
Received 20 December 2023, accepted 4 January 2024, date of publication 10 January 2024, date of current version 15 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3352022

Causal Localization Network for Radar Human
Localization With Micro-Doppler Signature
SUNJAE YOON , (Member, IEEE), GWANHYEONG KOO , JUN YEOP SHIM, SOOHWAN EOM,
JI WOO HONG , (Member, IEEE), AND CHANG D. YOO , (Senior Member, IEEE)
School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

Corresponding author: Chang D. Yoo (cd_yoo@kaist.ac.kr)

This work was supported in part by the Center for Applied Research in Artificial Intelligence (CARAI) funded by Defense Acquisition
Program Administration (DAPA) and Agency for Defense Development (ADD) under Grant UD230017TD; in part by the Institute for
Information & Communications Technology Promotion (IITP) funded by the Korean Government [Ministry of Science and ICT (MSIT)]
through the Development of Causal Artificial Intelligence (AI) through Video Understanding and Reinforcement Learning, and Its
Applications to Real Environments under Grant 2021-0-01381; and in part by the Brain Korea 21 FOUR (BK21 FOUR) (Connected AI
Education & Research Program for Industry and Society Innovation), Korea Advanced Institute of Science and Technology Electrical
Engineering (KAIST EE), under Grant 4120200113769.

ABSTRACT The Micro-Doppler (MD) signature includes unique characteristics from different-sized
body parts such as arms, legs, and torso. Existing radar identification systems have attempted to classify
human identification using these characteristics in MD signatures, achieving remarkable classification
performance. However, we argue that radar identification systems should also be extended to perform
more fine-grained tasks for greater identification flexibility. In this paper, we introduce the radar human
localization (RHL) task, which involves temporally localizing human identifications within untrimmed
MD signatures. To facilitate RHL, we have constructed a micro-Doppler dataset named IDRad-TBA.
Additionally, we propose the Causal Localization Network (CLNet) as the baseline system for RHL, built on
the IDRad-TBA dataset. CLNet utilizes a novel temporal causal prediction approach for MD signature local-
ization. Experimental results demonstrate CLNet’s effectiveness in executing the RHL task. Our project is
available at: https://github.com/dbstjswo505/CLNet.

INDEX TERMS Deep learning, temporal human identification, micro-Doppler radar, information retrieval.

I. INTRODUCTION
Radar human identification (RHI) [4], [5] underpins many
personal identification systems regarding security, surveil-
lance, and other personalized services. While visual informa-
tion has been a popular choice for human identification due to
the distinctive features of human external appearance, it faces
challenges in operating effectively under low light conditions
and raises privacy concerns. In contrast, radar devices offer a
viable alternative by circumventing these difficulties. Radars
emit electromagnetic waves toward the target and measure
a target’s physical properties (e.g., distance, speed, angle)
based on the waves reflected back from the target. Radars
can operate under low light conditions over long distances
and their ability to bend around obstacles makes them
suitable for identification in obscured environments [1],
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[2], [3]. Moreover, radar offers a significant advantage
regarding privacy concerns since the information obtained
through radar is inherently difficult for individuals to interpret
directly. Therefore, radar emerges as a robust sensor for
human identification compared to image or video sensors.

To identify humans in radar, recent RHI systems [4],
[5] have incorporated temporally recorded radar signatures,
where they utilize gait as a biometric of a human in
temporally recorded Doppler radar signatures. The gait can
be observed from a distance and holds unique patterns
of behavior made by humans’ different-sized body parts.
Figure 1 (a) shows micro-Doppler (MD) radar signatures [4]
that contain gait patterns made by human walking. TheseMD
signatures record variations of frequencies in moving objects,
such that they effectively represent distinctive characteristics
manifested by different-sized body parts during the gait,
including rapid movements of the arms and legs, as well
as slower movements of the torso. Leveraging these distinct
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characteristics, numerous radar identification systems [4], [5]
have been proposed, resulting in outstanding identification
performance, as shown in Figure 1(b). Based on the
advanced identification capabilities of RHI systems, this
paper first proposes a new challenge of extending human
identifications to more fine-grained identification as radar
human localization (RHL) in MD signatures.

Our proposed radar human localization aims to localize
temporal regions of a targeted individual within untrimmed
micro-Doppler radar signatures, assuming that only one
object (i.e., target) exists at each time. To this end, we build
a radar dataset referred to as IDRad-TBA (IDRad-Temporal
Boundary Annotation), which provides temporal boundary
annotations of human identities on sequential MD signatures
based on the IDRad [4] dataset. The IDRad dataset captures
MD signatures of a person walking in 2-dimensional data
according to the 256 Doppler channels and about 45 frames.
Thus, a single frame contains 256 data from the Doppler
channel. Since the IDRad dataset is primarily designed for the
RHI task, all individualMD signatures comewith annotations
representing single human identities. To perform RHL,
as depicted in Figure 1(c), we synthesize new MD signatures
by combining multiple different-sized MD signatures of
the IDRad dataset. On our synthesized MD signatures,
we annotate all their identities and their temporal boundaries
in the MD signatures. Therefore, as shown in Figure 2,
our designed RHL task takes MD signatures and the target
identity of humans as input and produces outputs of temporal
boundaries (i.e., start-time and end-time) pertinent to the
target identity within the MD signatures.

