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ABSTRACT In this work, we investigate how to increase the resolution of color halftone images using
convolutional neural networks (CNNs). As far as we know, this is the first work that increases resolution of
color halftone images using a CNN-based solution. For this task, we first train the well-known Enhanced
Deep Super-Resolution (EDSR) networkwith halftone images to obtain theHalftone-EDSRmodel.We argue
that it is not possible to use conventional data augmentation techniques in this problem, due to the peculiar
texture of halftone images. We present cropping as a viable data augmentation technique. Using cropping
and image patches as training samples, we substantially speed up the training and get better quality models.
We compare the independent channel model (which increases the resolution of each of the CMYK channels
independently and then merges them) with the joint channel model (which increases the resolution of all
four image channels at once) and conclude that the the latter is superior to the first. We experimentally
demonstrate that the proposed Halftone-EDSR is superior to all previous techniques, both for pre-print and
post-print halftone images. However, Halftone-EDSR can generate upsampled images with Moiré patterns.
To minimize Moiré patterns, we propose a new network model called Halftone-Net. We use the Fast Fourier
Transform, followed by a CNN, to detect the strong presence of Moiré patterns in halftone images and
demonstrate that Halftone-Net generates fewer images with strong Moiré patterns than Halftone-EDSR.

INDEX TERMS Halftone, convolutional neural networks, deep learning, up-sampling, super-resolution.

I. INTRODUCTION
To print a color image, it is usually converted from the RGB
(red, green, blue) color space to the CMYK (cyan, magenta,
yellow, black) ink color space before printing. Each of the
four image channels is then transformed into a binary halftone
image consisting of clusters of dots of different sizes. The
goal is to reproduce the original color image when these four
binary halftone images are printed with the primary ink colors
and are observed from a distance.

In this work, we investigate how to increase the resolution
of color halftone images using convolutional neural networks
(CNNs). There are several works that increase resolution of
continuous-tone color images using CNNs but, to the best of
our knowledge, this is the first work that uses CNN to increase
the resolution of color halftone images.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Tang .

A. RELATED WORKS
The literature on super-resolution of halftone images by
machine learning (both grayscale and color) is scarce.

Kim [1] applies windowed zoom decision trees (WZDT)
to upscale monochrome binary halftone images, achieving a
mean absolute error (MAE) of 1.111% when doubling the
resolution of test halftone images generated by HP LaserJet
driver’s ‘‘coarse dots’’ option, using an 8×8 sliding window.
However, larger windows, such as those used in CNNs, can
yield even smaller errors. Also, this study focuses on pre-print
monochrome halftones and does not address post-print or
color halftones. Pre-print halftone is a binary image generated
by a halftoning algorithm that has not gone through the print-
scan process. Post-print halftone is a continuous-tone image
obtained by printing and scanning pre-print halftone.

Dong et al. [2] propose a neural network architecture
for up-sampling continuous-tone images. They argue that
CNNs better preserve details during resampling compared
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FIGURE 1. EDSR architecture to increase the image resolution.
Convolutional layers are annotated with ‘‘k’’ representing the kernel size
and ‘‘n’’ representing the number of filters.

to conventional techniques such as bilinear or bicubic
interpolations.

Frank et al. [3] improve halftoning for low-resolution print
engines with machine learning techniques. Jiang et al. [4]
introduce an efficient halftoning technique using deep
reinforcement learning that produces high-quality halftones
while being computationally efficient. However, these
approaches are focused on converting grayscale images into
high-quality halftone images rather than enhancing halftone
resolution.

Guo et al. [5] propose a self-supervised learning model for
classifying scanned dithering halftone images. They address
classification without a large set of labeled data, but the goal
of this work is not resolution increasing.

Shao et al. [6] used vision transformer for inverse
halftoning, producing promising results. Huajian et al. [7]
present an inverse halftoning method using an invertible
neural network. Li et al. [8] presents a review of the main
inverse halftoning methods. However, our work is about
increasing halftone resolution and not inverse halftoning.

Lim et al. [9] propose the EnhancedDeep Super-Resolution
network (EDSR), a CNN architecture specifically designed to
enhance continuous-tone image resolution while preserving
fine details. It is based on the ResNet architecture [10]
and utilizes residual blocks. EDSR incorporates additional
up-sampling blocks using 2D convolutions and the depth to
space layer (pixel shuffle). The model employs one of three
types of output blocks to increase resolution by factors 2,
3 or 4 (see Fig. 1).

