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ABSTRACT In the realm of cross-modal retrieval research, hashmethods have garnered significant attention
from scholars due to their high retrieval efficiency and low storage costs. However, these methods often
sacrifice a considerable amount of semantic features when mapping multi-modal characteristics to a low-
dimensional space. Moreover, the focus of hash learning has primarily been on inter-modal similarity
learning, neglecting the importance of intra-modal similarity learning. To address these issues, this paper
proposes a novel cross-modal hash method called Deep Hashing Similarity Learning for Cross-modal
Retrieval (DHSL). DHSL incorporates relation networks into the hash method, enabling pairwise matching
between images and texts. This approach effectively bridges the heterogeneity gap between images and
texts while simultaneously emphasizing the intra-modal similarity information within both modalities. The
result is a hash similarity matrix that captures both inter-modal similarity and intra-modal discriminability.
Considering that the process of transforming high-dimensional features into hash codes often leads to
a loss of important semantic information, we introduce a feature selector to enhance the features. This
selector filters out distinctive features from the original feature set and combines them with low-dimensional
features to complement the semantic information. Moreover, we introduce weighted cosine triplet loss
and quantization loss to constrain the hash representation in the Hamming space, thereby learning
high-quality hash codes. Comprehensive experimental results on two benchmark datasets, NUS-WIDE and
MIRFlickr25K, demonstrate that DHSL outperforms the state-of-the-art cross-modal hash methods.

INDEX TERMS Cross-modal retrieval, relation network, feature enhancement.

I. INTRODUCTION
With the development of big data, the internet generates a
vast amount of multimedia data every day, including texts,
images, and videos. Due to heterogeneous differences in
data distribution, different modalities manifest disparities,
creating an urgent demand for accurate retrieval from
multimedia data. As a result, cross-modal retrieval has
emerged as an attractive and challenging research field.
Among various cross-modal retrieval applications, image-to-
text (text-to-image) retrieval is the most widely used, where
a text (image) query sample is provided, with the expectation
of retrieving images (texts) that contain semantically relevant
information from a database.
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One commonly used approach for cross-modal retrieval
in large-scale data is based on hashing, in which high-
dimensional features are stored in binary codes through
dimensionality reduction. This allows for similar binary
codes for related samples across different modalities, result-
ing in more accurate cross-modal retrieval. Early cross-modal
hashing methods typically relied on manually designed
feature extraction methods [1], [2], such as SIFT and HOG,
which have limited generalization capability and lower
retrieval performance. In recent years, with the widespread
application of deep neural networks in cross-modal retrieval,
experimental results have shown that neural networks have
superior performance in feature extraction compared to shal-
low methods. Although deep neural networks have achieved
significant progress in cross-modal hashing methods [3], [4],
[5], [6], [7], [8], [9], there are still several issues that need
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improvement. Firstly, there are heterogeneity differences
among different modalities, andmaintaining similarity across
modalities is one of the key challenges. Secondly, many
cross-modal hashing methods use deep neural networks
to convert features into hash codes, potentially resulting
in the loss of some semantic information. Thirdly, while
most methods focus on constructing cross-modal similarity
matrices to preserve similarity between modalities, they often
overlook intra-modal similarity instances.

To tackle the mentioned issues, we propose a novel
approach for cross-modal retrieval called Deep Hashing
Similarity Learning (DHSL). Inspired by relation net-
works [25], [26], [27], we incorporate relation networks into
the cross-modal hashing method. The main contributions of
our work can be summarized as follows:

1) We design a feature selector that enhances features
using a class residual connection method [28], [29],
[30]. Specifically, we employ norm-based feature
selection to identify relevant features, and then
integrate the selected features with low-dimensional
features through a class residual connection. This inte-
gration ensures that the hash representation contains
more semantic information.

