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ABSTRACT The transition to a near-zero-emission power and energy industry for facing up to global
warming issues is dominated by the use of renewable energy resources such as bioenergy and solar energy.
When these resources are coordinated within an energy hub framework, the system’s flexibility is increased
and dispatchable energy is provided by enhancing the share of renewable-dominated power. This paper
proposes a dynamic scheduling framework for an energy hub with a biomass-solar hybrid renewable system.
A hybrid forecasting model based on convolutional neural networks (CNNs) and Gated recurrent units
(GRUs) is developed first to capture solar-related uncertainty sensibly, which will provide a great opportunity
for the learning-based controller to determine an effective operation strategy in an optimal manner, especially
on a cloudy-weather day. Then, a supervised federated neural architecture search (SFNAS) technique has
been presented to eliminate the need for manual engineering of deep neural network models and the
unnecessary computational burden associated with them. Finally, the deep deterministic policy gradient
(DDPG), as an actor-critic deep reinforcement learning (DRL) methodology, enables the biomass-based
energy hub to achieve cost-effective dynamic control strategies by addressing the decision-making problem
as a highly dynamic continuous state-action model. The major conclusions of the numerical results show
the effectiveness of the proposed SFNAS-DDPGmethod from average operating cost reduction up to 7.31%
compared to the conventional DDPG model.

INDEX TERMS Actor-critic deep reinforcement learning, biomass energy, energy hub, federated learning
(FL), neural architecture search (NAS).

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Over the past decade, renewable energy sources (RESs),
such as bioenergy and solar, have received unprecedented
attention and become more prevalent to meet the ambitious
goals of policymakers for reducing greenhouse gas emissions
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by moving towards a more sustainable energy industry.
On the other hand, with the popularity of RESs continu-
ally increasing, their inherent volatility and intermittency
pose a challenge to the integration and utilization of a
high-penetration of RESs, and raise operational concerns
for energy system operators. In this regard, the importance
of coordinated control of interconnected energy infrastruc-
tures has been increasingly recognized for facilitating the
development of a low-carbon, economically feasible, and
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renewable-dominated energy supply. This direction has led
to the significant recognition of energy hub systems as
resilient, reliable, and economical means of redistributing
supply and demand among different energy sectors at the
local level [1]. Meanwhile, with biomass energy resources
being widely distributed and its potential to support multiple
forms of energy demands, such as electricity and thermal,
the integrated operation of other RESs and biomass can
offer a cost-effective alternative compared to utility grid
operations.

B. LITERATURE SURVEY
Several recent representative studies have been reported
on the optimization of energy hub systems from differ-
ent perspectives, including optimal design and expansion
planning [1], [2], optimal power dispatch [3], [4], energy
trading scheme planning [5], [6], voltage-frequency opti-
mization [7], etc. The literature on the integration of biomass
energy resources into the energy hub concept is somewhat
limited and scattered. Using climate-independent biomass
energy, an energy hub can balance the stochastic output
of weather-driven renewable RESs. In both [8] and [9],
the planning problem for a biomass-based energy facility
was studied and formulated as a two-stage mixed-integer
linear programming (MILP) model. While the authors in [8]
focused on the optimal planning of solar and biogas energy
for reducing the dependency of the energy hub system
on battery storage systems in remote regions, the model
proposed in [9] centered on the expansion planning of
integrated electric power and biogas delivery networks.
In terms of the scheduling and operation of biomass-based
multi-carrier energy systems, the existing literature studies
the use of biomass energy resources as a solution to the
increasing demand for diversified and affordable energy
services. In [10], a stochastic optimal operation strategy
for an integrated solar and biomass system is proposed
by considering the uncertainties in market prices and solar
irradiation. Reference [4] assesses an optimal operation
strategy for an energy hub with a biogas-solar-wind hybrid
renewable system. The approach in [4] is extended by
providing a distributed stochastic scheduling framework for
the coordinated operation of interconnected biogas-solar-
wind systems in [11]. Both [12] and [13] propose trading
schemes for the biomass-concentrated solar system. Stochas-
tic optimization and information gap decision theory (IGDT)
approaches are leveraged to address uncertain factors.

Even though some advances were made, the aforemen-
tioned works also had three limitations. Firstly, they need
to understand the dynamics of components. Developing a
dynamic model that can accurately simulate components’
behavior is challenging due to the multitude of factors that
influence it. Further, model-based approaches may differ in
premises or performance in relation to particular components,
so their generalizability may be limited. Secondly, algorithms
require explicit knowledge of how uncertainty is represented
(for example, RES production’s probability distributions).

Finally, a third limitation is the lack of support for an online
control mechanism, particularly for large-scale solutions.
Specifically, these methods need to perform the optimization
by selecting the most optimal solution among a set of possible
ones, regardless of the problem size.