To this end, we build a baseline system to perform
the RHL task, referred to as Causal Localization Network
(CLNet). CLNet is composed of three modules: (1) Patch-
wise Doppler Encoding (PDE) which encodes Doppler
signals into d-dimensional features by considering human
gait patterns contained in Doppler patches, (2) Targeted-
guided Doppler Encoding (TDE) which encodes the Doppler
feature by focusing on the information related to the
input target using self-attention in Transformer [21], and
(3) Causal Localization Head (CLH) which predicts temporal
boundaries in MD signatures pertinent to the input target
under our designed causal prediction approach. As CLNet is
the first work designed for the proposed RHL task, we have
also made modifications to previous models used in the RHI
task to incorporate localization capabilities. Experimental
studies have been conducted to validate the efficiency and
effectiveness of CLNet, demonstrating the potential for
human localization within the MD signatures.

The contributions of this paper can be summarized as three-
fold: (1) We propose a radar human localization (RHL) task
to localize the temporal region of a targeted human in micro-
Doppler signatures, which has never been attempted before,
(2)We present synthesizedmicro-Doppler signatures referred
to as IDRad-TBA as an experimental contribution to perform
RHL task, and (3) We build baseline model referred to as
Causal Localization Network (CLNet) to perform RHL task.

II. RELATED WORKS
A. MICRO-DOPPLER SIGNATURES
Micro-Doppler (MD) signature refers to the small variations
in Doppler frequency caused by the motion of individual
parts or features within a larger object (i.e., the term ‘‘micro’’
indicates that we are looking at very small-scale movements
or features within an object.). To obtain MD signatures,
we first build a range-Doppler map that analyzes the Doppler
frequency within a specific distance using a two-dimensional
Fourier transform. The absolute values of the signals in
the range-Doppler map are then integrated along the range
dimension, which makes the frequency variations to the
direction of the radar. The recording of these variations
over time builds MD signatures. Therefore MD signature
measures the change in frequency of single-tone radio waves
reflected off a moving object to determine its velocity.
In addition to velocity, the MD signature also considers the
Doppler effect, which refers to the modulation of the radar
signal caused by the motion of object components or features.
In detail, by theDoppler effect, the observed frequency f from
a moving object is shifted away from the emitted frequency
f0 such that the Doppler frequency 1f = f − f0 is defined by
subtracting f from f0 as given below:

f = f0 ×
c± vr
c± vs

, (1)

where c is the velocity of waves in the medium and vr
is the velocity of the receiver relative to the medium,
where it is positive if the receiver is moving towards the
source and negative if in the opposite direction. vs is the
velocity of the source relative to the medium, where it is
positive if the source is moving away from the receiver
and negative if in the opposite direction. By analyzing the
Doppler shift [6] in a more fine-grained scale (e.g., micro-
scale) over multi-components in an object, it is able to
detect and recognize its motions [7], [8]. In this work,
following the work in [4], our system is operated on
77GHz Frequency-Modulated Continuous-Wave (FMCW),
which is a radar that employs a continuous transmission
of a radio wave with a linearly increasing or decreasing
frequency over time. The FMCW is commonly used in
radar systems for various applications, including distance
measurement, velocity estimation, and target tracking. The
recent computational power of deep learning bridges these
MD signals to many various studies, and we elaborate on this
in the following section.

B. DEEP LEARNING FOR MICRO-DOPPLER SIGNATURES
As the demand for radar-based systems continues to grow,
the exploration of deep learning techniques has led to the
emergence of several applications [10], [11], [12], [13]
leveraging micro-Doppler signatures. One notable appli-
cation of deep learning with micro-Doppler signatures is
in motion recognition and classification. By training deep
neural networks on large datasets of micro-Doppler signa-
tures [4], [9] containing different motions on various objects
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FIGURE 1. Illustrations of micro-Doppler signatures: (a) micro-Doppler signatures of human walking. When a person walks, the arms and legs generate
rapid movements (white circle) and the torso generates slow movements (yellow curve) in the signatures. (b) Previous performances of Radar Human
Identification (RHI) task. (Model A: classifier with CNN on MD signatures of input 45 frames x 205 channels, Model B: classifier with CNN on MD
signatures of 150 × 205 size, Model C: classifier with LSTM on MD signatures of 150 × 205 size, and Model D: classifier with attention on MD signatures
of 150 × 205 size.) (c) Sample of synthesized micro-Doppler signatures for Radar Human Localization (RHL).

FIGURE 2. Illustration of Radar Human Localization (RHL) system. The
RHL system takes inputs of micro-Doppler signatures and target
information, where it predicts temporal boundaries in the signatures
related to the input target.