2) In our hash learning approach, we introduce a relational
network. Firstly, we directly perform pairwise similar-
ity learning on the enhanced features of images and
texts, reducing the loss of semantic information in the
hash codes. Secondly, we conduct intra-modality simi-
larity learning on the fused features of low-dimensional
and high-dimensional spaces, learning discriminative
hash codes.

3) Furthermore, we employ weighted cosine triplet loss
and quantization loss to constrain the hash codes.
By combining the above loss functions, we optimize
the model and enable DHSL to learn high-quality hash
codes.

II. RELATED WORK
The essential principle of cross-modal hashing lies in map-
ping features of different modalities into a shared Hamming
space, where the similarity between different modalities can
be measured, enabling cross-modal retrieval. The crucial
aspects of this process involve the selection of features and the
measurement of their similarity, aiming for increased retrieval
accuracy.

Cross-modal hashing could be divided into unsupervised
hashing and supervised hashing. Unsupervised hashing [10],
[11], [12] refers to the process of converting different modal
data into hash codes to measure similarity without labeled
information. For example, Song et al. [13] sought a common
Hamming space that could mapmultimedia data information,
enabling different media data to learn unified hash codes in
this space. Ding et al. [2] used collective matrix factorization
to learn different view information and mapped them into
unified hash codes. Considering the discreteness of hash
codes, Wang et al. [14] first learned semantic features

(multiple semantic topics or concepts) of multimedia data,
mapped these features to a common subspace, and then
directly generated hash codes. Supervised hashing [17],
compared to unsupervised hashing, utilizes supervised infor-
mation such as labels or semantic information to further
improve cross-modal retrieval performance. Lin et al. [18]
added semantic-related supervision into the training data and
minimized the Hamming distance of hash codes in the Ham-
ming space by transforming it into a probability distribution,
thus obtaining hash codes that preserved semantic structure.
Zhang et al. [19] seamlessly integrated semantic labels into
the process of hash learning to maximize semantic relevance
of modal data. Cao et al. [20] used data category labels as
supervised information and learned superior hash codes by
maximizing inter-class distance while minimizing intra-class
variance. Ma et al. [34] used semantic similarity relationships
to learn binary codes and learned hash codes bit by bit through
alternating updates, making hash codes more similar.

Compared to superficial approaches, deep learning has
the ability to extract features with non-linear structures,
demonstrating superior performance compared to manu-
ally extracting features. Jiang and Li [3] proposed Deep
Cross-Modal Hashing (DCMH), which integrated feature
extraction and hash codes learning into a framework using
deep convolutional neural networks, enabling end-to-end
learning. Yang et al. [4] further enhancedDCMHby consider-
ing the similarity between instances within eachmodality and
applying pairwise constraints to different types, enhancing
the discriminative power of the hash codes. Additionally,
Li et al. [6] introduced labels as input information to the neu-
ral network, converting labels into binary codes to constrain
the hash codes. Yao et al. [35] utilized collaborative filtering
to mine the relationship between labels and hash codes,
which to some extent reduced memory consumption and
enhanced cross-modal alignment through image attributes,
thereby improving the quality of hash codes. Wang et al. [21]
introduced the concept of adversarial learning to cross-modal
retrieval and proposed Adversarial Cross-Modal Retrieval
(ACMR). ACMR has prompted many researchers to combine
adversarial learningwith hashingmethods [22], [23], [24] and
achieved significant results. AGAH [8] utilized adversarial
learning to guide the multi-label attention module in learning
feature representations and employed a binary code mapping
for multi-label semantic information, leading to improved
retrieval performance. DADH [9] employed adversarial
learning in both feature learning and hash codes learning,
ensuring consistency in cross-modal feature representation
through dual adversarial learning. In contrast to adversarial
learning, our proposed approach introduces the relational
network mechanism in the DRSL [27] method and optimizes
it, resulting in improved retrieval performance.