Alternatively, the disadvantages described above can be
overcome through the use of model-free learning-based
techniques. Recently, some research has been conducted
on applying reinforcement learning (RL) to the energy
management problem of multi-carrier energy systems, such
as Q-learning (QL) [14], QL-linear programming (LP) [15],
and fuzzy QL [16]. The combination of RL and deep neural
networks (DNN), as a powerful function approximator, has
led to the development of deep reinforcement learning (DRL).
Through multiple interpretations, DRL can leverage the
growing data collected from a variety of sources, revealing
optimum control policies and dealing with uncertainty related
to the data. Additionally, DRL is a model-free, self-adaptive
method that requires no explicit modeling of probability
distributions or constraints on uncertainties. The application
of deep Q network (DQN) concepts to energy systems’
control and scheduling has been developed for different
scenarios involving the optimization of state and action
spaces in high dimensions, e.g., energy storage system [17],
industrial Internet of Things (IIoT) [18], electric vehicles
(EV) [19], cyber uncertainties [20], and building energy
management [21]. Although DQN has been regarded as a
considerable improvement over conventional QL in approx-
imating Q-value functions, its performance is suboptimal if
the action spaces of the environment are continuous. DQN
offers considerable advantages over QL, but its performance
can be suboptimal regarding continuous action spaces. There
are, for example, only five and seven levels of discrete
control actions for lithium-ion batteries and EVs in [22]
and [23], respectively. The adoption of a continuous action
space is therefore of the utmost importance. This being
the case, the deep deterministic policy gradient (DDPG)
methodology was introduced and implemented on a few
decision-making tasks involved in scheduling and controlling
microgrids, including electricity market participation [24],
distribution networks [25], volt-var control (VVC), and
state of charge (SoC) control [26]. Through using both
actor and critic networks, it provides both the benefits of
value-based and Monte Carlo policy gradient approaches.
Comparatively to the Monte Carlo policy gradient, DDPG
uses fewer samples to learn action space selection, resulting
in lower computational demands. Furthermore, in contrast
to the value-based technique, stochastic policies can be
used to address RL problems that involve continuous
actions.

In the meantime, DNN algorithms have made promising
progress in several tasks, including prediction. However, their
performance is still heavily influenced by the parameters and
architecture of the neural network (the number of layers and
the number of nodes, as well as the connectivity between
layers). In most cases, it is challenging to evaluate how
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parameter settings influence the performance of the available
models, even when they have a thorough understanding
of both machine learning (ML) and deep learning (DL).
Furthermore, recent studies in the field emphasize the use of
higher-level models in order to obtain more accurate predic-
tions, increasing the number of parameters included in the
model. This has made exploring such large parameter spaces
a more challenging undertaking. Neither expert knowledge
nor empirical trial and error are always useful in this regard.
A neural architecture search (NAS) method finds the optimal
network architecture for a given situation by defining a
search space, a search strategy, and a performance estimation
strategy [27], [28]. NAS-developed network structures have
been shown to be superior to those constructed by hand in a
variety of fields.

Over the past few years, the field of NAS has become
an active area of research and experienced remarkable
success [27], [29], [30]. A Bayesian optimization-based
NAS has been used to optimize the structure of DNNs.
For example, a new kernel captures the relevant parameters
in [31] and a joint optimization of the architecture and
hyperparameters is performed using Bayesian optimization
in [32]. Recent proposals have attempted to turn NAS
problems into RL problems. The NAS problem is addressed
using Q-learning in [33] and [34]. To improve the search
procedure described in [33] and [35] uses a predictor. With
shared DNN parameters, [36] increases the speed of search
procedures. By developing a differentiable representation
of the NAS model, gradient-based NAS techniques seek
to optimize the parameters of the NAS. The performance
of other neural networks is predicted by a neural network
in [37] and [38]. An approach aimed at reducing training
time and memory consumption for NAS is described in [39].
A generalization problem in differentiable architecture search
(DARTS) models [40] is addressed in [41] by breaking the
problem into sub-problems. Recent years have seen sig-
nificant interest in evolutionary computation approaches to
optimize DNN parameters. DNNs are employed as genotypes
and phenotypes in a mutation-only Genetic Algorithm (GA)
in [42] and [43]. By evolving the cascades of convolutional
filters, a GA for classification is presented in [44]. It is
noteworthy that evolutionary-based NAS approaches result
in neural networks of superior performance, but moderate
in size, as shown in [27], [29] and [30]. Additionally,
privacy concerns are becoming more prevalent, which has
led to a growing interest in machine learning approaches
that preserve the privacy of users. As a machine learning
paradigm, federated learning (FL) deals with concerns about
data privacy, particularly when working with distributed and
heterogeneous information [45]. Thus, FL combined with
NAS is capable of effectively addressing privacy concerns
associated with NAS.

C. CONTRIBUTION AND PAPER STRUCTURE
Considering the limitations of previous studies and to fill
the research gaps outlined above, this paper is directed

toward presenting a dynamic scheduling framework for a
biomass-based energy hub. An improved actor-critic DRL
algorithm, DDPG, and the supervised federated neural
architecture search (SFNAS) are incorporated and employed
to form a novel model-free and self-adaptable energy
management algorithm for a RES-based multi-carrier energy
supply infrastructure. For a diverse and dynamic RES-based
energy hub system, these characteristics can facilitate flexible
scheduling and coordinated decision-making. The proposed
SFNAS tries to investigate the merits and limitations of
various NAS methods for learning the architecture and
model parameters for a given task. An innovative method
is then presented for engaging multiple NAS approaches
and improving their individual performance by utilizing a
supervising agent to improve their training losses. As a result
of repeated interactionwith the environment, theDDPG agent
is able to gain experience to provide optimal dynamic control
signals without the need to model constrained probability
distributions or uncertainty sets. Moreover, a forecasting
technique based on convolutional neural networks (CNNs)
and gated recurrent units (GRUs) has been incorporated into
the DDPG decision-making framework to achieve decent
scheduling results. The major contributions of this paper are
summarized as follows:

1) Focusing on the ever-increasing role of biomass
energy resources worldwide, the impact of several
underlying factors on the cost-benefit analysis of a
biomass-based energy hub is investigated using a fully
data-driven and model-free actor-critic DRL-based
decision-making framework taking into consideration
the physical characteristics and thermodynamic effect
of temperature-sensitive biogas production at the
operation stage. To our best knowledge, such method
is rarely investigated before.