B. CONTRIBUTIONS OF THIS WORK
We published a preliminary version of this work at a
conference [11], but the present work presents several
aspects that were not described there. In our previous work,
we trained the well-known enhanced deep super resolution

(EDSR) model [2] on single-channel halftone images to
increase the resolution. Let us call the EDSR trained on
halftone images Halftone-EDSR, to distinguish it from the
conventional EDSR network trained on continuous-tone
images. We consistently observed that Halftone-EDSR gen-
erated smaller errors than WZDT. In this article, we expand
our previous research to upscale color halftone images. This
work has many additional contributions:

1) To the best of our knowledge, this is the first work that
increases the resolution of color halftone images using
CNNs. We propose to use EDSR trained on halftone
images (Halftone-EDSR) for this task.

2) There are two ways to use Halftone-EDSR to upscale
color halftone images:

a) Independent-channel: Use 4 monochrome Half
tone-EDSR models to upscale each channel
independently and then merge the 4 results to get
the final upscaled color image;

b) Joint-channel: Train a model that increases the
resolution of the 4 channels at the same time.

We experimentally demonstrate that better results are
obtained when all channels are processed jointly by the
network.

3) Data augmentation is essential to avoid overfitting
and to obtain better performance in image classifica-
tion [12] and segmentation [13] using CNN. In halftone
resolution increasing, most data augmentation image
distortions (such as random rotation, translation, resiz-
ing, etc.) cannot be used due to the peculiar nature of
halftone dot patterns. We demonstrate experimentally
that random cropping is an effective way of data
augmentation for halftone image upscaling, and the
performance of the model increases considerably.
We also show that the training time becomes consid-
erably shorter using cropping as data augmentation.

4) The upscaled halftone images may present strong
Moiré patterns. To reduce Moiré patterns in the
resulting images, we modify Halftone-EDSR to obtain
a new convolutional neural network architecture that
we call Halftone-Net.

5) We use a technique based on Fast Fourier Transform
(FFT), followed by a CNN, to measure the presence
of strong Moiré patterns in a halftone image. We use
this technique to show that Halftone-Net generates
fewer images with a strong Moiré pattern than
Halftone-EDSR.

C. STRUCTURE OF THE ARTICLE
This work is organized into the following sections.
Section ‘‘II. Super-resolution of halftone color images’’
describes the basic concepts used in this work. Section ‘‘III.
Experiment settings’’ explains the details of our experiments.
Section ‘‘IV. Halftone-EDSR in color images’’ explains our
basic halftone upsampling model. Section ‘‘V. Improving
Halftone-EDSR’’ addresses limitations faced by the basic
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model, including generation of undesirable Moiré patterns.
Section ‘‘VI. Halftone-Net’’ introduces a new model that
mitigates generation of Moiré patterns.

Both Halftone-EDSR and Halftone-Net models are avail-
able at Google Colab.1

II. SUPER-RESOLUTION OF COLOR HALFTONE IMAGES
A. TRADITIONAL HALFTONING
Before digital imaging, special photographic techniques were
used to break down grayscale images into halftone dots.
One of these was ‘‘screening’’, where a coarse-woven fabric
screen was suspended in front of the camera plate, breaking
the incoming light into a pattern of dots. In fact, the term
‘‘lines per inch’’ (LPI) seems to derive from the thickness
of the fabric screen used in the halftoning process. Color
halftone images were generated repeating this process for
primary colors.

In this work, we train and test our algorithm on old comic
book images that were printed using traditional halftoning
techniques, to test its ability to upsample post-print halftones.

B. DIGITAL HALFTONING
Digital halftone images can be categorized into three main
types:

• Clustered-dot dithering arranges clusters of dots in a
regular grid pattern, with varying sizes and patterns
to create different tones. This amplitude modulation
technique is commonly used in electro-photographic
printers (e.g., laser and LED printers) that cannot print
isolated dots. It is also widely employed in commercial
printing for magazines and newspapers using offset
printing.

• Dispersed-dot dithering disperses tiny dots in a regular
pattern without forming clusters. Through frequency
modulation, different dot densities create the illusion of
various shades or colors. This method is only applicable
to printers capable of printing isolated dots, such as
inkjet or matrix printers.

• Error diffusion algorithms distribute quantization errors
caused by color approximation to neighboring pixels.
This frequency modulation technique propagates the
quantization error from each pixel to its neighbors,
effectively spreading it throughout the image. Similar to
dispersed-dot dithering, error diffusion can only be used
by printers capable of printing isolated dots. It is very
difficult to upsample error diffusion halftone images
using machine learning algorithms due to their chaotic
nature.

We tested our algorithm on pre-print halftones generated
by clustered-dot dithering algorithm (Fig. 2), because this is
the most widely used technique.

1https://colab.research.google.com/drive/1EiLuiss3e7Lctf0fFf
1oIevAPKqUMeHr

FIGURE 2. Examples of color clustered-dot dithering halftones.