(e.g., vehicles, aircraft, or human movements), the networks
are able to distinguish various objects or activities based
solely on their micro-Doppler signatures. To be specific,
Kim et al. [15] first employed a neural network on MD
signatures for motion recognition of humans, demonstrating
the potential of deep learning in radar signal analysis.
Following the work, researchers have introduced various
deep learning techniques on the MD signatures, including
transfer learning [16] and learning-based algorithms [17].
Lin et al. [17] devise an iterative convolutional neural network
(CNN) under random forests algorithm to operate on MD
signatures which repetitively enhance the representations of
MD signatures. Park et al. [16] introduce a deep CNN model
pre-trained on ImageNet [14], which is a large-scale visual
image classification dataset, to contribute the knowledge
transfer about pattern recognition from image to the MD
signatures. Furthermore, the deep learning approach is
also applied for monitoring fine-grained human body parts
[4], [18], [20]. By analyzing the micro-Doppler patterns
induced by human body movements, deep learning models
can understand vital sign information such as heart rate,
respiration rate, and gait pattern. The non-contact monitoring
approach has the potential to revolutionize healthcare and
security applications. Recently, to mitigate the expensive
and time-consuming process of obtaining MD signatures,
augmentation [28] has been applied to raw MD signatures,

where a learning-based approach [29] is also designed
using the generative adversarial network [30]. Especially,
MD signatures on human gait characteristics [4] are used
for radar human identification (RHI), where the system
processes the information of movements from fine-grained
human body parts in an uncontrolled scenario where a
target is allowed to walk around in a free and spontaneous
way. Cao et al. [18] first applied deep CNNs on MD
signatures induced by limb movements and torso motion for
HI. Vandersmissen et al. [4] also used the deep CNN and
released a public dataset IDRad for RHI, which contributed
to subsequent research. Yoon et al. [5] applied an attention
method among fast and slow movements of human body
parts to enhance representations of the distinguished walking
patterns. Currently, there have been many advancements
in RHI. On top of these works, to enhance the sensibility
of sequential radar sequences, this paper first proposes a
new challenge of extending human identifications to more
fine-grained identification as radar human localization (RHL)
in MD signatures.

III. DATASET
Our IDRad-TBA is built on micro-Doppler signatures of
IDRad dataset [4], which recorded human (i.e., 5 people)
free-walking in a room for 100 minutes (i.e., 20 min-
utes per person). We synthesized the MD signatures for
the radar human localization task. Therefore, a total of
5000 synthesized MD signatures are constructed, where we
provide (12078/1463/1479) annotations (i.e., start-end time)
for (train/val/test) on top of the synthesized MD signatures.
The detailed process of synthesizing MD signatures is
presented in the following.

A. DATA SYNTHESIZING
Figure 3 provides a schematic process of synthesizing
MD signatures from the MD signature corpus (i.e., IDRad
dataset). The MD signature corpus includes five types of MD
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FIGURE 3. Pipeline of synthesizing MD signatures for RHL: (a) Random Target Selection: It randomly selects the targets to incorporate their MD
signatures. (b) Random Region Cropping: It randomly crops the selected MD signatures to stitch together. (c) Stitching: It stitches all the cropped
MD signatures to make a synthesized MD signature. (d) Annotation: It annotates all the boundary information contained in the synthesized MD
signatures.

signatures from five different people (i.e., target), where each
MD signature is a continuous recording of 20 minutes. For
preparing the dataset to perform the RHL task, we summarize
the data synthesizing process into four steps: (a) Random
Target Selection, (b) RandomRegion Cropping, (c) Stitching,
and (d) Annotation. The output example of each step is also
illustrated below each step process in Figure 3.

1) RANDOM TARGET SELECTION
We assume that all MD signatures include a single human
walking signal.1 Under this assumption, the random target
selection (RTS) determines how many targets are included
in one sample. For a total of 5 categorical types in the MD
signature corpus, the RTS selects 1 ≤ n ≤ 5 targets
excluding redundant selection and provides MD signatures
corresponding to the selections. Formally we define the RTS
as below:

X = fRTS(n, C), (2)

where the fRTS is the random target selection, n is the ran-
domly decided number of targets to select, C is MD signature
corpus. X = {xi, · · · , xn} is the set of selected n different MD
signatures. For instance, RTS randomly selects 3 different
targets as {x1, x2, x3} = {target 3, target 2, target 5} and
provides the MD signatures about the targets.

2) RANDOM REGION CROPPING
For the selected MD signatures, we assign a region for each
MD signature to crop and stitch all the cropped signatures to
build synthesized MD signatures. Here, we first provide the
details of cropping. For each 256-channel MD signature xi
with the frame length of Ni (i.e., xi ∈ RNi×256) in the selected
set X = {xi, · · · , xn}, we randomly specify the region to crop,
which can be formulated as given below:

x̂i = xi[ci − wi : ci + wi], (3)

1We share the same assumption about MD signatures in the previous
work [4] designed for radar human identification task.

FIGURE 4. Illustration of the gradual region-based stitching process.

where ci = Random(wmax ,Ni − wmax) and wi =
Random(wmin,wmax) are random scalar indicating the center
point and cropping width respectively to specify cropping
region in xi as shown in Figure 3. Random(x, y) denotes the
random sampling of integer value between x and y along the
Gaussian sampling distribution. wmin = 40,wmax = 200 are
hyperparameters for the width and Ni is the length of the MD
signatures. This makes the cropped set of MD signatures as
X̂ = {x̂1, · · · , x̂n}, which will be integrated in the following
stitching process.