III. METHOD
Without loss of generality, a collection of n instances
consisting of images and texts pairs is considered. The image
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instance is denoted by X = {xi}
n

i=1 and the text instance
by Y = {yi}

n

i=1, where x and y represent the image and
the text, respectively. L = {li}

n

i=1 represents the multi-label
information, where li = [li1, li2, . . . , lic], and c corresponds
to the number of categories. If the i-th instance belongs to the
j-th class, then lij = 1; otherwise lij = 0.
Given the training sets X ,Y ,L, the goal of DHSL is to

acquire a hashing function and hash codes for images and
texts, as well as a similarity hash matrix R. The DHSL
framework is illustrated in Figure 1.

A. FEATURE LEARNING MODULE
1) FEATURE LEARNING
The feature learning part consists of two neural networks,
one for learning the image features and another for learning
the text features. For the image modality, we utilize
the CNN-F network pre-trained on ImageNet to extract
4,096-dimensional deep features from images, with fixed
parameters. Since image features contain a lot of redundant
information, we set up a 3-layer fully connected network to
extract high-level semantic features from images. The last
layer of the network serves as the hash layer, mapping image
features to a low-dimensional feature space.

In regards to the text characteristics, we begin by utilizing
the Bag-of-Words (BoW) model to transform each text into
a feature vector, with the specific dimensions determined
based on the dataset. Subsequently, we establish a three-layer
fully connected neural network to extract high-level semantic
information from the text, and employ a hash layer to map the
text features to a lower-dimensional feature space.

We shall employ the aforementioned feature learning
network as our primary network, with FX = f (X; θX ) and
FY = f (Y ; θY ) denoting the feature projection functions
for the images and texts, respectively. Here, FX and FY

represent the output image and text features within the
primary network. θX and θY signify the parameters of the
image and the text feature projectors.

B. FEATURE ENHANCEMENT
The process of projecting the original features onto a
low-dimensional space through the primary network results
in the loss of some semantic information. To address this
issue, we propose the utilization of a feature selector,
composed of three linear layers, which differentiates from
fully connected layers in feature learning. We employ the
L21-norm regularization on the feature selector parameters,
resulting in a sparse weight matrix. At this stage, the feature
selector is able to identify features that contain discriminative
edge semantics. Subsequently, these distinctive features are
connected in a residual manner to the low-dimensional
features, complementing the missing features and achieving
feature enhancement. Therefore, the loss function for feature
enhancement can be expressed as:

LU = µ1 ∥UX∥21 + µ2 ∥UY ∥21 . (1)

In this context, the matrices representing the sparsity
parameters are denoted as µ1 and µ2, and the matrix of
sparse weights is denoted as U∗. We can represent the
feature-enhanced feature asH∗ = F∗+σM∗, s.t.∗ ∈ (X ,Y ).
M represents the output of the feature selector, F represents
the output of the main network, and σ denotes the weight
parameters.

C. HASHING LEARNING MODULE
In the hashing learning phase, a non-linear transformation on
image and text features is performed by the hashing layer
using the tanh function. It maps the image and text features to
a hash code representation ranging from−1 to 1. In the testing
phase, the model converts the image and text hash code
representations into binary codes using the sign function. The
sign function is defined as:

sign (x) =

{
+1, x > 0
−1, x ≤ 0.

(2)

The image and text hash codes can be represented as
BX = sign

(
HX

)
,BY = sign

(
HY

)
, respectively. In order to

ensure consistency between the hash codes and cross-modal
features, we apply quantization loss to enforce balanced
constraints on the hash codes.

Lq =
∥∥∥BX − HX

∥∥∥2
F
+

∥∥∥BY − HY
∥∥∥2
F

. (3)

In order to acquire the capability of maintaining the
consistency between modalities and the discriminability
within each modality, our approach to hash learning consists
of two parts. On one hand, we leverage relation networks
to conduct similarity learning between image and text hash
codes, aiming to learn a similarity hash matrix that captures
inter-modality and intra-modality relationships. On the other
hand, by employing a weighted cosine triplet loss in the
Hamming space, we learn high-quality hash codes that
possess similar semantics across different modalities.

