
Received 21 November 2023, accepted 8 January 2024, date of publication 10 January 2024, date of current version 22 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3352266

Design Space Exploration for Edge Machine
Learning Featured by MathWorks
FPGA DL Processor: A Survey
STEFANO BERTAZZONI , LORENZO CANESE, GIAN CARLO CARDARILLI , (Life Member, IEEE),
LUCA DI NUNZIO , (Member, IEEE), ROCCO FAZZOLARI , MARCO RE , (Member, IEEE),
AND SERGIO SPANÒ
Department of Electronic Engineering, Tor Vergata University of Rome, 00133 Rome, Italy

Corresponding author: Sergio Spanò (spano@ing.uniroma2.it)

This work has been supported by the Spoke 1 FutureHPC & BigData of the Italian Research Center on High-Performance Computing,
Big Data and Quantum Computing (ICSC) funded by Ministero dell’Università e della Ricerca (MUR) Mission 4 - Next Generation EU.

ABSTRACT This paper proposes a Design Space Exploration for Edge machine learning through the
utilization of the novel MathWorks FPGA Deep Learning Processor IP, featured in the HDL Deep Learning
toolbox. With the ever-increasing demand for real-time machine learning applications, there is a critical
need for efficient and low-latency hardware solutions that can operate at the edge of the network, in close
proximity to the data source. The HDLDeep Learning toolbox provides a flexible and customizable platform
for deploying deep learning models on FPGAs, enabling effective inference acceleration for embedded IoT
applications. In this study, our primary focus lies in investigating the impact of parallel processing elements
on the performance and resource utilization of the FPGA-based processor. By analyzing the trade-offs
between accuracy, speed, energy efficiency, and hardware resource utilization, we aim to gain valuable
insights into making optimal design choices for FPGA-based implementations. Our evaluation is conducted
on the AMD-Xilinx ZC706 development board, which serves as the target device for our experiments.
We consider all the compatible Convolutional Neural Networks available within the HDL Deep Learning
toolbox to comprehensively assess the performances.

INDEX TERMS Convolutional neural networks, deep learning, design space exploration, edge machine
learning, embedded, FPGA, IoT, machine learning.

I. INTRODUCTION
The deployment of Deep Learning networks on FPGA is
one of the most trending topics of recent years’ literature,
especially if it is targeted to Edge Machine Learning
applications [1], [2], [3], [4], [5].

Due to the complexity of meeting the different require-
ments in such scenarios (e.g. Embedded IoT), several
researchers highlighted the need to perform an extensive
Design Space Exploration (DSE) taking into account both the
target device and network to be implemented [6], [7], [8], [9],
[10]. Moreover, different works tried to help the designers

The associate editor coordinating the review of this manuscript and
approving it for publication was Tony Thomas.

proposing some kind of automation for DSE analysis
on FPGA-oriented deep learning applications [11], [12],
[13], [14].

According to Pham et al. [15], the most complex challenge
for the acceleration of CNNs on hardware is the Design
Space Exploration phase. This concept has been successively
extended by Pham to FPGA devices [16] by proposing the
graph in Fig. 1.
The time to design the network is the easiest requirement,

mainly due to the plethora of off-the-shelf tools to build,
train, and validate a CNN. A medium effort is required
when the developer has to deal with the limited amount of
memory and the relative clock frequencies of FPGAs. The
data communication overhead to exchange the data with the

9418

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-8082-2973
https://orcid.org/0000-0002-7444-876X
https://orcid.org/0000-0002-4312-7939
https://orcid.org/0000-0002-7383-2663
https://orcid.org/0000-0001-9046-1318
https://orcid.org/0000-0002-8230-7211


S. Bertazzoni et al.: DSE for Edge Machine Learning Featured by MathWorks FPGA DL Processor: A Survey

FIGURE 1. Challenges of CNN acceleration on FPGA devices.