3) STITCHING
We stitch the cropped MD signatures among adjacent MD
signatures in the X̂ as shown in Figure 3 (c). If the
MD signatures are simply attached together by end-to-end
stitching, the seam exists in the merged image, which gives
an undesirable shortcut for the network to memorize the
seam. Therefore as shown in Figure 4, we apply gradual
region-based stitching between the two MD signatures ŷi and
x̂i+1 to make ŷi+1 = h(xi+1, yi), where the ŷi is the previously
stitched image up to i-th MD signature. The h(x, y) is our
proposed gradual region-based Doppler stitching that stitches
Doppler signatures x on top of the signatures y. In the process
of h(xi+1, yi), the stitching regions between xi+1 and yi are
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decided as di randomly between 5 and 10 frames. To be
specific, the initial condition is ŷ1 = x̂1 and the values in
the stitching region are updated by an interpolation between
ŷi[M

y
i − di :] and x̂i+1[: di] as given below:

I (ŷi[pi :], x̂i+1[: di])

=

di⋃
n=0

{δ × ŷi[pi + n]+ (1− δ)× x̂i+1[n]}, (4)

where pi = M y
i − di is the starting point of stitching along

the frame axis of ŷi. M
y
i is the length of the ŷi and di is the

length of stitching region. I (·, ·) is a frame-wise interpolation
between ŷi and x̂i+1 by scaling with δ = n/di. The final
stitching output ŷi+1 ∈ R(My

i +M
x
i+1−di)×256 is concatenated2

from input ŷi, x̂i+1 and the final stitched MD signatures
yi+1 = h(x̂i+1, ŷi) as formulary given below:

ŷi+1 = cat(ŷi[: pi], I (ŷi[pi :], x̂i+1[: di]), x̂i+1[di :]), (5)

where the cat(·, ·, ·) is the concatenation operation along the
frame axis. After a gradual stitching process by the h, a single
synthesized MD signature ŷn is obtained, where we annotate
the boundary information contained in each target.

4) ANNOTATION
To annotate the temporal boundary information in the
synthesized MD signature ŷn, we utilize the starting point
pi of the stitching boundary of each step i. To be specific,
if the n MD signatures are involved to synthesize ŷn, n
temporal boundaries are available to annotate with their
target information. Thus, for the synthesized signature ŷn,
we provide the n annotations as {[p0, p1+d1], · · · , [pi−1, pi+
di], · · · , [pn−1,M

y
n ]} satisfying p0 = 0, M y

n is the length
of the ŷn, and di is the inclusion of overlapping region by
stitching. We also add target information ti contained in
each boundary. Therefore, to perform RHL task, a single
annotation in the synthesized MD signature sample is
constructed as given:

{MD : ŷn,Target : ti,Boundary : [pi−1, pi + di]}, (6)

where the inputs are ŷn and ti, and the ground-truth is
[pi−1, pi + di] for RHL systems.

B. STATISTICAL ANALYSIS
To ensure our proposed IDRad-TBA not to be biased,
we investigate the statistics about the start-end times of each
annotation and their distributions of the lengths. The lengths
of each target are evenly distributed in the MD signatures,
resulting in similar average lengths and standard deviations
as shown in Figure 5 (a). Moreover, Figure 5 (b) shows the
2 dimensional histograms in terms of start times and end
times of all the temporal boundary annotations, where the
vertical axis denotes the start time of the temporal boundary
and the horizontal axis denotes the end time. The histogram

2Mx
i+1 is the length of the x̂i+1 and My

i is the length of the ŷi. 256 is the
channel for the MD signatures.

FIGURE 5. Statistical analysis on temporal boundary annotations for each
target: (a) Average length of temporal boundaries corresponding to each
target, (b) 2-dimensional histogram of start-end time.

shows that the annotations are evenly distributed across all
the temporal regions,3 which mitigates a bias that localizes
specific temporal regions in the MD signatures.

IV. CAUSAL LOCALIZATION NETWORK
To perform the radar human localization (RHL) task,
we present the simple baseline referred to as Causal Local-
ization Network (CLNet) as shown in Figure 6. CLNet takes
an MD signature and a target as input and predicts temporal
boundaries pertinent to the input target. The proposed CLNet
is composed of three modules: (1) Patch-wise Doppler
Encoding (PDE) which embeds the MD signatures into
d-dimensional Doppler features containing gait patterns by
the patch-wise convolutional neural network, (2) Target-
guided Doppler Encoding (TDE) which attends on the
Doppler feature conditioned on the input target information,
and (3) Causal Localization Head (CLH) which predicts
start-end time related to the input target under our designed
causal predicting approach. The details of CLNet are given in
the following.