1) RELATION NETWORK
In DRSL [27], the author employed a relational network
to directly calculate the similarity between images and
texts, representing the similarity of each image and text
using scalar values, which heavily compromised the modal
semantic features. In DHSL, the relational network outputs
a similarity matrix that represents the similarity between
images and texts, and uses Euclidean distance to measure
the distance between the similarity matrix and a priori
similarity matrix, thereby encoding more semantic features
in the similarity matrix. For the image and text modalities,
we utilize a fusion mechanism to directly match and fuse
the enhanced features of the image and text, and then
calculate the similarity of paired samples using the relational
network. The relational network function is represented
as R∗∗ = r (G∗∗, θr ), where G∗∗ is the output result
of cross-modal feature fusion, with a fusion approach of
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FIGURE 1. The DHSL framework, as depicted in Figure 1, consists of two main components: the feature learning module and the
hashing learning module. The feature learning module is further divided into feature learning for the image modality and feature
learning for the text modality. The hashing learning module includes hash code learning for relation networks and hash code
learning for Hamming space.

concatenation. θr represents the parameters of the rela-
tional network, and R∗∗ denotes the hash similarity matrix
calculated by the relational network. For inter-modality
fusion, the fused binary code matrix can be represented as
GXY =

{
GXYpq | p = 1, . . . , ni; q = 1, . . . , nt

}
, where GXYpq is

the fused binary code of the p-th image and q-th text. On the
other hand, the semantic information conveyed by the label
matrix reveals that it defines a similarity of 1 for samples of
the same class and a similarity of 0 for samples of different
classes. Spq represents the similarity between the p-th image
and q-th text, defined as follows:

Spq =

{
1, lxp = lyq
0, otherwise

(4)

In the module of relational network, we optimize the
similarity distance model by minimizing the hash-based
similarity matrixRXY and the prior similarity matrix SXY . The
corresponding loss function can be represented as:

L1 =
∥∥∥RXY − SXY∥∥∥2

F
. (5)

In the realm of modality, we integrate the low-dimensional
spatial features of images and texts together with the
enhanced features of the feature enhancement component
into binary code representations, GXX and GYY . By utilizing
the relation network, we obtain the similarity matrices RXX

and RYY for images and texts respectively. Consequently, the
modality-intrinsic similarity loss within the relation network
can be defined as follows:

L2 =
∥∥∥RXX − SYY∥∥∥2

F
+

∥∥∥RYY − SYY∥∥∥2
F

. (6)

In the domain of relational network modules, although
the hash similarity matrices may have different forms, they
convey similar similarity information. Thus, the similarity
hash matrix can be expressed as R = RXX + RYY + RXY ,
and the overall loss of the relational network is:

LRN = L1 + L2. (7)

2) WEIGHTED COSINE TRIPLET LOSS
In the context of multi-label data, where a sample can belong
to multiple categories, which results in weak discriminative
power between different modalities. Hence, we propose the
utilization of a weighted cosine triplet loss [9] to measure
the similarity between instances of hash codes, aiming
to increase the distance between samples with different
semantic meanings while reducing the distance among those
with the same semantic meaning.
In the context of the image modality, we construct triplets

in the form of
(
xi, y
+

j , y−k
)
, where xi represents an image

sample, and y+j and y−k represent positive and negative
text samples respectively. The positive text samples have
similar semantics to the image sample, while the negative
text samples have opposite semantics. Typically, cosine
distance is used to measure the similarity between instances
in the triplet samples. To further accurately describe the
association information between data points and multi-class
labels, semantic ordering of hash codes in theHamming space
is performed. Aweight factor is computed for the ranked hash
codes based on the NDGG evaluation criterion, defined as
follows:

ω
(
relj, relk

)
=

2relj − 2relk

Z
, (8)
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TABLE 1. mAP results for cross-modal retrieval task on MIRFlickr25K
dataset.

where reli represents the similarity level of the i-th data
point in the sorted list, and Z is the normalization constant,
the weighted cosine triplet loss for image modality can be
expressed as:

LX→Y

=

∑
i,j,k

ω(rj, rk )(max(cos(xi, y
−

k )− cos(xi, y
+

j )+ m, 0)).