2) Based on the FL settings, the proposed SFNAS
approach can be used directly to search for the
optimal architecture by leveraging training loss reshap-
ing by a supervisor. The test results show that
the proposed SFNAS approach achieves faster and
smoother convergence than the respective baseline
methods. In comparison with the baseline model, the
proposed SFNAS approach significantly improves both
forecasting RMSE and training time by 10.33% and
9.54%, respectively.

3) A hybrid CNN-GRU solar irradiance forecastingmodel
that captures high levels of abstraction from sky
images and numerical measurements was developed
and optimized by SFNAS to help the DDPG agent
choose the most efficient control policy especially
when PV power is highly intermittent on cloudy days.

4) Compared with conventional energy hub schedul-
ing methods, such as stochastic programming (SP)
or robust optimization (RO), which require a per-
fect and detailed understanding of the operational
model and parameters of the system, the pro-
posed model-free data-driven energy management
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framework can overcome potential uncertainties and
determine the optimal control decisions by the learning
mechanism.

5) The DDPG is a model-free decision-making frame-
work that offers more realistic and cost-effective
decision-making strategies than existing conventional
decision-making methodologies like SP and RO, which
simplify the scheduling problem with linearized mod-
els and piecewise linear curve fittingmethods. Ignoring
the practical limitations and nonlinear constraints
like biogas production thermodynamics, dynamic effi-
ciency of fuel cells, valve admission behavior of power
generation systems, and CHPs’ non-convex operation
regions makes the results less robust.

This paper proceeds as follows. Section II presents the
proposed SFNAS algorithm and the hybrid DL-based 2-D
CNN-GRU prediction approach. Section III describes the
highly nonlinear, realistic model of the system. Following
that, Section IV presents the DDPG-based dynamic schedul-
ing method for the biomass-based multi-carrier energy
system. Section V is dedicated to the case studies and
simulation results, and finally, conclusions are provided in
Section VI.

II. SUPERVISED FEDERATED NEURAL ARCHITECTURE
SEARCH AND HYBRID 2-D CNN-GRU
FORECASTING MODEL
In this section, the mathematical representation of the
proposed SFNAS, which leverages a supervisor to enhance
the performance of multiple NAS agents, is presented. The
supervisor (meta-learner) and NAS agents (base learners)
are trained using a bi-level optimization strategy. Fig. 1
illustrates the schematic diagram of the proposed SFNAS
methodology.

A. NAS AGENTS AS BASE-LEARNERS
1) OBJECTIVE
By learning the architecture, ωn, and parameters, θn, of the
model, each base learner i optimizes its own model using
momentum-regularized NAS technique. (ωn, θn) is learned
by each base-learner n using a momentum-based gradient
descent algorithm as follows.

vn := (1− λn)vn + λn∇nJn(θn, ωn)

θn← θn − αθvn,

ωn← ωn − αωvn (1)

where αθ and αω correspond to the learning rates for θ and
ω, respectively, and, vn represents the momentum from past
steps. When the hyperparameter λn is set to a lower value
in the updates, longer gradient updates are maintained (this
can be demonstrated by expanding the recursive updates,
which are not shown here due to limited space). According
to the NAS algorithm used by each base-learner, the training
loss varies. Hence, for ease of explanation, the training
loss is denoted by Jn(θn, ωn). The following definition of

L2-regularized mean squared error (MSE) will be used when
we assume identical training losses Jn(·, ·) for all agents.

Jn(θn, ωn) := ∥y− ŷn∥2 + L2(θn) (2)

where ŷn represents the forecasted value, i.e., the outcome of
n-th base-learner’s model with architecture ωn.

2) MODEL
The weights λn that are proportional to rn are estimated
by training the meta-learner model with the input states (or
the embedding of the inputs). For this purpose, a N -head
classifier structure is employed, corresponding to λn, n ∈
{1, 2, . . . ,N }. Unlike a typical classification problem, rns
change epoch by epoch, so the target values vary.

3) SELECTION PROCEDURE
The proposed SFNAS methodology includes a model selec-
tion procedure that is as follows.

min
A

[ζ1.N + ζ2.T + ζ3.RMSE] (3)

where N , T , and RMSE are the number of trainable
parameters of deep learning model, training time, and the
RMSE value for agent A, respectively. A FL application
designer can determine the importance of the objectives by
adjusting ζ1, ζ2, and ζ3.

B. HYBRID DEEP 2-D CNN-GRU STRUCTURE
Meteorological and atmospheric variables greatly influence
solar irradiance in solar power generation forecasting.
A hybrid SFNAS-based DL model for solar irradiance pre-
diction is presented to analyze a sequence of sky images and
meteorological components by employing CNN and GRU
structures, respectively. Several numerical meteorological
features are employed in the proposed hybrid forecasting
framework to enhance its capability to capture complex
solar abstractions, including global horizontal irradiance
(GHI), calendar features, temperature, relative humidity, and
atmospheric pressure. The mathematical details of the hybrid
deep CNN-GRU network can be expressed as follows [46],
[47], and [48]:

1) CNN NETWORK
Through the use of learnable kernels and inductive bias,
CNN convolutional layers provide better generalization
capabilities. The mathematical expression for convolutions
and pooling are as follows:

zml = f

∑
n∈Nm

(
znl−1 ⊗ w

nm
l
)
+ bml

 (4)

zml = f down
(
zml−1

)
(5)

A max-pooling down-sampling method followed by a
fully-connected layer is used in this paper to extract
informative features.

zl = gf (ϑlzl−1 + bl) (6)
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FIGURE 1. Schematic diagram of the proposed SFNAS methodology.