A. PREPROCESSING AND INPUT REPRESENTATION
1) PREPROCESSING
Some channels in MD signature contain information unre-
lated to human behavior. Therefore, we first remove these
distinguished unnecessary channels in the preprocessing
step. Typically, the wave frequency reflected from static
objects corresponds to this unrelated information. To be
specific, the y-axis of MD signatures used in this work
represents the speeds ranging from −3.8 m/s to 3.8 m/s
and the static objects show the velocities in the proxim-
ity of [−0.03 m/s, 0.03 m/s]. Thus, as a preprocessing,
we remove their corresponding channels (i.e., regions
in 127-129 channels of the y-axis) as a biased channel
due to the static object in the space. Furthermore, the top
24 channels (i.e., 233-256 channels) and bottom 24 channels
(i.e., 1-24 channels) are also removed as they are high-speed
regions that humans can not make. After the aforementioned

3Since we specified the minimum and maximum lengths (i.e., minimum:
40 frames, maximum: 200 frames) of the temporal boundary, it shows that
annotations do not exist in areas other than the specified regions.
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FIGURE 6. Illustrations of causal localization network (CLNet). CLNet is composed of three modules (a) Patch-wise doppler encoding which embeds MD
signatures into d -dimensional features that consider human gait patterns contained in Doppler patches, (b) Target-guided Doppler Encoding which
encodes the commonalities about temporal patterns pertinent to the target via temporal self-attention, (c) Causal Localization Head which predicts the
temporal boundaries under our designed causal prediction approach.

preprocessing, our final MD signatures provide the signals
with 205 channels.

2) INPUT REPRESENTATIONS
To give formal definitions of input representations (i.e., MD
signatures and target), we denote the z ∈ RL×205 as MD
signatures, where L is the frame length ofMD signatures. The
target is converted into one-hot encoding as t ∈ Rc, where c
is the number of target classes.

B. PATCH-WISE DOPPLER ENCODING
The distinct movements of the arms and legs in human
gait provide unique characteristics that can identify each
individual. To this end, our designed Patch-wise Doppler
Encoding (PDE) aims to extract features about unique
characteristics of human gaits, such that PDE first prepares
a sliding window in the MD signatures that can cover
the human gait patterns, and extract the features using
convolution neural network on the window. In detail, the
width and height of the window4 are 45 and 205, which
slides along the time axis with a stride of 1. The mathematical
formulation is represented as given below:

zp =
L⋃
i=1

fw(z[i : i+ w]), (7)

where the zp ∈ RL×d is the patch-wise Doppler feature
and fw : Rw×205

→ Rd is multi-layer perception
(MLP) composed of several convolution neural networks and
max poolings, which maps patch-wise MD signatures into
d-dimensional features. Here, the w = 45 is the width of
the patch. In the following, the zp is used for the input of the
following Target-guided Doppler Encoding.

4See also ablation studies of this.

C. TARGET-GUIDED DOPPLER ENCODING
Target-guided Doppler Encoding (TDE) attends the features
related to the input target t in the patch-wise Doppler features
zp. To selectively attend information regarding the input
target in the MD signature, we first provide the one-hot
encoding of the target t ∈ Rc to the Doppler features zp by
concatenating them as zt = [zp||tp]W , where tp ∈ RL×c is
the expanded one-hot encoding of the target along the frame
axis to concatenate (i.e., [·||·]) all the features of zp and W ∈
R(d+c)×d is d-dimensional embedder. Finally, zt ∈ RL×d

is target-guided Doppler features. To highlight the common
patterns in the features zt ,5 we introduce the attention method
in Transformer [21], which is effective in similarity-based
sequential information processing. To prepare the inputs of
Transformer attention, we first update the zt by applying layer
normalization (LN) [22] and positional encoding (PE) [21],
and then apply self-attention as given below:

zt ← LN(zt + PE(zt )),

x = attention(zt , zt , zt ), (8)

where x ∈ RL×d is the final localization Doppler features
to localize the start-time and end-time pertinent to the input
target t. The x is used as input in the following Causal
Localization Head.

D. CAUSAL LOCALIZATION HEAD
To train a model for temporal localization (i.e., start-end
times) in MD signatures, we propose a causal localization
head (CLH), which performs three predictions: (1) frame-
level prediction, (2) start-time prediction, and (3) end-time
prediction. To perform the predictions, we design a causal
process in Figure 7 to sequentially predict the start-end time

5Since human walking is repeated in a certain pattern, we also aim to
obtain this patterned information from the Doppler features.
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FIGURE 7. Illustration of the causal prediction process in Causal
Localization Head. (x: Localization Doppler features, ŝ: Frame-level
prediction, p̂: Start-time prediction, q̂: End-time prediction).

FIGURE 8. Illustration of causal masking and sparsity masking on joint
probability for target localization in MD signatures.

of the input target. We elaborate on these predictions with
their training objectives in the following paragraphs.

1) FRAME-LEVEL PREDICTION
The frame-level prediction provides discrete score distri-
butions ŝ = (ŝ[1], · · · , ŝ[L]) over L frames from input
localization Doppler features x ∈ RL×d , where a single frame
output s[i] is the score between 0 and 1, denoting 1 is the
signal of the input target and 0 is not. The ŝ ∈ RL×1 is
obtained from x as given below:

ŝ = σ (xW1). (9)

where W1 ∈ Rd×1 is the score embedding and σ (·) is
the sigmoid function to scale the output between 0 and 1.
To optimize the score ŝ to be closed to 1 in the region of
ground-truth temporal boundary, we prepare the score label
s = [0, . . . , 1, 1, 1, . . . , 0] ∈ RL×1, where the s has a scalar
value 1 in the region between ground-truth start-time and
end-time and the other regions have 0 values. The frame-
level loss Lf is defined using L2 loss with the label as
Lf =

∑L
i=1 ||s− ŝ||

2
2.