C. SPATIAL RESOLUTION
The quality of the image observed at a distance is influenced
by halftoning parameters. The size and spacing of dots
significantly impact the quality of the image [14], are referred
to as spatial resolution and encompasses two concepts:

• Dots per inch (DPI) represents the density of tiny ink
dots that a printer can produce within an inch. These dots
can be either on (indicating ink deposition) or off (no
ink deposition). DPI is a hardware-based metric used to
measure a printer’s resolution capability.

• Lines per inch (LPI) measures the number of clusters of
dots printed within one inch. These halftone dots, which
can vary in size and shape, create the illusion of different
color shades on paper [14], [15]. Halftone algorithms
generate these clusters of dots and arrange them into
‘‘lines’’. LPI is a user-adjustable software metric. Fig. 3
provides a visual comparison of a continuous-tone color
image and its corresponding halftone versions at 75,
150 and 300 LPI.

D. PRE- AND POST-PRINT HALFTONE
Halftone images can be categorized into two types: pre-print
and post-print (Fig. 4).

• A pre-print halftone is a binary image (or a set of
binary images) generated by a halftone algorithm before
the printing and scanning process. It can be either a
monochrome binary image created from a grayscale
image or a set of four binary images representing the
CMYK channels created from a color image.

• A post-print halftone is obtained by printing a pre-print
halftone onto paper and scanning it back. Due to
limitations in the mechanical and optical processes [16],
the resulting post-print halftone is a continuous-tone
image, which can be single channel or color.

E. MOIRÉ PATTERN
Modern color printer halftoning techniques aim to accurately
reproduce colors while accounting for imperfections in
colorants and complex dot interactions [17].

Ensuring high-quality color halftone images also involves
preventing unwanted noises on image, such asMoiré patterns,
visible at specific viewing distances. Moiré patterns emerge
due to interactions between different frequency components
in an image. These patterns can arise from overlapping
angles of different image channels (Fig. 5a) or during the
down-sampling of specific image textures.

To minimize Moiré patterns in clustered dot dithering,
we can select different and appropriate dithering angles for
each CMYK color channel during halftoning [14], [18].
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FIGURE 3. Halftones of a color image in different LPIs.

FIGURE 4. A pre-print halftone (A) is a binary image before print-scan
process. A post-print halftone images (B) is the image obtained printing
pre-print halftone and scanning it back.

Moiré pattern can occur when an image is captured from
a screen (Fig. 5b) or a halftone is scanned [18] (Fig. 5c).
Moiré pattern in scanned halftone image is typically caused
by interaction between the halftone screen frequency (LPI)
of the printed image and the scanning resolution (DPI) of the
scanner [19]. Moiré patterns can also be generated when a
document viewing program displays a halftone image on a
computer screen. Thus, newMoiré patterns may appear when
viewing the figures in this paper on a computer screen.

III. EXPERIMENT SETTINGS
A. DATASET ORGANIZATION
In our experiments, we use two datasets: DA and DB. The DA
dataset contains pre-print images obtained by converting the
original RGB images to CMYK and then running a halftone
algorithm to generate a CMYK halftone image comprised of
4 binary halftone images. The DB dataset contains post-print
images, with different LPIs, scanned from old comic books.

1) DATASET DA - SYNTHETIC PRE-PRINT HALFTONES
We used the DIV2K dataset [21] with 900 RGB color images
to create the synthetic pre-print halftone dataset DA. DIV2K

is one of the most used datasets to increase the resolution of
high definition images.

These images were converted to grayscale (G) and
CMYK (G4) color representations. Then, they were rotated
90 degrees and cropped to 2000×1124 pixels.

We employed area-based interpolation to downscale each
G and G4 image by a factor of 2, resulting in G0.5 and
G4
0.5, respectively. Using the Python halftone library [22],

we transformed the images G, G4, G0.5 and G4
0.5 into

binary halftone images denoted as B, B4, B0.5 and B40.5.
For color images, the halftone algorithm was independently
applied to each CMYK channel using clusters of type
‘‘Euclidean’’ (Fig. 2a). The rotation angles were: 15 degrees
for cyan, 75 degrees for magenta, 90 degrees for yellow
and 45 degrees for black. If the images B, B4, B0.5 and
B40.5 of this dataset were printed on a printer by converting
an image pixel to a printer dot, all images would have the
same LPI.

We utilized (B0.5, B) pairs in single-channel upscaling
experiments to find the appropriate patch and batch sizes,
and (B40.5, B

4) pairs for training and testing four-channel
upscaling models (both independent-channel and joint-
channel models).