2) BLSTM NETWORK
Each LSTM block consists of three multiplicative units:
input, output, and forget. Data is written, read, and reset using
these gates. The following equations explain how LSTM
forward passes work mathematically [49]:

f ′t = σ
(
w′χ

f ′χt + w′h
f ′ht−1 + b′

f ′
)

(7)

z′t = σ
(
w′χ

z′χt + w′h
z′ht−1 + b′

z′
)

(8)

g′t = tanh
(
w′χ

g′χt + w′h
g′ht−1 + b′

g′
)

(9)

o′t = σ
(
w′χ

o′χt + w′h
o′ht−1 + b′

o′
)

(10)

C ′t = g′t ⊙ i
′
t + C

′

t−1 ⊙ f
′
t (11)

ht = tanh
(
C ′t
)
⊙ o′t (12)

Gradient vanishing problems can be handled by LSTMs,
but future context cannot be taken into account. As a
result, BLSTM networks represent data in a much more
sophisticated manner than traditional LSTMs because they
utilize all the information of the temporal horizon. Following
are the outputs generated by BLSTM networks [50]:

h′′t
f
= tanh

(
w′′χh′′

f χt + h′′t−1
f
)
w′′h′′h′′

f
+ b′′h′′

f (13)

h′′t
f
= tanh

(
w′′χh′′

f χt + h′′t−1
f
)
w′′h′′h′′

f
+ b′′h′′

f (14)

y′′t = h′′t w
′′
o + b

′′
o (15)

where h′′t is composed of integrating h′′t
f and h′′t

b.

III. ENVIRONMENT MODEL AND PROBLEM
FORMULATION
The purpose of this section is to discuss the main structure of
the proposed biomass-based energy hub, taking into account
nonlinear characteristics of the facility components such as
biogas production thermodynamics, dynamic efficiency of
fuel cells, valve admission behavior of power generation
systems, and CHPs’ non-convex operation regions.

FIGURE 2. Valve-point effects on the fuel cost of a power-only unit.

A. POWER-ONLY UNITS
Generally, power-only generation units are modeled by
convex quadratic cost functions. Due to valve admission
effects, these models do not take into account ripples in
production cost; therefore, they cannot provide a practical
solution for real-life applications. In this regard, the quadratic
cost function is modified to include an absolute sinusoidal
term to capture this phenomenon efficiently. Fig. 2 shows
the valve-point effects on the fuel cost of a power-only unit.
The total operation cost including valve-point effects can be
formulated as follows [51]:

Cc
i,t
(
Eci,t

)
= α

c1
i .
(
Eci,t

)2
+ α

c2
i .E

c
i,t + α

c3
i + V

c
i,t
(
Eci,t

)
(16)

V c
i,t
(
Eci,t

)
=
∣∣λci sin (ρci (Eci,min − E

c
i,t
))∣∣ (17)

Eci,min.I
c
i,t ≤ E

c
i,t ≤ E

c
i,max.I

c
i,t (18)

where αc1i , αc2i , αc3i , λci , and ρ
c
i are the cost coefficients of the

ith power-only unit. I c and VPEc indicate the commitment
status and valve-point effects, respectively.

B. THERMAL UNITS
The k th thermal unit’s operating cost and limits at time t is
defined by (19) and (20).

Cb
k,t

(
T bk,t

)
= α

b1
k .
(
T bk,t

)2
+ α

b2
k .T

b
k,t + α

b3
k (19)
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T bk,min.I
b
k,t ≤ T

b
k,t ≤ T

b
k,max.I

b
k,t (20)

where αb1i , αb2i , αb3i , and k th represent the cost coefficients
and commitment status of the k th heat-only unit.

C. CHP UNITS
Noteworthy is the fact that the electricity and thermal energy
produced in CHP units depend on each other, so they cannot
be independently adjusted. The cost function of jth CHP is
provided in (21). Convex combinations of extreme points
represent the power and heat production in CHP units by
(22)-(25) [52].

Cchp
j,t =

S∑
s=1

Dsj∑
ds=1

0d
s

j,t c
ds
j (21)

Echpj,t =

S∑
s=1

 Dsj∑
ds=1

0d
s

j,t x
ds
j

 (22)

T chpj,t =

S∑
s=1

 Dsj∑
ds=1

0d
s

j,t y
ds
j

 (23)

Dsj∑
ds=1

0d
s

j,t = V s
j,t (24)

0 ≤ 0d
s

j,t ≤ 1 (25)

where Dsj denotes the total number of corner points for
the jth CHP in sub-region s and the coefficient 0d

s

j,t should

satisfy constraints (24) and (25);
(
xd

s

chp, y
ds
chp

)
represents the

electricity and thermal generations related to the corner point
d s; V s

j,t is a binary variable indicating operation in the sth

subregion.

D. BIOMASS-BASED BOILER UNITS
The mth Biomass-based boiler’s operating cost is modeled
in (26). Based on the energy conservation rules, the thermal
energy produced by the biomass-based boiler is calculated
by (27)-(29), while it is restricted within acceptable limits by
constraint (30) [8].