2) START-END TIME PREDICTION
The start-time prediction provides discrete probability dis-
tributions p̂ = (p̂[1], · · · , p̂[L]) ∈ RL×1 over L frames
denoting the probabilities of start-time of the target in theMD
signatures. Based on the frame-level score distributions ŝ,
we estimate the start-time of the target. Thus, 1D convolution
filter Conv1Dst is applied on top of ŝ as given below:

p̂ = softmax(Conv1Dst(ŝ)), (10)

The softmax function is used to produce the probability
distributions along the frame axis. The end-time prediction
also provides discrete probability distributions as q̂ =

(q̂[1], · · · , q̂[L]) ∈ RL×1. The end-time is also predicted

based on the two frame-level predictions and start-time
predictions. However, the q̂ is based on the concatenated two
distributions about start-time p̂ and the frame-level ŝ as below:

q̂ = softmax(Conv1Ded([ŝ||p̂]W2)), (11)

where Conv1Ded is 1D convolution filter for end-time
probability and W2 ∈ R2×1 is learnable matrix to give
frame-level weighted summation between ŝ and p̂. The
training objectives of the p̂ and q̂ are locational loss as Lloc =
−logp̂[ist ] − logq̂[ied ] using the cross-entropy loss, where
ist and ied are ground-truth indices of frame axis in terms
of start-time and end-time. The total loss is the summation
of frame-level and locational losses as L = Lf + Lloc.
In the inference, the two probabilities p̂ and q̂ are utilized
by building joint probabilities, which are explained in the
following section.

E. INFERENCE
In an inference, following the work [19], CLNet considers the
start-time and end-time distributions (i.e., p̂, q̂) via building
localization joint probability distributions r̂ in Figure 6. The
r̂ is obtained by applying matrix multiplication between p̂ ∈
RL×1 and q̂ ∈ RL×1 as r̂ = p̂q̂T ∈ RL×L , where r̂i,j = p̂iq̂j
denotes the joint probability that the inference about temporal
boundary information would start at index i and end at index j
along the frame axis. Based on the distribution r̂ , as shown in
Figure 8, we apply the causal maskmc

∈ RL×L to ensure the
cases that the end-time precedes the start-time should have
zero probability. Thus the values of lower triangular regions
in mc are zero and the values of upper triangular regions
are one to keep the original probabilities. To provide the
sparsity among the candidate probabilities in r̂ , we also apply
the sparsity mask ms

∈ RL×L , where the probabilities to
have sparsity with distance S(e.g., S = 2). The mathematical
formulations aboutmc and ms are as given below:

mc
i,j =

{
1 i < j,
0 i ≥ j

,

ms
i,j =

{
1 if i mod S = 0 and j mod S = 0,
0 else

, (12)

where mod is the modulo operation. The index starts from
zero and the final probability R = r̂ ⊙ mc

⊙ ms is
defined by applying the two masks, where⊙ is element-wise
multiplication. The final start-end times for RHL task are
predicted on the highest probabilities of R.

V. EXPERIMENTS
We validate the baseline CLNet on our proposed IDRad-TBA
dataset. The details are explained in the following.

A. DATASET
IDRad-TBA dataset is based on the MD signatures of human
walking in IDRad dataset [4], where the temporal annotation
is provided to perform the radar human localization task.
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TABLE 1. Performance comparisons for radar human localization on IDRad-TBA (test). ⋆: reconstruction-based results with the public codes.

TABLE 2. Ablation study on model variants of CLNet on IDRad-TBA
(validation). (PDE: Patch-wise Doppler Encoding, TDE: Target-guided
Doppler Embedding, CLH: Causal Localization Head) ✓⋆: end-time
prediction is used as prior knowledge and start-time is predicted.

FIGURE 9. Illustration of calculating the intersection of union for
evaluating radar human localization task.

The MD signatures are synthesized to build untrimmed
MD signatures containing multiple humans walking in a
sequence, where all the temporal boundaries of each human
are annotated as ground-truth information. Therefore IDRad-
TBA provides 5K synthesized MD signatures about multiple
human walking, where it is split into 80% train, 10% val,
and 10% test. Each synthesized MD signatures are about
35 seconds and contain multiple annotations about start-end
times corresponding to all the human in the signatures.

B. EXPERIMENTAL DETAILS
1) EVALUATION METRIC
Following the popularmetrics [23], [24] of video localization,
we perform recall metrics about the intersection of union
between the predicted temporal boundary and the ground-
truth. Shortly, it is referred to as ‘‘R@n,IoU=µ’’, where
it denotes the percentage of targets having at least one
prediction whose Intersection over Union (IoU) with ground
truth is larger than µ in top-n localized temporal boundaries.
The IoU calculation follows IoU= (intersection of predicted
temporal region and ground truth temporal region)/(union of
temporal region and ground truth temporal region), which
is also illustrated in Figure 9. The number of IoU closer
to 1 denotes that the model prediction is highly aligned with

FIGURE 10. Experiments on hyperparameters about (a) patch window
size (w) in PDE and (b) stride (S) for sparsity mask in CLH.

ground-truth. In our experiment, we validate the CLNet on
the setting of n = {1, 5, 10, 50} and µ = {0.3, 0.5, 0.7},
which shows diverse performances of the system with several
conditions. Moreover, we also measure ‘‘mIoU’’ which is the
average IoU over all samples.

