent systems will be unable to attain group
consensus without any control as illustrated in Fig. 2.
Example 1:We select the appropriate intermittent stochas-

tic noise to solve the consensus problem. Let k1 = 3.1, and
we have 2T

+2
2 ≤ 3.1INn. Choose the dimension of Brownian

FIGURE 4. Systems with intermittent stochastic noise control input by
∥K ′∥ = 14.8198.

motion d = 10.

K ′
=

(
5 5 5 5 5

)
where

5 =

(
2.5 −2.5 2.5 −2.5
1.7 −1.7 1.7 −1.7

)
It is calculated that ∥K ′

∥ = 13.5204, λ̂ = 12.7204. Select
k2 = 10.05 and k3 = 13.521 and the intermittent period T =

2. Therefore, we can get 0.65 < τ < 2 by Theorem 1, and
take τ = 1. Thus, the system is almost surely exponentially
stable under the above parameter conditions, as shown in
Fig. 3.
On the other hand, increase the noise dimension d to

achieve greater noise intensity. Let

K ′
=

(
5 5 5 5 5 5

)
Then ∥K ′

∥ = 14.8198, and λ̂ = 14.0108. Take k1 = 3.1,
k2 = 12.13, and k3 = 14.82. It is calculated that 0.17 ≤ τ ≤

2, and select τ = 1. Apparently, the noise control intensity is
greater than that in above situation. The simulation result is
shown below in Fig. 4. It can be found that the error system
is closed to zero in one intermittent period when the noise
intensity increases. Obviously, the greater the noise strength
is, the better the effect of the consensus is.
Example 2: The environmental noise interference matrix is

J =



0 0 0 1

0 0
1
2

1
2

0
1
2

0
1
2

1
3

1
3

1
3

0


and then the trajectories of the multi-agent systems with
environmental noise is shown in Fig 5. It is easy to see that
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FIGURE 5. Systems with environmental noise (1).

FIGURE 6. Systems with environmental noise under control input (1).

max
i∈N

∑N
j=1 aijαij =

∑N
j=1 a1jα1j = 1. Select k4 = 1.1, and the

dimension of Brownian motion d = 10. Let

K ′
=

(
5 5 5 5 5

)
Choose k1 = 3.1, k2 = 10.05, and k3 = 13.521. Then it is
obtained that 0.772 < τ < 2, and we therefore select τ = 1.
System (12) is almost surely exponentially stable under the
above parameter conditions in accordance with Theorem 2,
that is, themulti-agent systems approach consensus, as shown
in Fig. 6. The simulation example clearly demonstrates that
using adequate intermittent stochastic noise can address the
multi-agent systems consensus problem. It can be seen that
the fluctuation amplitude of error trajectories is relatively
small in the time range of 1 to 2, because the system is only
affected by environmental noise interference and not by the
input of control noise during this period.

If environmental interference is enhanced, then the envi-
ronmental noise interference matrix is assumed as follows,

J =


0 0 0 2
0 0 1 1
0 3 0 3
2 2 1 0



FIGURE 7. Systems with environmental noise (2).

FIGURE 8. Systems with environmental noise under control input (2).

The trajectories of the multi-agent systems with environmen-
tal noise is shown in Fig. 7. At this point, it can be obtained
that max

i∈N

∑N
j=1 aijαij =

∑N
j=1 a1jα1j = 6, and take k4 =

6.1. If other parameters remain unchanged, then there is no
number ν ∈ (0, 1) such that

(10.052 − 0.5 × 13.5212)ν > 0.5 × 6.12 + 3.1,

At this time, the dimension of Brownian motion can be
increased to 12, and let

K ′
=

(
5 5 5 5 5 5

)
It is easy to calculate that ∥K ′

∥ = 14.8198, Select k1 = 3.1,
k3 = 14.82, k2 = 12.13, and k4 = 6.1. There is a ν ∈ (0, 1)
that causes

(12.132 − 0.5 × 14.822)ν > 0.5 × 6.12 + 3.1,

37.3207ν > 21.705, and thus we attain 1.16 < τ < 2. Fix
τ = 1.2. The stabilization control effect is shown in Fig. 8.
From the above simulation examples, it can be observed
that due to the enhanced environmental noise interference,
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a larger control gain is required to ensure that the control
time remains constant within a cycle; to control the gain
unchanged, a longer control time is required.

VI. CONCLUSION
In this study, an intermittent stochastic noise stabilization
technique is used to investigate the consensus of linear
multi-agent systems with environmental noise. The intermit-
tent stochastic noise is employed as a controller to address the
consensus problem. Future research may focus on addressing
other issues, such as multi-agent systems consensus with
stochastic parameters or achieving multi-agent systems
consensus using non-periodic intermittent stochastic noise
control input.
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