FIGURE 2. Relations between design space exploration parameters.

device is also considered amedium effort challenge. Themost
complex task is, definitely, DSE which involves the tailoring
of all the parameters to match the desired requirements.

DSE parameters for the FPGA implementation of a CNN
can be summarized into four and are strictly related to
the application constraints. They are: power consumption,
availability of hardware resources, inference speed and
accuracy. We show in Fig. 2 the relations between them.
For example, if both high inference speed and high

recognition accuracy are required, we may need to increase
the hardware resources on the device, thus obtaining a high
power consumption.

Vice versa, if low power consumption is required, we may
allow for a reduction of the recognition accuracy. To keep the
power down, we must reduce the hardware resources, thus
obtaining a low inference speed.

For the sake of clarity, we oversimplified the concept
in Fig. 2 since the relations between the parameters are
non-linear and often unpredictable. That is why DSE is an
open problem in the field.

The aim of this work is to provide a comprehensive Design
Space Exploration targeted to Edge Machine Learning

applications. We focus our analysis on the FPGA deployment
of the most common CNNs using the novel MATLAB Deep
Learning HDL Toolbox [17] on the AMD-Xilinx ZC706
development board. This tool has already been used fruitfully
to implement standalone IoT Embedded machine learning
systems [18].

A. PAPER ORGANIZATION
This paper is organized as follows.

Section II introduces theMATLABDeep Learning proces-
sor IP and the HDL Deep Learning toolbox.

Section III provides the FPGA implementation results for
different configurations of the processor.

Section IV shows the experimental data obtained by the
deployment of different CNNs on the target platform.

Finally, sec. V draws the conclusions about the work.
We would highlight that all the data analyzed in this survey

can be found in a raw format as attached supplementary
material.

II. DEEP LEARNING PROCESSOR
The novel MATLAB Deep Learning HDL Toolbox [17] is a
powerful way to deploy Deep Learning applications to FPGA
devices via its Deep Learning processor IP [19].
Although the tool is capable of producing hardware

code (Verilog and VHDL) that is virtually compatible
with every FPGA, the full workflow is available for three
development boards [20]: AMD ZCU102, AMD ZC706, and
Intel Arria10 SoC. The processor comes in two versions:
floating-point single precision and fixed-point 8-bit integer
(INT8). The latter requires a quantization process on the
networks.

The system can run CNNs, YOLO networks, and LSTMs.
The top-level architecture of the Deep Learning Processor

is shown in Fig. 3.
The IP acts as a classic AXI4 slave device. It requires

some external DDR which can be accessed via the
vendor-dependent memory interface IP. In this case, the
processor acts as anAXI4master. TheRAM is needed to store
the weights of the neurons, the kernels of the CNNfilters, and
so on.

The core of the system are its Processing modules:

• Conv kernel. It performs Convolution operations. Its
performance can be changed by adding or removing
physical Threads.

• FC kernel. It performs Fully Connected operations. Its
performance can be changed by adding or removing
physical Threads.

• Custom kernel. As the name suggests, it can be
programmed to perform the operations of pre-validated
custom layers.

The top-level scheduler manages the scheduling of instruc-
tions and the retrieval of data from DDR, and determines the
appropriate timing to read the data from the RAM. It serves

VOLUME 12, 2024 9419



S. Bertazzoni et al.: DSE for Edge Machine Learning Featured by MathWorks FPGA DL Processor: A Survey

FIGURE 3. Top level architecture of the FPGA Deep Learning Processor IP and its interfaces.

as the central hub in a distributed computer architecture,
responsible for sharing instructions with processing modules.

The Profiler & Debugger module gathers data from the
kernels, including the start and stop times of the Conv Kernel,
FC Kernel, and other relevant components. Using this data,
the profiler module generates a profiler table that summarizes
these results.

The Activation and Weight memory access arbitrator
modules facilitate the reading and writing of weights and
activation data to and from the processing modules. This
enables seamless data transfer between these modules. On the
other hand, the Profiler relies on its arbitrator to access and
manipulate timing data and instructions.