2) TRAINING DETAILS
The MD signatures are recorded based on 15 frames per
second. All the values in MD signatures are normalized by
themean and the standard deviation. The 256 channels ofMD
signatures are truncated by the preprocessing in Section IV,
resulting in 205 channels. The number of targets in IDRad-
TBA is 5, such that the dimension of one-hot encoding in
target features t ∈ Rc is as c = 5. The model is trained for
150 epochs with a batch size of 48. Learnable parameters are
optimized by Adam [25] with a learning rate of 0.001, while
applying linear decay of learning rate. The stride for sparsity
pooling is S = 3 along both vertical and horizontal axes.

C. EXPERIMENTAL STUDIES
1) QUANTITATIVE RESULTS
Table 1 summarizes the localization performances on the
IDRad-TBA test split. As our work is the first work
of radar human localization on the proposed IDRad-TBA
dataset, we validate the models with many various metrics.
Furthermore, there have been several previous works [4], [5]
that perform radar human identification task, such that we
also modify them to perform the localization task. To be
specific, deep CNN [4] and DSDA [5] are the classifier to
identify the target human based on the input ofMD signatures
about the gait of human walking. The input sizes of their
models are (45 × 205) and (150 × 205), where the numbers
45 and 150 are the temporal lengths of MD signatures and the
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FIGURE 11. (a) Efficiency analysis on the saturation of validation loss
corresponding to prediction approach, (b) Illustration of causal prediction
process, (c) Illustration of the independent prediction process.

number 205 is the input channel dimension in each model.
While keeping their input sizes, to perform the RHL task,
these models predict synthesized MD signatures by sliding
window approach. Under stride 1 of the sliding window
approach, each model is available to predict frame-level
target classification, where their predictions can be utilized
for localization. Based on the frame-level predictions,
we localize the temporal boundaries6 of the target along the
frame axis and measure their localization results with our
evaluation metrics. Our baseline CLNet shows the highest
performances among the candidate models for RHL task.
Especially the performances of IoU=0.3 are highly improved
in localizing the target. The performances of IoU=0.7 are
still challenging to perform proper localization, which tells
us that CLNet needs to be improved by fine-grained radar
understanding.

2) ABLATION STUDY
Table 2 summarizes the ablative studies of the proposed three
modules in CLNet: (1) Patch-wise Doppler Encoding (PDE),
(2) Target-guided Doppler Encoding (TDE), (3) Causal
LocalizationHead (CLH). It is confirmed that the localization
performances of CLNet are incremental as each module
is added. Sections III and IV of Table 2 are the ablative
experiments about CLH module. When the CLH is not used
in the model, CLNet simply predicts start-time and end-
time independently, where the procedure of predictions is
also illustrated in Figure 11 (c). Based on the comparisons
of the results, we identify that the CLH contributes to the
model with the most effectiveness. We consider that this
is because the causal process of radar localization provides
effective prior (i.e., start-time) by narrowing the search space
for finding end-time. It also shows similar effectiveness in
taking end-time prediction as prior and predicting start-time.
Furthermore, PDE is also effective for extracting information
in the human gaits, which results in enhanced performances
when applying the module.

Figure 10 summarizes the ablation studies on hyperpa-
rameters about CLNet: (1) window size of the patch-wise
Doppler encoding and (2) stride of sparsity matrix in

6We clustered the predictions along the frame axis not to be sparse
predictions and selected the longest temporal region to the input target.

FIGURE 12. Samples of synthesized MD signatures: (a) annotations of
sample-A: target 4 in (0s, 9.3s), target 2 in (8.2s, 20.9s), target 5 in (19.2s,
34.8s), (b) annotations of sample-B: target 1 in (0s, 8.3s), (c) annotations
of sample-C: target 3 in (0s, 5.2s), target 2 in (4.7s, 16.8s).

causal localization head. For the experiment about patch
size in PDE, large gains are confirmed when the window
size is over 45, which denotes that the lower bound to
contain the gait patterns should be about 45. Below the size
of 45, we confirm that performance is highly decreased.
This means that meaningful, discernible gait information is
completely contained in more than 45 frames. After that, the
performances get saturated when increasing the size over 45.
For the stride of the sparsity mask in the causal localization
head, we experiment with various strides, where stride 3 is the
best performed. The stride over 3 shows deterioration in the
performances, which denotes that there is redundancy among
the predictions, which loses the opportunities to be searched
to many different regions in MD signatures. Therefore, it is
confirmed that the redundancy problem in the predictions
is mitigated with the stride between 2 and 3. Values above
3 show a decrease in performances which means that the
candidate areas containing the pertinent temporal boundaries
are being removed due to sparsity masking. Figure 11
presents the efficiency analysis by the proposed causal
prediction process. Figure 11 (b) illustrates the process of
temporal localization in MD signatures in CLH, such that
we first perform the frame-level predictions. Based on the
predictions, the start-time is predicted, where the end-time
is also predicted based on the two predictions (i.e., frame-
level predictions and start-time predictions). By providing the
prior information for the localization, this process causally
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FIGURE 13. Prediction scores about input target 2 by CLNet in terms of start-time (blue curve) and end-time (red curve) along the frame
axis. The red circle denotes the maximum point of the curve. The ground-truth temporal boundary is presented above the synthesized
MD signatures.