2) DATASET DB - SCANNED POST-PRINT HALFTONES
We used comics from the Digital Comic Museum [23] to
construct the post-print halftone dataset DB. These images
display a variety of halftone shapes, lines and elements with
constant tone (Fig. 6).We randomly selected 900 images from
the comics database, ensuring a maximum of two pages per
comic to maintain the dataset unbiased.
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FIGURE 5. Moiré patterns generated by different processes.

FIGURE 6. Examples of images in DB dataset.

The original RGB images were converted to grayscale
to yield grayscale halftone images, designated as B. The
RGB images were also transformed into the CMYK color
space, generating halftone color images referred to as B4.
We downscaled the B and B4 images to create smaller
versions named B0.5 and B40.5.

FIGURE 7. We tested two types of halftone upsampling systems:
a) Independent-channel that processes 4 channels independently.
b) Joint-channel that processes 4 channels at the same time.

As this dataset is a post-print dataset, the halftone images
B, B4, B0.5 and B40.5 are continuous-tone, rather than binary.
The halftone images B0.5 and B40.5 have half the lines per inch
(LPI) compared to B and B4. As before, we utilized (B0.5, B)
pairs to find the appropriate patch and batch sizes. We used
(B40.5,B

4) pairs for training and testing four-channel upscaling
models.

B. INDEPENDENT AND JOINT CHANNELS
We evaluated two types of systems for increasing the
resolution of color halftone images: independent-channel and
joint-channel (see Fig. 7).

The independent-channel system processes the four color
channels (CMYK) separately. We split a pair of CMYK
halftone images (B40.5 and B

4) into four pairs of monochrome
halftone images: (BC0.5,B

C ), (BM0.5,B
M ), (BY0.5,B

Y ) and

(BK0.5,B
K ). These pairs were used to train four models NC ,

NM , NY and NK , which could be either decision tree- or
neural network-based models. It is not possible to use a single
model for the four channels, because each channel has a
different rotation angle. To up-sample a CMYK test image,
we independently processed the four monochrome halftone
images using their respective models. We combined the four
channels to obtain the final output color halftone image. The
mean absolute error (MAE) was calculated in the CMYK
color space before converting the image to the RGB color
space.

In the joint-channel system, a single modelN processed the
four channels jointly. We trained the model using 4-channel
halftone images B40.5 and B

4 from datasets DA and DB. After
training, when a 4-channel halftone test image was given, the
network N directly generated the upscaled 4-channel image.
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C. DATA AUGMENTATION
Data augmentation is a common technique used to increase
the diversity and quantity of training data in image-based
machine learning systems. The common data augmenta-
tion techniques include geometric transformations (rotation,
translation, resizing, etc.), flipping, color space transfor-
mations, cropping and noise injection [12], [13]. These
methods enhance model performance and generalization by
introducing diversity in the training data.

However, most distortions used for image data augmen-
tation cannot be used in halftone images due to the unique
nature of halftone patterns. Halftone images rely on clusters
of dots to form the smallest unit of representation, and any
alteration introduced by geometric transformations, color
space changes or noise injection may alter the dot format
and disrupt the integrity of the halftone pattern. Flipping and
rotation also cannot be used as they affect the specific angles
and orientations of the halftone dots. Furthermore, translation
can lead to distorted halftone dots or introduce halftone-free
background.

Fig. 8 illustrates how improper data augmentation can
compromise the structure of halftone.

Given these limitations, cropping emerges as the only
viable data augmentation for halftone images. Cropping
patches from the entire image allows us to retain essential
aspects of the halftone pattern while introducing variability
by selecting different sections of the image. The random
cropping of images during the training works as a form of
regularization [24] that helps to prevent overfitting and to
improve the generalization capabilities of the model.

Super-resolution networks, including EDSR, generally do
not have dense layers. This feature allows to feed these
networks with smaller images during training, as well as
to upscale images of any size during prediction. The only
potential concern in cropping is breaking halftone dots at the
edges of the image. However, cropped dots are commonly
found at the edges of halftone images.

Super-resolution models employing Vision Transformers
such as HAT [25], SwiniR [26] use patch-based approach to
extract image features. As shown in Fig. 9, the HAT model
generates images with impressive visual quality, although
the outputs have little texture, particularly evident in Fig. 9b
where the result appears to be a vectorized version of the
original image. Although HAT achieves high quality when
upscaling regular images, it falls short when applied to
halftones, failing to retain their unique textures.

Preserving textures is a priority in halftone images. The
dimensionality reduction in embeddings operates similar to
a low-pass filter, removing noise and texture, a phenomenon
resembling the behavior of auto-encoders [27].

D. TESTING ENVIRONMENT
All executions were carried out on a machine with an Intel
Core i7-13700K, 128GB of RAM and NVidia GeForce 4090
RTX with 24GB of VRAM, in Linux Mint 21.1, using the
Keras framework.