(9)

Similarly, the textual modal weighted cosine triplet loss is
defined as follows:

LY→X

=

∑
i,j,k

ω(rj, rk )(max(cos(yi, x
−

k )− cos(yi, x
+

j )+ m, 0)),

(10)

where ω represents the weight factor, m denotes the marginal
parameter, and cos represents the cosine distance. The higher
theweight factor, the stronger the semantic relevance between
the query sample and the data point from another modality.
The overall weighted cosine triplet loss function can be
expressed as:

Ltri = LX→Y + LY→X . (11)

D. OPTIMIZATION
The overall loss function of the DHSL approach consists
of the losses for feature enhancement, relational network,
weighted cosine triplet, and quantization. The comprehensive
loss function is represented as follows:

min
θ∗,θr ,R,B∗,U∗

Ltatal = αLtri + βLU + ηLRN + ϕLq, (12)

where θX , θY are the parameters of the main network, θr is
the parameter of the relationship network, and θ∗ represents
the parameters of the sparse weight matrix. We optimize the
overall objective function using stochastic gradient descent,
and a detailed summary of the optimization process is
presented in Algorithm 1.

IV. EXPERIMENTS
A. DATABASES AND EVALUATION CRITERIA
In this piece of writing, the experiment with two commonly
used datasets in cross-modal retrieval will be illustrated.

Algorithm 1 Learning of DHSL
Input: Training set X , Y , L, learning rate ξ ;
Output: Optimized parameters θX , θY and θr , sparse matrix

U∗, hash similarity matrix R and hash codes B∗;
1: Initialize the parameter θX , θY and θr hyper-parameters,

hash similarity matrix R and hash codes B∗;
2: repeat
3: for iteration=1,2,. . . , nm do
4: Update parameters θ∗ by using back propagation:

θ∗← θ∗ − ξ ∂Ltatal
∂θ∗

s.t.∗ ∈ (X ,Y );
5: Update parameters U∗ by using back propagation:

U∗← U∗ − ξ ∂Ltatal
∂U∗

s.t.∗ ∈ (X ,Y );
6: Update parameters θr by using back propagation:

θr ← θr − ξ ∂Ltatal
∂θr

;
7: end for
8: calculate R;
9: calculate B∗;
10: until convergence;

TABLE 2. mAP results for cross-modal retrieval task on NUS-WIDE
dataset.

TABLE 3. The experimental result in the ablation configuration on
datasets.

TABLE 4. Computational overhead of different models.

MIRFlickr25K consists of 24 categories with a total of
25,000 image-text pairs. Each pair has at least one label.
For our experimental database, we select 20,015 instance
pairs, with each pair having a minimum of 20 text tags.
Each instance in the text modality is represented as a
1,386-dimensional bag-of-words vector. For the experimental
dataset, we randomly choose 2,000 instances as the query set,
while the remaining instances serve as the retrieval database.
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FIGURE 2. The Precision-recall curves on the MIRFLICKR25K dataset.

Additionally, we extract 10,000 image-text pairs from the
database for training.

NUS-WIDE contains 81 categories and a total of 269,648
images, each accompanied by relevant text descriptions.
We select 195,834 image-text pairs from this dataset as our
experimental database, covering the most common 21 cate-
gories. Each instance in the text modality is represented as a
1,000-dimensional bag-of-words vector. For the experimental
dataset, we randomly choose 2,100 pairs as the query dataset
and extract 10,000 image-text pairs from the database for
training.