III. FPGA IMPLEMENTATION DATA
As stated in sec. I, we focused our DSE on Edge
Machine Learning applications, so we considered the AMD
ZC706 development board and the INT8 processor version
that allows faster computations without affecting perfor-
mance [21]. We used Vivado 2020.3 for the synthesis and
implementation of the generated VHDL code.

Unfortunately, built-in Toolbox functions are able to give
just a rough estimation of required hardware resources.
Moreover, no data on Flip-Flops, Look-Up Tables used as
RAM, and power dissipation are given. Considering that,
our work provides a thorough set of data from real FPGA
implementation results.

The default configuration provided by MATLAB R2023a
for the chosen platform is as follows.

• System Level Properties

– TargetPlatform: ‘Xilinx Zynq ZC706 evaluation
kit’

– TargetFrequency: 90
– SynthesisTool: ‘Xilinx Vivado’
– ReferenceDesign: ‘AXI-Stream DDR Memory

Access : 3-AXIM’
– SynthesisToolChipFamily: ‘Zynq’
– SynthesisToolDeviceName: ‘xc7z045’
– SynthesisToolPackageName: ‘ffg900’
– SynthesisToolSpeedValue: ‘-2’

• Processor Top Level Properties
– RunTimeControl: ‘register’
– RunTimeStatus: ‘register’
– InputStreamControl: ‘register’
– OutputStreamControl: ‘register’
– SetupControl: ‘register’
– ProcessorDataType: ‘int8’

• Processing Module ‘‘conv’’
– ModuleGeneration: ‘on’
– LRNBlockGeneration: ‘off’
– SegmentationBlockGeneration: ‘on’
– ConvThreadNumber: 16
– InputMemorySize: [227 227 3]
– OutputMemorySize: [227 227 3]
– FeatureSizeLimit: 2048

• Processing Module ‘‘fc’’
– ModuleGeneration: ‘on’
– SoftmaxBlockGeneration: ‘off’
– SigmoidBlockGeneration: ‘off’
– FCThreadNumber: 8
– InputMemorySize: 9216
– OutputMemorySize: 4096

• Processing Module ‘‘custom’’
– ModuleGeneration: ‘on’

9420 VOLUME 12, 2024



S. Bertazzoni et al.: DSE for Edge Machine Learning Featured by MathWorks FPGA DL Processor: A Survey

– Addition: ‘on’
– Multiplication: ‘on’
– Resize2D: ‘off’
– Sigmoid: ‘off’
– TanhLayer: ‘off’
– InputMemorySize: 40
– OutputMemorySize: 120

As can be seen, the customization capabilities are very
high. In our study, we decided to consider the number of Con-
volutional and Fully Connected threads (ConvThreadNumber
and FCThreadNumber) as the design space. This is because
they are the most prominent parameters that condition the
FPGA implementation results [22].

The available Convolutional threads (from now Conv
threads) on the target device are the following ‘‘squares’’:
4, 9, 16, 25, 49, 64. The available Fully Connected threads
(from now FC threads) are the following powers of two:
4, 8, 16.
It is very important to note that the IP does not support

the combination of 64 Conv and 4 FC threads. For the sake
of clarity in the data representation of the following sections,
we still show the (64, 4) point as a mere interpolation. The
mock data are pointed as a red star in all of the plots to
enhance readability.

The data in the following subsections include the processor
IP, DDR interfacing, and MathWorks AXI manager IP
for external communication [23]. For testing purposes, the
board is connected via USB/JTAG to a master PC running
MATLAB. The communication speed is up to 30 Mbps,
this effectively avoids any communication/computation
bottleneck.

A. LOOK UP TABLES
Figure 4 shows the Look Up Tables (LUT) usage.

The LUT required to implement different-sized processors
follow a linear trend. This is both considering the increasing
number of Conv threads and FC threads. In particular, LUT
usage is affected the most by Conv threads.