Cbm
m, t

(
T bmm, t

)
= T bmm, t .α

bm
m (26)

T bmm, t =
ϑbm. ςbm.VOLbm

T bmHR

×

(
1−

κbm(
T bmHR . π

bm
)
− 1 + κbm

)
(27)

κbm = αbm1 eα
bm
2 . IVS

+ αbm3 (28)

T bmm, t = ϖ
bm
m, t .CV

bm.ηbmm (29)

T bmm,min.I
bm
m, t ≤ T

bm
m, t ≤ T

bm
m,max.I

bm
m, t (30)

where αbmm ,ϖ bm
m , CV bm, and ηbmm denote the cost coefficient,

mass of injected biomass feedstock, calorific value of
biomass feedstock, and efficiency of the mth biomass-based

boiler, respectively; κbm is the stability and process rate
kinetic parameter; πbm is the thermophilic and mesophilic
digestion’s micro-organism growth rate; ϑbm, ςbm, T bmHR
and VOLbm represent biogas biochemical potential, influent
volatile solid concentration, hydraulic retention time and
digester’s volume, respectively. The nonlinear relationship
between biogas production and temperature is illustrated in
Fig. 3.

E. FUEL CELL UNIT
Fuel cells (FCs) contribute to the energy hub demand
by generating electricity, recovering heat, and producing
hydrogen. As part of the energy hub consumers’ energy
requirements, proton exchange membrane FCs are consid-
ered to supply some of their demand (since the by-product
heat can be captured and used by these FCs, they can also
be considered CHP systems). Hydrogen can be produced
from the difference between the maximum capacity and the
electrical output when the thermal load is low. The energy
hub produces electricity by converting hydrogen from FCs
into electricity and storing it in hydrogen reservoirs. Note
that, the hydrogen reservoirs are used as a backup fuel for
the hydrogen engine. The main fuel is hydrogen produced by
reforming natural gas.

In the l th FC unit, the amount of recovered thermal power,
T fcl,t , can be determined as follows:

T fcl,t = TERfcl,t .
(
E fc,el,t + E

fc,h
l,t

)
(31)

E fc,Tl,t = E fc,el,t + E
fc,h
l,t (32)

E fcl,min.I
fc
l,t ≤ E

fc,e
l,t + E

fc,h
l,t ≤ E

fc
l,max.I

fc
l,t (33)

where E fc,h, E fc,e, and TERfc are equivalent electric power
for hydrogen production, electrical output power, and the
thermal to electrical power ratio, respectively. The amount
of stored hydrogen and charged/discharged hydrogen can be
formulated as follows:

T2T fcl,t = T2T fcl,t−1 +
(
ηT2Tl,ch .T2

in
l,t

)
−

(
T2outl,t

/
ηT2Tl,dch

)
(34)

T2inl,t = E fc,hl,t .ψ
E2T (35)

T2outl,t = E
fc,h
l,t .ψ

E2T (36)

T2T fcl,min ≤ T2T
fc
l,t ≤ T2T

fc
l,max (37)

T2inl,min.I
T2T ,ch
l,t ≤ T2inl,t ≤ T2

in
l,max.I

T2T ,ch
l,t (38)

T2outl,min.I
T2T ,dch
l,t ≤ T2outl,t ≤ T2

out
l,max.I

T2T ,dch
l,t (39)

IT2T ,chl,t + IT2T ,dchl,t ≤ 1 (40)

where ψE2T , T2in/out , and T2T indicate the hydrogen (kg)
to electric power (kW) ratio, equivalent charged/discharged
hydrogen, and stored hydrogen. Most existing studies on FC
consider its efficiency to be constant, whereas it can vary
according to the amount of electricity produced. Based on
Fig. 4, the thermal to electrical power ratio and the efficiency
are functions of the part load ratio variable [53].
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FIGURE 3. Nonlinear relationship between biogas production and temperature.

Equation (41) gives the total operating cost of the FC unit.

C fc
l, t

(
E fc,el,t , e

fc,h
l,t

)
=

(
E fc,Tl,t π

ng
t

η
fc
l,t

)
+

(
C fc,p
l .E fc,hl,t

)
+

(
C fc,OM
l .E fc,Tl,t

)
(41)

F. POWER BALANCE
During each time interval t , the amount of electrical and
thermal power produced and consumed should be equal,
as stated in (42) and (43).

∑
i∈NC

Eci,t +
∑

j∈NCHP

Echpj,t +
∑
l∈NFC

(
E fc.el,t + Ē

fc,h
l,t

)
+ Ebest + E

pv
t + E

grid
t = E lt (42)∑

k∈NB

T bk,t +
∑

j∈NCHP

T chpj,t +
∑
l∈NFC

T fcl,t

+

∑
m∈NBM

T bmm,t + T
bt
t = T lt + T

sv
t (43)

where Egrid , Ebes, and E l indicate the amount of power
exchange with the upstream network, the amount of power
charged/discharged, and the electrical demand, respectively.
T l , T bt , and T sv represent the thermal demand, thermal
power charged/discharged, and the slack variable [54],
respectively. Detailed information on electrical and thermal
storage systems is available in [3].

G. OBJECTIVE FUNCTION
In the dynamic scheduling problem for biomass-based energy
hub, the objective is to minimize the system operating cost,

as stated in (44).

OC =
∑
t∈NT


∑
i∈NC

Cc
i,t +

∑
k∈NB

Cb
k,t +

∑
m∈NBM

Cbm
m,t

+
∑

j∈NCHP
Cchp
j,t +

∑
l∈NFC

C fc
l,t + C

grid
t

 (44)

IV. DEEP DETERMINISTIC POLICY GRADIENT
ALGORITHM
This section discusses the main structure of the proposed
optimal control strategy using the actor-critic DRL algorithm.
Since DDPG provides continuous action spaces and does not
require discretization, which is computationally expensive,
it allows for more effective exploration of the action space.
Therefore, obtaining an optimum control decision requires
fewer iterations than other techniques regardless of the
type of problem encountered. And more importantly, the
multi-carrier energy system’s infrastructure is controlled
more smoothly than when they are regulated at a discrete
level.