As evaluation metrics, we adopt three commonly used
indicators in cross-modal retrieval: mAP, Precision-recall
curves, and top-N precision. We compute these three metrics
for two different tasks: image retrieval text (I→T) and text
retrieval image (T→I).

B. EXPERIMENTAL SETUP
After conducting experimental analysis, we tailor different
hyperparameters for various networks and datasets. For the
image and text main networks, each is a 3-layer fully
connected network. The dropout rate is set to 0.2 for the first
two layers, and the activation function used is ReLU. Batch
normalization is applied to each layer, and the number of
neurons in the three-layer network is set to 8,192-2,048-k.
Taking into account the disparities between the relational
network and the main networks in learning features, we have
assigned distinct initial learning rates: 0.0001 for the main
network and 0.0005 for the relational network. The batch
size remains uniform at 128. The relational network consists

of three linear layers, with each layer containing 2k-256-c
neurons. For the MIRFlickr25K dataset, the hyperparameters
are as follows: α = 1, β = 1, η = 0.1, ϕ = 0.01,
σ = 0.1, µ1 = 1, µ2 = 5, m = 0.00001, with an epoch
of 120. As for the NUS-WIDE dataset, the hyperparameters
are set as α = 1, β = 1, η = 0.1, ϕ = 0.15, σ = 0.01,
µ1 = 3, µ2 = 3, m = 0.00001, with an epoch of 120.
Notably, on both datasets, adjusting the hyperparameters to
µ1 = 4 and µ2 = 5 improves mAP results when the hash
codes length is set to 16 bits.

C. COMPARISON WITH EXISTING METHODS
To demonstrate the superiority of the DHSL approach,
we compare it with eight advanced cross-modal hashing
methods, namely CMSSH [1], SCM [19], SePH [18],
DCMH [3], CMHH [16], AGAH [8], SCAHN [15],
DADH [9] and DCMHT [33].

The results, as shown in Table 1 and Table 2, reveal
that DHSL achieved the best performance on both datasets.
Overall, on both datasets, the DHSL method shows improved
performance on both tasks as the number of hash bits
increases.This improvement is attributed to the feature
enhancement part, which allows longer hash codes to contain
more discriminative semantic features, thus aiding in the
learning of sample similarities across modalities. Addition-
ally, compared to the DADH baseline, DHSL achieves a
higher performance improvement on the NUS-WIDE dataset.
The reason for this is that each data point in NUS-WIDE has
more labels, allowing a better expression of inter-modality
relationships in the reduced-dimensional hash representation.
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FIGURE 3. The Precision-recall curves on NUS-WIDE.

Moreover, the relational network can directly calculate
the similarity between cross-modal features, enhancing the
alignment of cross-modal data and subsequently improving
accuracy. In comparison to the DCMHT baseline, DHSL
shows a slight performance improvement. This is mainly due
to the use of the CLIP pre-trainedmodel [31], [32] in the main
network of DCMHT, which extracts cross-modal high-level
semantic representations and enhances its potential for cross-
modal alignment. However, this also significantly increases
the complexity of the model. Therefore, DHSL improves
retrieval performance while reducing computational space
requirements.

This text illustrates the Precision-recall curves and top-N
precision curves of the DHSL method and the top six state-
of-the-art baseline methods on two public datasets, with hash
codes of 16 bits, 32 bits, and 64 bits. The curves are shown in
Figures 2,3, 4 and 5 respectively.

D. ANALYSIS ON ABLATION EXPERIMENTS
In order to verify the effectiveness of the DHSLmodules, four
ablation experiments are designed for validation. (1) DHSL1
abandons the selection of original features and directly
combines them with the hashed output features at the fusion
layer. (2) DHSL2 removes the class residual connections and
deletes the feature enhancement part. (3) DHSL3 removes
the intra-modal similarity hash metric from the relational
network module. (4) DHSL4 removes the relational network
module altogether.