The minimum LUT usage is about 40% with (4, 4)
configuration, while the maximum is about 75% with
(64, 16).

B. EMBEDDED RANDOM ACCESS MEMORY
Figures 5 and 6 show the Look Up Tables used as RAM
(LUTRAM) and Block RAM (BRAM) usage.

LUTRAM usage tends to have a linear behavior only
after 25 Conv threads. This can be easily seen in the FC
threads projection plot, where below 25 Conv threads the
trend is not inferable.

The minimum LUTRAM usage is about 15% with (4, 8)
configuration, while the maximum is about 24% with
(64, 16).
BRAMs exhibit a more unusual behavior. While having an

almost linear trend if seen from the FC threads projection,
the Conv threads relation is very peculiar. 9 and 36 thread

FIGURE 4. Look Up Tables (LUT) utilization for different number of
threads. (a) 3D surface. (b) Conv threads axis projection. (c) FC threads
axis projection.

versions require the least number of BRAMs, whereas the
25 threads versions are the most demanding. We may spec-
ulate that this phenomenon may find its reason considering
how the FPGA synthesis deals with mapping the design on
fixed-size memory blocks.

The minimum BRAM usage is about 65% with (9, 4)
configuration, while the maximum is about 95% with
(25, 16).

C. FLIP FLOPS
Figure 7 shows the Flip Flops (FF) usage.

VOLUME 12, 2024 9421



S. Bertazzoni et al.: DSE for Edge Machine Learning Featured by MathWorks FPGA DL Processor: A Survey

FIGURE 5. Look Up Tables used as RAMs (LUTRAM) utilization for
different number of threads. (a) 3D surface. (b) Conv threads axis
projection. (c) FC threads axis projection.

FF trends are almost overlapped with those of LUT. There
is a usage linear increase with threads, the Conv ones being
the most influential with a steeper curve.

The minimum FF usage is about 25% with (4, 4) configu-
ration, while the maximum is about 45% with (64, 16).

D. DIGITAL SIGNAL PROCESSORS
Figure 8 shows the Digital Signal Processor (DSP) usage.

Everything said about LUT and FF applies also to DSP.

FIGURE 6. Block RAMs (BRAM) utilization for different number of
threads. (a) 3D surface. (b) Conv threads axis projection. (c) FC threads
axis projection.

The minimum DSP usage is about 15% with (4, 4)
configuration, while the maximum is about 90% with
(64, 16).

E. POWER CONSUMPTION
Figure 9 shows the dynamic power consumption considering
a 90 MHz clock and a vector-less estimation approach. The
static power consumption of the FPGA is 268 mW, while the
typical consumption of the external RAM is 578 mW.

9422 VOLUME 12, 2024



S. Bertazzoni et al.: DSE for Edge Machine Learning Featured by MathWorks FPGA DL Processor: A Survey

FIGURE 7. Flip Flops (FF) utilization for different number of threads.
(a) 3D surface. (b) Conv threads axis projection. (c) FC threads axis
projection.

As expected, power dissipation increases as the number of
threads increases. However, we can see a plateau between
25 and 36 Conv threads. Moreover, for 4 FC threads, we see
a slight inversion in the trend. Our conjecture is related to
BRAM usage, which affects power consumption in such
central cases.

The minimum dissipation is about 4.5 W with (4, 4)
configuration, while the maximum is about 6.5 W with
(64, 16).
In order to assess which hardware resource is the most

prominent in contributing to the dynamic power dissipation

FIGURE 8. Digital Signal Processors (DSP) utilization for different number
of threads. (a) 3D surface. (b) Conv threads axis projection. (c) FC threads
axis projection.

of the system, we analyzed every implementation. Taking into
account a specific resource, we observed how its contribution
to the total dissipation is almost independent to the number of
Threads of the IP. For this reason, it is possible to average the
values among all the considered implementations. In Fig. 10,
we show the power percentage for every employed hardware
resource.