DDPG assesses the cost-benefit of selecting a control
signal over a given period, at ∈ At , whilemaking decisions in
each state of the system using Q-value, Q (st , at). According
to the Bellman equation, the Q-value of any action, at , at state
st can be calculated based on the optimal action’s Q-value at
state st+1 as follows.

Q (st , at) = R (st , at)+ γE
[

max
at+1∈At+1

Q (st+1, at+1)
]
(45)

where γ ∈ [0, 1] and R represent the discount factor and
reward function, respectively.

The energy hub operator, however, does not have any
information about either the most effective action at state
st+1 or what its value would be over time. The DDPG
method addresses this challenge by implementing two
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FIGURE 4. An illustration of the FC unit’s dynamic performance curve.

separate DNNs. The most beneficial action at state st+1 is
estimated by the actor network, µ (st |θµ ), while the critic
network, Q

(
st , at

∣∣θQ ), has the responsibility of estimating
the Q-value of action at at state st . The actor and critic
network weight vectors, θµ and θQ, are continuously updated
based on the observed rewards at each time step during the
training process. Using the trained networks, the Q-value can
be derived as follows:

Q (st , at) ≈ R (st , at)+ γE
[
Q
(
st+1, µ

(
st+1

∣∣θµ ) ∣∣∣θQ )]
(46)

Actor networks respond to sampled states of a system by
taking action. Then, the two networks can be simultaneously
trained according to the received reward. The st and
max
a
Q
(
st , at

∣∣θQ ) serve as the input and the output for
the actor network, while the critic network takes (st , at),
where at = µ (st |θµ ), and Rt as the input and the output,
respectively. A replay buffer consisting of samples from
different time steps, (st , at ,Rt , st+1), is employed to reduce
correlation-induced errors during updating the networks.
Copies of the original actor and critic networks, the target
networks, are taken and gradually updated to make the
training process more stable. Moreover, the actor network is
enhanced with a correlated stochastic noise signal to improve
exploration during the training process. The most commonly
used random noises are Ornstein-Uhlenbeck and Gaussian
noises. An Ornstein-Uhlenbeck noise can be used to simulate
time-related noise data. The Ornstein-Uhlenbeck process is
useful for solving physical control problems that are inertia-
driven. Through this perturbation, the DDPG agent is more
able to explore and achieve faster convergence as a result. The
signal � is modeled by employing the Ornstein-Uhlenbeck
procedure, as stated in (47).

�t
= �t−1

+

(
�mean

−�t−1
)
κTs +�σn

√
Ts

(47)

where �σ and �mean denote the variance of the noise model
and the mean value, respectively. κ and n ∈ [0, 1] represent
the mean attraction constant and a uniformly generated
random number, respectively. The critic network is trained
using L

(
θQ
)
as the loss function.

L
(
θQ
)
=

1
N

∑
i∈N

[
Q
(
si, µ

(
si
∣∣θµ ) ∣∣∣θQ )− Yi]2 (48)

where N is the size of the mini-batch, and Yi represents the
measured value function as follows.

Yi = R (st , at)+ Q
(
st+1, µ

(
st+1

∣∣∣θµ′ ) ∣∣∣θQ′ ) (49)

Meanwhile, the actor network needs to be trained by (50).

∇θµL
(
θµ
)
=

1
N

∑
i∈N

∇aQ
(
si, µ

(
si
∣∣θµ ) ∣∣∣θQ )∇θµµ (si ∣∣θµ )

(50)

The final step in the process involves gradually updating the
target networks with the smoothing factor τ , as stated in (51)
and (52).

θµ
′

= (1− τ) θµ
′

+ τθµ (51)

θQ
′

= (1− τ) θQ
′

+ τθQ (52)

In the dynamic dispatch problem of the multi-carrier
energy system, the state and action vectors can be defined
by (53) and (54), respectively.

st =
{
Epvt , Ê

pv
t , π

e
t , π

ng
t , SoC

bes
t , SoCbt

t ,E
l
t ,T

l
t

}
(53)

at =
{
Eci,t ,E

chp
j,t ,T

b
k,t ,T

bm
m,t ,E

fc,e
l,t ,E

fc,h
l,t ,E

bes
t ,T btt

}
(54)

ℑ (st , at , ωt) governs the transition from state st to state
st+1. It’s not just the decision-making signal at that
determines transitions, but also environmental uncertainty,
ωt , that influences them. There are several exogenous factors,
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including energy consumption habits and solar irradiance,
that influence the alignment of probabilistic models within
this context. By learning the transition implicitly from
collected data samples, a DRL approach can overcome this
challenge without the need for statistical models.

A DDPG reward is calculated by the agent by adjusting the
parameters as follows:

R (st , at) = −(OCt + CPenalty
t ) (55)

Training with DNN makes DRL-based techniques non-
constrained, ignoring the physical limitations of dynamic
scheduling. Therefore, the physical constraints cannot be
addressed systemically through this process. Nonetheless,
energy systems scheduling need to address security and
reliability concerns. For a variable ℵ ∈

[
ℵ
min,ℵmax

]
a

penalty term is added to the reward function to address the
constraint violation problem,, as stated in (56) and (57).