FIGURE 8. Examples of how improper data augmentation can
compromise the structure of halftone. For clarity, only the magenta
channel is depicted.

E. CHOOSING THE PATCH AND BATCH SIZES
In our previous work [11], we used whole images to train the
model without any type of data augmentation. Using a batch
size of 2 and full 2000×1124 images, training a single model
took approximately 12 hours. To reduce the processing time
and to augment data, in this work we train the network with
image patches instead of whole images (Fig. 10).

During each training epoch, we crop images by randomly
choosing patches of a predefined size. As a result, rather
than providing the entire page as input, the model receives
a random sample from the page.

Experimental results with various patch sizes for
monochrome halftone images are presented in Table 1 for
datasetDA and Table 2 forDB. The best results were achieved
with a 256×256 patch size and a batch size of 2. Training the
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FIGURE 9. Quality of images upsampled by HAT. Left: original images.
Right: images reconstructed by HAT. (source [28]).

FIGURE 10. Illustration showing a full page and a 256×256 patch used in
this work. Feature Comics 122, p. 20.

model with patches only took 1 hour, compared to 12 hours
using full 2000×1124 images.

F. 5-FOLD CROSS VALIDATION
To evaluate our system, we used a modified version of 5-fold
cross validation. The dataset with 900 pairs of images was
divided into 5 subsets, each containing 180 pairs. In each fold,
one subset was used for testing, while the remaining 4 subsets
(720 pairs) were used for training. Out of the 720 training

TABLE 1. Experiments to choose the best batch and patch sizes using
monochrome images from DA. ‘‘MAE ± SD’’ indicates the mean and
standard deviation of 900 MAEs between the processed and the ideal
images. We executed 5 training folds with 180 results in each fold.

pairs, 630 were used for actual training and 90 were used for
validation. The trained model was then applied to the test
subset to calculate the MAE between the output and ideal
images. We repeated this process for 5 folds, resulting in
900 error measurements. Finally, we calculated the mean and
standard deviation of these errors.

G. OPTIMIZER AND EPOCHS
We used the Adam optimizer with a learning rate ranging
from 10−4 to 5 × 10−5, implementing a piecewise constant
decay function with a boundary parameter of 5000. The
models underwent 100 epochs of training.

IV. HALFTONE-EDSR IN COLOR IMAGES
We used EDSRmodel with configuration similar to described
in [9] and [11]. This model consisted of 16 residual
blocks, using the Mean Absolute Error (MAE) with a
single up-sampling layer for doubling the image resolution.
We modified the depth of the input layer of the EDSR
from three (in the original network to receive RGB images)
to one for systems with independent channels and to four
for systems with joint channels. We call Halftone-EDSR
the EDSR model trained on halftone images to up-sample
halftone images. We tested three versions of Halftone-EDSR
for color images:

1) Full-independent: Trained on full-pages, each channel
is processed independently.

2) Patch-independent: Trained on image patches, each
channel is processed independently.

3) Patch-joint: Trained on image patches, a single model
processes all four channels jointly.

We trained the models using the optimal batch and patch
sizes determined in the previous section for monochrome
halftones. The results show the superiority of the ‘‘patch-
joint’’ approach compared to the ‘‘full-independent’’ and
‘‘patch-independent’’ methods, both for the DA and DB
datasets (Tables 3 and 4 and Fig. 11).

A. COMPARING HALFTONE-EDSR WITH WZDT IN DA
We compared the best Halftone-EDSR approach (patch-joint)
with WZDT independent-channel algorithm trained on full
pages or image patches to upscale synthetic color halftones
in DA. We did not test joint-channel WZDT, because WZDT
is designed to upscale monochrome images.
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TABLE 2. Experiments to choose the best batch and patch sizes using
monochrome images from DB.

TABLE 3. Upscaling CMYK color halftone images in DA dataset.

TABLE 4. Upscaling CMYK color halftone images in DB dataset.

All these methods were adapted to generate binary images
as outputs. Each model underwent 900 experiments, and
the average mean absolute error and standard deviation are
presented in Table 5. We trained the WZDT models using the
same parameters as in [1].

The patch-joint Halftone-EDSR is the most effective
method for upscaling synthetic color halftones inDA, with an
MAE of 0.022±0.008. WZDT algorithms present far greater
error rates and inferior image quality.

B. COMPARING HALFTONE-EDSR WITH CONVENTIONAL
RESAMPLING IN DB
Four conventional non-machine learning techniques (nearest
neighbor, bilinear, bicubic and Lanczos) were employed to
upscale the DB dataset. These techniques were compared
to patch-joint Halftone-EDSR (Table 6). All conventional
resampling techniques have much higher error rates than
Halftone-EDSR. Fig. 13 illustrates that conventional methods
produce blurry results. Conventional interpolation techniques
were not employed to upscale dataset DA because they
produce non-binary output images.