Table 3 presents the results of four ablation experiments.
For DHSL1, low-dimensional features are directly fused with

original features without using L21 norm for constraint, lead-
ing to the inclusion of many irrelevant features. This results
in feature repetition and redundancy, causing a decrease
in retrieval accuracy. The results of DHSL2 demonstrate
that the feature enhancement component can improve the
model performance. The fusion of filtered high-dimensional
features in the model partially compensates for the short-
comings of feature dimension reduction, adding semantic
features from multiple modalities in cross-modal hashing.
DHSL3 demonstrates the effectiveness of incorporating
intra-modality similarity hashing learning in the relational
network. By combining inter-modality and intra-modality
similarity hashing learning in the relational network, not
only the similarity between modalities can be learned, but
also the discriminative power within each modality can
be increased, thereby improving retrieval accuracy. DHSL4
demonstrates the positive effect of the relational network
module on cross-modal hashing learning. The relation
network directly performs similarity learning on the hash
representation, reducing matching errors for cross-modal
data points. It simultaneously conducts similarity learning
on inter-modality and intra-modality features, allowing the
similarity hash matrix to contain more semantic features and
generating more similar and discriminative hash codes.

E. PARAMETER ANALYSIS
Experiments are conducted on the MIRFlickr25K dataset to
analyze the impact of parameter variations η, σ ,µ1 andµ2 on
the mAP results. While testing each parameter, the other
parameters are kept constant using the optimal values from
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FIGURE 4. The Precision-recall curves on the MIRFLICKR25K dataset.

FIGURE 5. The Precision-recall curves on NUS-WIDE.

section IV-B. The parameters µ1 and µ2 control the selection
of image and text features in feature enhancement, while
η and σ influence the overall objective loss with different

losses. We optimize parameters µ1 and µ2 using grid search,
and parameters η and σ using traditional manual search.
We evaluate the model’s performance with a hash code length
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FIGURE 6. Parameter analysis on MIRFLICKR25K.

of 16 bits, and the results are shown in Figure 6. The model
achieves the best performance when µ1 = 4 and µ2 = 5,
as well as when η = 0.1 and σ = 0.1.

F. COMPLEXITY ANALYSIS
This section compares the parameter size and training
time of the proposed model with the baseline DADH on
MIRFlickr25K. From table 4, it can be observed that the
proposed model achieves a reduction of 89.10e6 in parameter
size compared to DADH, with a decrease in training time
of approximately 10 seconds per epoch. The introduction of
adversarial networks in DADH contributes to a significant
increase in parameter complexity, with the discriminator
alone having 67.15e6 parameters, while DHSL’s relation
network only has 1e5 paramter, which can be considered
negligible. Overall, DHSL substantially reduces the model’s
complexity when compared to DADH.

V. CONCLUSION
The paper introduces a novel cross-modal hashing technique
called Deep Hashing Similarity Learning for Cross modal
Retrieval (DHSL). DHSL aims to address the heterogeneity
between modalities and achieve efficient hashing. In the
feature learning process, DHSL incorporates class residual
connections to enhance features and integrates them with
low-dimensional features to supplementmissing information.
Regarding the hashing learning process, DHSL incorporates
relation networks to learn the similarity between modalities

and within modalities. Our goal is to learn a hash similarity
matrix that approximates the prior similarity matrix con-
taining label information. This process effectively bridges
the heterogeneity between images and texts, preserving the
semantic relevance between cross-modal features and the
discriminative semantics within each modality. The hash
codes in Hamming space are constrained by introducing the
weighted cosine triplet loss and quantization loss, preserving
the cross-modal semantic data structure and ultimately learn-
ing efficient hash codes. Through multiple experiments on
two widely used datasets, the results demonstrate that DHSL
outperforms several state-of-the-art methods. However, there
are still some limitations in this study. In future work, we will
further improve the utilization of label information in relation
networks and explore superior feature extraction methods.
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