narrows the search space. To identify the effectiveness of the
causal prediction process, we also prepare an independent
prediction process in Figure 11 (c), where all the predictions
are predicted by themselves without any prior predictions.
Figure 11 (a) summarizes the validation loss according to
these two processes, where it is confirmed that the causal
prediction process contributes to early saturation of validation
loss and also further optimization of the loss compared to the
independent prediction process. We consider this is because
the process of progressively narrowing search space with
prior information (i.e., previous prediction) is effective in
localizing the target MD signatures.

D. QUALITATIVE RESULTS
1) SYNTHESIZED MD SIGNATURES
Figure 12 presents examples of synthesized MD signatures
in IDRad-TBA. The annotations about all the samples are
also provided in the caption of Figure 12. For samples (i.e.,
sample-A,B,C), several annotations are attached, where the
sample shows natural synthesis to the extent that humans
cannot tell where the stitching is applied. In addition, even
when two signals in opposite positions are attached (e.g., the
stitched region between target 2 and target 5 in sample-A),
they are also naturally connected without any seams in the
MD signatures. The proposed gradual region-based Doppler
stitching method properly synthesized the MD signatures for
the radar human localization task.

Furthermore, to assess the alignment of our synthesized
MD signatures with the raw MD signatures from the real
environment, we conducted an analysis using t-SNE plots
comparing the synthetic data to the raw data, as depicted
in Figure 14. Although it is not available to check all the
conditions necessary for real data, we approximate this using
t-SNE similarity analysis, which provides us with a visual

FIGURE 14. t-SNE plots between synthesized MD signatures and original
MD signatures.

representation of the distribution and clustering patterns of
the synthetic data in relation to the real data. These results
qualitatively demonstrate substantial overlap, allowing us
to infer that our synthesized data does not encompass
information related to impractical scenarios. We consider this
because our proposed synthesizing algorithm combines the
raw MD signatures along the time axis, which preserves the
characteristics of the original MD signatures.

2) PREDICTIONS OF CLNET
Figure 13 shows the predictions about start-end scores for
the localization. The black line above the MD signatures
shows the temporal boundary of target 2. From the input MD
signature and one-hot encoding of target 2, CLNet produces
the predictions of start time and end time pertinent to
target 2. The max point of each prediction is located near the
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FIGURE 15. Qualitative results on radar human localization of CLNet with
respect to the top-k predictions.

ground-truth start-end points. Based on the two predictions,
we build joint probabilities and perform radar localization
about target 2. The localization results are presented in
Figure 15 (i.e., The two MD signatures in Figure 13 and
Figure 15 are identical signatures.), where the green box
denotes the ground-truth of temporal boundaries of the target
and the red boxes denote the top-k (i.e., k=3) predictions
of CLNet. The top-1 prediction shows a high overlap with
the ground-truth, moreover, the other predictions also have
overlaps. It is also notable that the CLNet predicts different
lengths of MD signatures, which avoids the redundancy
problem among the candidate boundaries. We consider that
the sparsity mask contributes to mitigating the redundancy
problem.

VI. LIMITATION
This paper proposes radar human localization in micro-
Doppler signatures of human walking. The limitations of
this work are summarized as follows: (1) The proposed
IDRad-TBA dataset is based on the synthesizing process
to build samples for the dataset, (2) The radar human
localization in this work assumes MD signatures about the
existence of a single person at any time. To be specific,
for the first limitation, the sample data in IDRad-TBA
dataset is based on the IDRad [4] dataset, which is the MD
signature for radar human identification. Thus, the sample of
IDRad is corresponding to a single person and IDRad-TBA
synthesizes the samples of IDRad to make MD signatures
with multiple humans in sample data. The second limitation
of our work is that since the synthesized sample is based on
MD signatures of IDRad, the IDRad-TBA shares the same
limitation as IDRad. Therefore IDRad-TBA has a limitation
that it does not allow the co-occurrence of multiple humans
at the same time. Thus our future work is to build a dataset
to perform a more general format of RHL tasks by building
real environmental data under more diverse conditions such
as the co-occurrence of human and outdoor environments.
Furthermore, we also consider extending the work of the
current training framework of CLNet to be performed in
weakly-supervised settings [26], [27], which mitigates the
reliance on temporal annotations to train localization in MD
signatures.

VII. CONCLUSION
This paper proposed radar human localization (RHL) on
micro-Doppler signatures. To perform RHL, we build dataset

IDRad-TBA dataset, which synthesizes the radar signals and
annotates the temporal boundaries of each human in the MD
signatures. Henceforth, we present a baseline system of RHL
referred to as Causal Localization Network (CLNet), where it
predicts temporal boundaries pertinent to input target human
in theMD signatures of human walking. Experimental results
contribute to validating the possibilities of RHL task in MD
signatures and the efficiency of proposed causal prediction.
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