C. COMPARING HALFTONE-EDSR WITH MODELS
TRAINED WITH CONTINUOUS-TONE IMAGES IN DB
Table 7 evaluates three machine-learning joint-channel
models trained on continuous-tone images: ESRGAN [29],
StyleGAN2 [30] and EDSR [9]. We used them to upscale
images in dataset DB. The error rates of all machine
learning techniques trained on continuous tone images were
significantly higher than that of Halftone-EDSR.

Fig. 13 demonstrates that Halftone-EDSR preserves
halftone texture and produces high-quality upscaled images.

FIGURE 11. Box plots of the results presented in (a) Table 3 and
(b) Table 4.

TABLE 5. Comparing WZDT with Halftone-EDSR on DA color halftone
images.

GAN-based techniques often produce output images
similar to those produced by inverse halftoning [8], because
they interpret halftone texture as noise, resulting in ‘‘clean’’
images without texture (Fig. 13). ESRGAN ignores halftone
texture, while StyleGAN2 retains some texture but generates
artifacts. In contrast, the image generated by Halftone-EDSR
exhibits few artifacts and effectively preserves fine details.

Properly selecting training images is crucial to obtain
successfully upscaling models. This becomes evident when
we compare the Halftone-EDSR trained on halftones with the
EDSR trained on continuous tone images (Fig. 13).

V. IMPROVING HALFTONE-EDSR
A. IMPERFECTIONS AND MOIRÉ PATTERNS IN DB
The DB dataset contains a multitude of imperfections
(Fig. 14), including folds, paper marks, misalignment
between CMYK channels, variations in paper quality, as well
as different Lines Per Inch (LPI) and Dots Per Inch (DPI) in
prints.

As depicted in Fig. 14, the Moiré patterns captured
during the scanning further contribute to the imperfection
of the dataset [19]. Moiré patterns are commonly found
in scanned halftone images due to the resampling process
that occurs when converting analog images (printed on
physical paper) to digital [18]. These patterns arise due to
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FIGURE 12. Visual comparison of upscaling pre-print halftone images DA with Halftone-EDSR and other methods.

FIGURE 13. Visual comparison of post-print halftone images DB upscaled with Halftone-EDSR and other methods.

TABLE 6. Comparison of Halftone-EDSR with non-machine learning
methods to upscale DB.

TABLE 7. Comparison of Halftone-EDSR with other joint-channel
machine learning techniques trained on continuous-tone color images to
upscale DB.

the interaction of frequency components and can obscure fine
details [31]. They mostly appear in areas with light colors
(Figs. 14b and 14c).

Unlike the images in the DA dataset, where the image is
first halved in size and then halftoned, the images in the DB
dataset are halved after halftoning, making Moiré patterns
more noticeable.

B. INAPPROPRIATE ERROR METRIC
The analysis of images generated by Halftone-EDSR reveals
an interesting phenomenon. In some cases, the model’s effort
to mitigate imperfections generates an image that is ‘‘better’’
than the ideal image in some regions (see Fig. 15). This
phenomenon is likely due to the variety of irregularities
present in the input training images. The machine learning
model struggles to learn from diverse data, causing these
irregularities to be treated as outliers. As a result, the model
does not replicate these imperfections, but rather attempts to
eliminate them.

Thus, in the DB dataset, a high MAE does not necessarily
mean that themodel is unable to generate good quality output.
If the ideal image has significant imperfections, a high MAE
may suggest that the model has generated image without the
same imperfections. The model would need to replicate even
the imperfections present in the ideal images for the MAE to
be extremely low, an undesirable scenario.

C. DENOISING
Yang et al. [19] present a study focused on reducing Moiré
patterns in scanned grayscale halftone images. The method
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FIGURE 14. Different types of imperfections in the DB dataset.

FIGURE 15. The ideal high-resolution images display strong Moiré patterns in green areas. The
input low-resolution images also present Moiré patterns in green areas. The images upsampled
by Halftone-EDSR have weaker Moiré patterns that differ from those of ideal images. This
difference in Moiré patterns results in a high MAE between the ideal image and the
Halftone-EDSR output, despite the good quality of the output image.

scans twice the same halftone image, where one of the scans is
performed with the image rotated by 45 degrees. This process
generates two sets of scanned Moiré patterns. Subsequently,
an intersection of the two scanned images is created, resulting
in a notable reduction of Moiré patterns. However, it is
not possible to implement this technique on the DB dataset
because it is not possible to perform a new rotated scan.