F. MAXIMUM CLOCK FREQUENCY
In order to asses the hardware resource that limits the
performance of the implementations, we analyzed the critical
paths that set the maximum achievable clock frequency.

VOLUME 12, 2024 9423



S. Bertazzoni et al.: DSE for Edge Machine Learning Featured by MathWorks FPGA DL Processor: A Survey

FIGURE 9. Dynamic power consumpion for different number of threads.
(a) 3D surface. (b) Conv threads axis projection. (c) FC threads axis
projection.

In every case, the critical path resides inside the Convolu-
tional cores and, in particular, the actual hardware resource
limiting the maximum clock frequency is the LUT. For
this reason, a speed-up of the processing performance may
be achieved only by updating the FPGA device since a
modification of the internal architecture of the Core is not
possible by the Toolbox.

In Table 1 we show how the maximum achievable clock
frequency is almost the same for any implementation and it
does not depend on the number of Threads.

FIGURE 10. Dynamic power consumpion breakdown for every hardware
resource.

TABLE 1. Maximum clock frequency achievable by the system for every
Conv threads and FC threads combination.

G. CONSIDERATIONS ON THE IMPLEMENTATION
According to the previous results, the usage of LUT, FF, and
DSP can easily be inferred since their behavior has a linear
trend, while the BRAM and power data are quite complex to
evaluate.

It is possible to state that Conv threads are the leading
parameters when considering the maximum constraints of
resources and power of the designer. As a matter of fact,
if some FPGA area is required for other parts of an overall
system, it is highly suggested that particular attention be paid
to Conv threads. Less attention can be paid to the tuning of
FC threads.

The presented resultsmust be integratedwith the data in the
following sections to fully understand how the Design Space
affects the CNN performance.

IV. EXPERIMENTS WITH CONVOLUTIONAL NEURAL
NETWORKS
In order to assess the performance of the processor,
we consider all CNNs for classification tasks available in the
toolbox [20]. Only a set of them can actually be deployed
with the chosen configuration parameters.We show in Table 2
the successfully tested networks and their limitations in the
deployment to FPGA.

For every CNN, in Table 3 we report the accuracy obtained
for the ImageNet dataset [24]. These data will be used to give
the designer some useful information about the performance
of the networks.

9424 VOLUME 12, 2024



S. Bertazzoni et al.: DSE for Edge Machine Learning Featured by MathWorks FPGA DL Processor: A Survey

TABLE 2. CNNs compatible with the target FPGA device and their
limitations.

TABLE 3. CNNs accuracy on ImageNet dataset.

TABLE 4. Computational overhead of SqueezeNet layers in (25, 8)
configuration.

In the following subsections, we provide an evaluation of
the CNNs inference speed and their energy efficiency.

FIGURE 11. Inception-v3 Frames Per Second (FPS). (a) 3D surface.
(b) Conv threads axis projection. (c) FC threads axis projection.

Again, it is very important to note that the IP does not
support the combination of 64 Conv and 4 FC threads.
For the sake of clarity in the data representation of the
following sections, we still show the (64, 4) point as a mere
interpolation. The mock data are pointed as a red star in all of
the plots to enhance readability.

A. INFERENCE SPEED EVALUATION
We evaluated how much time every processor configuration
needs to process a frame. The data are given in terms of
Frames per Second (FPS) for every CNN considered.

VOLUME 12, 2024 9425



S. Bertazzoni et al.: DSE for Edge Machine Learning Featured by MathWorks FPGA DL Processor: A Survey

TABLE 5. Computational overhead of Inception-v3 layers in (25, 8)
configuration.

1) SQUEEZENET
Since SqueezeNet runs only on 25 Conv threads, we do
not show any plots for it. (25, 4), (25, 8), and (25, 16)
configurations for the aforementioned network have the same
performance of 8.35 FPS. The SqueezeNet behavior is very
peculiar since it is the only network which performance is
completely independent of the number of FC threads.