CPenalty
=

∑
ℵi∈Nℵi

ℑi.Penaltyℵi (56)

Penaltyℵ = ln

(∣∣ℵ − ℵmin
∣∣+ |ℵ − ℵmax|

2.
(
ℵmax − ℵmin

) )
(57)

V. NUMERICAL STUDY
A. DATA AND CONFIGURATION
The biomass-based energy hub shown in Fig. 5 is used as
a case study to evaluate the effectiveness of the proposed
SFNAS-DDPG dynamic scheduling approach. The proposed
SFNAS-DDPG strategy involves scheduling and operating
a multi-source multi-product facility that participates in the
energy market as a coupled multi-carrier energy supply. The
energy loads and prices are adapted from [55] and [56],
respectively. Based on a test case presented in [57], the
economic data and operational constraints for the generation
plants are derived and scaled. The maximum capacities
of heat-only, PV, and power-only units are 2.695 MWth,
0.75 MW, and 1.25 MW, respectively. Moreover, the data
of the 0.6 MWth biomass-based boiler and the 1 MW
FC units are taken from [12] and [53], respectively. Other
data corresponding to the available units are listed in
Tables 1 and 2. Both the sky images and numerical time
series data are obtained from the Solar Radiation Research
Laboratory (SRRL) dataset of the National Renewable
Energy Laboratory (NREL), located in Colorado [58]. Based
on the FL settings, the SFNAS approach is used directly to
search for the optimal architecture of the forecasting network
using supervisory training loss reshaping. As a representation
network, the output of the CNN-GRU model is concatenated
with the states of the energy hub before being fed into an actor
network. For the critic and actor networks, learning rates of
0.001 and 0.0001 are selected, respectively. The mini-batch
of random experience and the discount factor have been
selected as 0.95 and 64, respectively. The parameters of the
noise model are taken from [26]. Algorithm 1 demonstrates
the training process of making control decisions using the

TABLE 1. The characteristics of FC unit.

TABLE 2. The characteristics of energy storage units.

proposed SFNAS-DDPG methodology. The training process
of the proposed technique is performed by Keras library and
TensorFlow as the backend on a workstation with an NVIDIA
GeForce GTX 1070 GPU and 32 GB of RAM.

B. COMPARATIVE RESULTS AND ANALYSIS
In this subsection, the SFNAS algorithm is employed to
identify the most accurate architectures for the solar irradi-
ance forecasting task. The CNN and LSTM/BLSTM/GRU
networks’ hyperparameters significantly affect the model’s
performance in a complicated manner. However, trying to
model the complex interactions between the hyperparameters
or manually examining a large number of possible archi-
tectures is challenging and time-consuming. To overcome
these limitations, the SFNAS algorithm is proposed and
implemented to efficiently select the networks’ architectures.
Algorithm 2 shows the procedure of the proposed SFNAS
methodology. The goal is to find optimized models that
are capable of better solar irradiance forecasting given the
baseline structure of themodel discussed in the Section II. For
this purpose, we seek to optimize the following parameters of
the representation network, shown in Fig. 5:
• Number of convolutional layers in the CNN
network (NC )

• Number of hidden units in the first LSTM/BLSTM/GRU
layer (NB1)

• Number of hidden units in the second LSTM/BLSTM/
GRU layer (NB2)

• Number of hidden units in the third LSTM/BLSTM/
GRU layer (NB3)

Based on our previous work [5], we find that NB1 and
NB2 with fewer than 100 hidden units are likely to exhibit
underfitting, while overfitting occurs when the number is
greater than 400. To reduce the number of genotype repre-
sentations from the range 100 to 400, we divide the range
by 25 before exploring the two LSTM/BLSTM/GRU layers.
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FIGURE 5. The schematic of the proposed SFNAS-DDPG framework for the dynamic scheduling of biomass-based energy hub.

FIGURE 6. The evolution of weight (λi ) for the gradient term in the momentum update.

In order to translate genotype to phenotype, a multiplier,
25, is assigned to the genotype. According to our previous
knowledge, bounds are also set for the other parameters. Our
experiments were conducted using the parameters listed in
Table 3 as the lower and upper bounds.

From the viewpoint of the EA-based NAS, a genotype
then takes the form of a sequence of integers based on the
values indicated in Table 3 and phenotypes are the resulting
structures. In the proposed stacking model, hierarchical
features can be derived from the feature representation of
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FIGURE 7. The evolution of training and validation losses of the proposed CNN-LSTM/BLSTM/GRU models (a) baseline NAS-based LSTM,
(b) SFNAS-based LSTM, (c) baseline NAS-based BLSTM, (d) SFNAS-based BLSTM, (e) baseline NAS-based GRU, and (f) SFNAS-based GRU.

the previous layer and the next layer serves as a layer of
abstraction. This hierarchical feature abstraction cannot be
achieved when the next layer (i.e., NB2) is greater than the
previous layer (i.e., NB1) and results in overfitting. As a
result, to ensure that the NB2 is equal to or smaller than
NB1 when converting genotypes to phenotypes, a correction
mechanism is applied on NB2 (similar correction mechanism
is also considered for (NB3)) as follows:

NBi =

{
NBi NBi ≤ NBi−1

NBi−1 NBi ≥ NBi−1
(58)

The population is initialized by randomly selecting N p
−

1 individuals. The so-called super-fit mechanism is employed
to initialize the remaining population based on the parameters
of the structure proposed in [5] to begin the evolutionary
process with a sufficiently effective individual. An indi-
vidual’s fitness is determined by evaluating the created
phenotype for the given genotype based on the root means
square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE) [5] Both crossover and
mutation are used to achieve a reasonable balance between
exploration and exploitation. A probability of Pc = Pm =
0.5 is applied to each operator independently. Based on