There are two approaches that canmitigate the artifacts like
Moiré patterns in the output images:

• The first approach eliminates all textures. This is
undesirable because it also eliminates halftone patterns,
actually leading to inverse halftoning. As evident in
Fig. 13, GAN-based techniques produce results close to
inverse halftone.

• The second tries to differentiate between noise and
texture, resulting in a filter that mitigates noise and
preserves texture. Fig. 13 illustrates the excellent
results of Halftone-EDSR in improving resolution while
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FIGURE 16. Independent channel Halftone-EDSR blurs halftone textures.
Joint-channel Halftone-EDSR enhances halftone textures.

FIGURE 17. Halftone-Net architecture. Convolutional layers are
annotated with ‘‘k’’ representing the kernel size and ‘‘n’’ representing the
number of filters.

preserving halftone texture. The Halftone-EDSR model
minimized the Moiré pattern in both orange tones
(character’s shirt) and greenish tones (character’s hat).

There are cases where both the ideal and input images
are strongly affected by the Moiré pattern (see Fig. 15).
In these cases, Halftone-EDSR can reduce the Moiré pattern.
However, this noise reduction may result in a higher MAE.

Methods with independent channels introduce more Moiré
patterns to the output images than those with joint channels.
This probably happens because of the inability of indepen-
dent channel models to learn channel overlap, thus gener-
ating Moiré patterns. Fig. 16 illustrates that joint-channel

FIGURE 18. Box plots of the models (A) and (D) of Table 8.

Halftone-EDSR manages to reconstruct halftone textures
more effectively than the independent-channel approach.
Light green areas have halftone textures that the joint-channel
model improves, while the independent-channel model blurs.

VI. HALFTONE-NET
A. INTRODUCTION
In this section, we propose a new network architecture
called Halftone-Net, specially designed to increase the
resolution of halftone images while reducing Moiré patterns.
In the literature, there are networks specifically designed to
attenuate noise [27] and Moiré patterns [31] for continuous
tone images. These Moiré patterns are typically generated
when photographing monitor screens, which differs from the
patterns found in halftone images (Figs. 5b and 5c).

Unlike Halftone-EDSR, which adds the output of the first
convolutional layer to the output of the cascaded residual
blocks (white arrow at the top of Fig. 1), the proposed
Halftone-Net (Fig. 17) do not use residual connection from
input to output. The absence of a long residual connection
minimizes the propagation of artifacts from the input image
to the output. This modification retains only the 16 residual
blocks present in the EDSR architecture. To avoid replicating
Moiré patterns, the number of filters at the input of the
upscaling layer was doubled from 256 to 512 filters. The
purpose of this adjustment is to compensate for the lack of
residual connection.

B. EXPERIMENTAL RESULTS
We carried out the experiments using exclusively the
900 images from DB, as the objective of Halftone-Net is to
mitigate Moiré patterns present in scanned images of the real
world, a feature absent in DA with synthetic images.
Table 8 shows the errors produced by Halftone-EDSR

and Halftone-Net using 256 and 512 filters. The best
Halftone-EDSR results were obtained using 256 filters (A)
and the best Halftone-Net results using 512 filters (D). The
box plot of models (A) and (D) are depicted in Fig. 18.
Halftone-Net (D) produced slightly lower average MAE than
Halftone-EDSR (A), but it is not clear whether this apparent
improvement is real or mere statistical fluctuation.
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FIGURE 19. All the 4 images above were upscaled using Halftone-Net and all have a larger MAE than those generated by Halftone-EDSR. However, all of
them were categorized as ‘‘weak Moiré’’ (high quality) while only 1 of the 4 images generated by Halftone-EDSR was categorized as ‘‘weak Moiré’’ (the
image corresponding to the image (a) in fig. 13). We can notice that these images have fewer Moiré patterns than the Halftone-EDSR counterparts, and
the halftone textures are sharper than in the ideal images.

FIGURE 20. Patches with strong Moiré patterns with their FFTs for each channel. FFTs have a grainy appearance and there
are several bright spots in the peripheral region.

Running one-tailed paired t-test, we obtained a p-value
of 5.56 × 10−6, showing that Halftone-Net’s average MAE
is indeed smaller than Halftone-EDSR’s. Although the
difference in average errors seems small, the p-value indicates
that the probability of observing the obtained results if the
average errors of the two methods were equal is only 5.56 ×

10−6. This clearly shows the superiority of Halftone-Net over
Halftone-EDSR, even using a metric that is not appropriate to
measure the quality of the generated image.