FIGURE 12. DenseNet-201 Frames Per Second (FPS). (a) 3D surface.
(b) Conv threads axis projection. (c) FC threads axis projection.

Asmost representative, we show in Table 4 howmuch time
the processor needs to process each layer of the network in the
(25, 8) configuration. The results are normalized considering
100% as the time required to process one frame.

As can be observed, the layer requiring the most time to be
processed is the last Convolutional one.

2) INCEPTION-V3
Figure 11 shows the Inception-v3 inference speed.

9426 VOLUME 12, 2024



S. Bertazzoni et al.: DSE for Edge Machine Learning Featured by MathWorks FPGA DL Processor: A Survey

TABLE 6. Computational overhead of DenseNet-201 layers in (25, 8)
configuration.

We can see how the FPS growth slows-downwhen crossing
the 25-49 Conf threads line. Moreover, increasing the number
of FC threads does not lead to any notable improvement
unless more than 49 Conv threads are used.

The minimum speed is about 0.1 FPS with (4, 4) config-
uration, while the maximum speed is about 1.25 FPS with
(64, 16).
As most representative, we show in Table 5 howmuch time

the processor needs to process each layer of the network in the
(25, 8) configuration. The results are normalized considering
100% as the time required to process one frame. Please note
that only the most demanding layers have been included in
the Table.

As can be observed, there is not a promiment layer but,
in general, Convolutional ones are the most demanding.

FIGURE 13. MobileNet-v2 Frames Per Second (FPS). (a) 3D surface.
(b) Conv threads axis projection. (c) FC threads axis projection.

3) DENSENET-201
Figure 12 shows the DenseNet-201 inference speed.

With this network, the slow-down is prominent only
between (25, 4) and (36, 4) threads. In all the other cases,
the performance growth is directly proportional to the Conv
resources assigned to the processor. In general, the higher the
Conv threads are, the more influential the FC threads are; e.g.
the (16, 4) configuration is almost the same as (4, 4) and (4, 8)
in terms of FPS.

VOLUME 12, 2024 9427



S. Bertazzoni et al.: DSE for Edge Machine Learning Featured by MathWorks FPGA DL Processor: A Survey

TABLE 7. Computational overhead of MobileNet-v2 layers in (25, 8)
configuration.

The minimum speed is about 0.15 FPS with (4, 4)
configuration, while the maximum speed is about 1.115 FPS
with (64, 16). This makes DenseNet-201 the slowest CNN
compatible with the toolbox, but also one of the most
accurate.

As most representative, we show in Table 6 howmuch time
the processor needs to process each layer of the network in the

FIGURE 14. ResNet-18 Frames Per Second (FPS). (a) 3D surface. (b) Conv
threads axis projection. (c) FC threads axis projection.

(25, 8) configuration. The results are normalized considering
100% as the time required to process one frame. Please note
that only the most demanding layers have been included in
the Table.

As can be observed, there is not a promiment layer
but, in general, Batch Normalization ones are the most
demanding.

4) MOBILENET-V2
Figure 13 shows the MobileNet-v2 inference speed.

9428 VOLUME 12, 2024



S. Bertazzoni et al.: DSE for Edge Machine Learning Featured by MathWorks FPGA DL Processor: A Survey

FIGURE 15. ResNet-50 Frames Per Second (FPS). (a) 3D surface. (b) Conv
threads axis projection. (c) FC threads axis projection.

The behavior of MobileNet-v2 is the easiest to analyze,
since the trend is always growing and it is predictable. Like
in the previous network, the higher the Conv threads are, the
more influential the FC threads are. A simplification can be
deduced; the FC parameter becomes significant from 25Conv
threads and up.

The minimum speed is about 1 FPS with (4, 4) configura-
tion, while the maximum speed is about 8 FPS with (64, 16).
As most representative, we show in Table 7 howmuch time

the processor needs to process each layer of the network in the

FIGURE 16. ResNet-101 Frames Per Second (FPS). (a) 3D surface. (b) Conv
threads axis projection. (c) FC threads axis projection.