7684 VOLUME 12, 2024



A. Dolatabadi et al.: SFNAS-DDPG: A Biomass-Based Energy Hub Dynamic Scheduling Approach

Algorithm 1 Offline Training Process of the DDPG
Agent
Initialize: Initialize the weights of the actor and critic
networks randomly:
µ (s |θµ ): θµ = θµ0

Q
(
s, a

∣∣θQ ): θQ = θQ0

Initialize � as a random process allowing exploration
of actions and set up the experience replay bufferM .
for i ∈ N episodes do

Observe st as the state space.
Concatenate the output of the CNN-GRU network
with the state space st .
for t ∈ N time intervals do

Choose the dynamic scheduling action
at = µ (st |θµ )+�t .
Solve (44) by taking energy hub control
decision at and receive Rt as the immediate
reward.
Transfer to st+1 as the new state.
Store the transition (st , at , Rt , st+1) into M .
k ←− k + 1;
if batch_size ≤ |M | then

Randomly select F
=
{
(sj, aj, Rj, sj+1)

}̸=F
j=1 as a mini-batch

from M .
Minimize the loss function (48) to update
the critic network.:
θQ←− ηQ∇θQL

(
θQ
)
+ θQ

Use (50) and sampled policy gradient to
update the actor network:
θµ←− ηµ∇θµL (θµ)+ θµ
Use (51) and (52) to Update the target
networks:
θQ← θQ

′

θµ← θµ
′

end if
end for

end for

the one-point crossover methodology, individuals are firstly
ranked according to their fitness, and then the 2nth and
(2n+ 1)th ones are selected for crossover (n ∈

[
0, N

p

2 − 1
]
).

The population is then uniformly mutated, consisting of
individuals generated by crossover and offspring who were
not subjected to crossover. Mutation can occur between each
architecture parameter (gene) and a value uniformly chosen
from its range according to a probability Pgm. As a result of
this approach, we can conduct searches relatively faster while
minimizing disruptive mutations in individuals. The fitness
of the parents for each offspring is checked when creating
the population of the next generation. Then, to monotonically
decrease the population’s mean fitness, offspring with better
fitness than one of the parents replaces the worst parent.

Algorithm 2 SFNAS Algorithm

for epoch ∈ {number of epochs} do
for agent ∈ {number of agents} do

Forming the best architecture Z∗i via agent’s
NAS
Compute training loss architecture Z∗i :
Ji(θi, ωi) := ∥y− ŷn∥2 + L2(θi)

end for
Compute relative contribution of agent:
ri := Ji(θi, ωi)/

∑
i
Ji(θi, ωi)

Train the classifier using the relative contribution,
ri, to estimate the weights λi

end for
Select the based agent based on:
min
A

[ω1RMSE + ω2T + ω3N ]

TABLE 3. Hyperparameter bounds for SFNAS algorithm.

Table 4 shows the training time and test RMSE for
the best architecture found by each method. According to
the results, the proposed SF-NAS technique outperforms the
baseline NAS approach in all architectures. Fig 6 illustrates
the evolution of the weights (λ) for the gradient term in
the momentum update of the solar irradiance forecasting
task. As can be seen from the evolution-based figures, the
supervisor of the SFNAS provided the agents with guidance
that ultimately led to a better optimization process.

Moreover, the evolution of training and validation losses
of the proposed CNN-LSTM/BLSTM/GRU networks is
depicted in Fig. 7 for both baseline and SFNAS strategies.
It can be seen from this figure that networks built with SFNAS
exhibit smaller spikes and smoother convergence than those
based on baseline NAS.

Table 5 illustrates the average daily operational cost
of the biomass-based energy hub using DDPG + state-of-
the-art forecasting [6], DDPG + baseline NAS [59], and
the proposed SFNAS-DDPG models. As can be seen from
this table, the proposed framework, SFNAS-DDPG, has the
lowest average daily operating cost when compared with
other models. The SFNAS-DDPGmethod has $5,020 per day
average operating costs, which shows a 7.31% improvement
over the baseline model (DDPG + State-of-the-art). This
improvement is due to the fact that the operator has access
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TABLE 4. Forecasting task results for the best architectures found by SFNAS and baseline NAS.

TABLE 5. The average daily operating cost for the proposed multi-carrier energy system.

to more accurate information about the uncertain parameter
(PV generation in future hours), enabling the agent to take
more efficient actions.

VI. CONCLUSION
This study presents SFNAS-DDPG as an improved
actor-critic DRL framework for the optimal scheduling
and operation of a multi-source multi-product facility,
taking into account nonlinear characteristics of the facility
components such as biogas production thermodynamics,
dynamic efficiency of FCs, valve admission behavior
of power generation systems, and CHPs’ non-convex
operation regions. To help the DDPG agent choose the
most efficient control policy, especially when PV power
is highly intermittent on cloudy days, a hybrid CNN-GRU
forecasting model that captures high levels of abstraction
from sky images and numerical measurements is developed
and employed. The novel SFNAS technique is proposed
to learn the architecture and model parameters of the
representation network. By utilizing supervisor-led training
loss reshaping, the proposed SFNAS approach can be used
directly to determine the optimal architecture based on
the federated settings. As a result of our case studies, the
proposed strategy, by selecting different network structures,
is more accurate than the respective baseline forecasting
methods. Consequently, The SFNAS-DDPG method has
$4,590 per day average operating costs, which shows a
4.79% improvement over the baseline model (DRL+State-
of-the-art). While this study was geared toward exploring the
effects of the proposed SFNAS methodology on improving
actor-critic DRL framework’s control strategies, future work
could study the effectiveness of replacing the proposed
EA-based NAS with heterogeneous NAS methods.
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