C. DETECTING MOIRÉ PATTERNS
As mentioned earlier, mean absolute error (MAE) may not
be adequate for measuring upscaling efficiency. If the ideal

TABLE 8. The influence of the number of filters in the quality of the
output images.

image has a strong Moiré pattern, a low MAE may indicate
that the resulting image also incorporates a similar Moiré
pattern, while a high MAE may indicate that the model
has managed to reduce the Moiré pattern. Therefore, it is
necessary to look for some other metric to measure upscaling
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FIGURE 21. Patches with weak Moiré and their FFTs for each channel. Compared with fig. 20, there are fewer bright
spots in the peripheral region and the textures are smoother. The central point is more concentrated and brighter.

FIGURE 22. Visual comparison of (a) ideal output image, (b) image processed by Halftone-EDSR and (c) image processed by
Halftone-Net. The image processed by Halftone-Net has a higher MAE (0.0380) than that processed by Halftone-EDSR
(0.0347), but has weaker Moiré patterns and higher quality halftone textures (note the green region).

success. We train a machine learning model that classifies
images as containing strong or weakMoiré patterns. Our goal

was to show that Halftone-Net generates fewer images with
strong Moiré (low-quality) than Halftone-EDSR.
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TABLE 9. Number of output images generated by Halftone-EDSR and
Halftone-Net categorized as ‘‘weak Moiré’’ and ‘‘strong Moiré’’.

In the first attempt, we handpicked some images with
strong Moiré and others with weak Moiré. Then, we trained
a CNN to classify images into strong or weak Moiré. The
classification accuracy was 50%, indicating that the network
was unable to detect Moiré.

In the second attempt, we decided to pre-process images
using Fast Fourier Transform (FFT). The FFT is widely used
for Moiré pattern detection [32], [33]. We computed the
absolute FFT values, followed by log10 transformation, and
mapped them to a color scale within the range [5.0, 12.0].
Figs. 20 and 21 illustrates FFTs, highlighting differences
between patches with strong and weak Moiré patterns.

We initially curated 400 256×256-sized patches with
strong Moiré and 400 patches with weak Moiré. Then,
we calculated the FFTs for each color channel of each patch.
We trained a model inspired by VGG16 [34], with MSE loss,
Adam optimizer with a learning rate of 10−6, a batch size of
20, and for 50 epochs. We conducted 5-fold cross-validation,
in each fold using 80% of images for the training and 20%
for the testing. This approach achieved an average accuracy
of 87.5±3.5%.

Subsequently, we applied this model to all 4×900 images
generated by theHalftone-EDSR andHalftone-Net, with both
256 and 512 upsampling filters. Table 9 shows the classifi-
cation results. As before (Table 8), the best Halftone-EDSR
model is (A) with 256 filters and the best Halftone-Net model
is (D) with 512 filters. Comparing the best Halftone-EDSR
model (A) with the best Halftone-Net model (D), model
(D) generated more images with weak Moiré patterns (good
visual quality) than model (A).

Fig. 22 visually compares the ideal image, the image
upscaled by Halftone-EDSR and by Halftone-Net. The MAE
of the image upscaled by Halftone-EDSR (0.0347) is lower
than that of the image upscaled by Halftone-Net (0.0380).
However, the image upscaled by Halftone-EDSR shows
stronger Moiré patterns than the one upscaled by Halftone-
Net (visible, for example, in green background).

VII. CONCLUSION
This work has proposed an effective method for upscaling
resolution of color halftone images. We took the well-known
EDSR model and trained it with halftone images, obtaining
Halftone-EDSR.

We introduced cropping as a viable data augmentation
technique to train halftone upscaling models. This is particu-
larly significant since the peculiar characteristics of halftones
restrict the use of conventional data augmentation techniques.
By using cropping and image patches as training samples,

we were able to substantially speed up the training and get
models with better quality.

Our experiments have shown that joint-channel model
(that upscales four-channel CMYK images at once) is
superior to the independent-channel model (that increases
each of the four channels independently and then merges
them). We experimentally demonstrated that the proposed
Halftone-EDSR is superior to all previous techniques for
increasing the resolution of halftone images, both for
pre-print and post-print halftone images.

We have argued that conventional loss functions (such as
MAE, MSE, etc.) may not be adequate for measuring the
quality of upscaled halftone images. We proposed to use FFT,
followed by a CNN, to measure the presence of strong Moiré
patterns in halftone images.

To minimize Moiré patterns, we have proposed a new
network model called Halftone-Net. We demonstrated that
the new model efficiently increases the resolution of halftone
images while reducing Moiré patterns in post-print images.

Despite the effective reduction of Moiré patterns in
scanned images by Halftone-Net, 31% of tested images
continue to exhibit strong Moiré patterns. As a prospect
for future work, efforts will be directed towards further
minimizing this 31% occurrence.

Our method has the potential to improve the quality of
digitized documents.
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