(25, 8) configuration. The results are normalized considering
100% as the time required to process one frame.

As can be observed, the layer requiring the most time to be
processed are the last Convolutional ones.

5) RESNET FAMILY
Figures 14, 15, and 16 show the inference speed of ResNet-
18, ResNet-50, and ResNet-101 respectively.

While ResNet-18 has a similar predictable behavior to
MobileNet-v2, 50 and 101 versions have a common trend
when crossing the 25 to 49 Conv threads line. In fact,

VOLUME 12, 2024 9429



S. Bertazzoni et al.: DSE for Edge Machine Learning Featured by MathWorks FPGA DL Processor: A Survey

TABLE 8. Computational overhead of ResNet-18 layers in (25, 8)
configuration.

in almost every case, performance drops-down making
the 49 Conv versions slower than the 25 ones. Our conjecture
is that, since the BRAM usage is the highest for 25 Conv
threads, this leads to an improvement of the inference speed.
Therefore, 49 Conv threads are not suggested for both
ResNet-50 and ResNet-101.

For ResNet-18, the minimum speed is about 1 FPS
with (4, 4) configuration, while the maximum speed is
about 14 FPS with (64, 16).

For ResNet-50, the minimum speed is about 0.1 FPS
with (4, 4) configuration, while the maximum speed is about
0.6FPS with (64, 16).
For ResNet-101, the minimum speed is about 0.05 FPS

with (4, 4) configuration, while the maximum speed is about
0.5 FPS with (64, 16).

As most representatives, we show in Tables 8, 9, and 10
how much time the processor needs to process each layer
of the networks in the (25, 8) configuration. The results are
normalized considering 100% as the time required to process
one frame.

As can be observed, the layer requiring the most time to be
processed is the first Convolutional one, followed by some in
the bottom third of the stack.

As can be observed, the layers requiring the most time
to be processed are some Convolutional ones but, unlike
ResNet-18, they are spread throught the stack.

TABLE 9. Computational overhead of ResNet-50 layers in (25, 8)
configuration.

As can be observed, the layers requiring the most time
to be processed are some Convolutional ones but, unlike

9430 VOLUME 12, 2024



S. Bertazzoni et al.: DSE for Edge Machine Learning Featured by MathWorks FPGA DL Processor: A Survey

TABLE 10. Computational overhead of ResNet-101 layers in (25, 8)
configuration.

ResNet-18 and ResNet-50, they can be found in the middle
of the stack.

6) DARKNET FAMILY
Figures 17 and 18 show the inference speed of DarkNet-19
and DarkNet-53 respectively.

The behavior of both networks is overlappable. The
plateau/drop in performance after 25 Conv threads is also
present in this family of CNNs. The 36 Conv thread versions
are less favorable in terms of inference speed.

For DarkNet-19, the minimum speed is about 0.5 FPS with
(4, 4) configuration, while themaximum speed is about 5 FPS
with (64, 16).

For DarkNet-53, the minimum speed is 0.2 about FPS with
(4, 4) configuration, while themaximum speed is about 2 FPS
with (64, 16).

As most representatives, we show in Tables 11 and 12
how much time the processor needs to process each layer
of the networks in the (25, 8) configuration. The results are
normalized considering 100% as the time required to process
one frame.

FIGURE 17. DarkNet-19 Frames Per Second (FPS). (a) 3D surface. (b) Conv
threads axis projection. (c) FC threads axis projection.

As can be observed, the layer requiring the most time to be
processed is the last Convolutional one.

Again, As can be observed, the layer requiring the most
time to be processed is the last Convolutional one.

7) PERFORMANCE-ACCURACY ANALYSIS
We evaluated the accuracy of the considered networks with
respect to their speed in order to assess the best trade-off for
every application. We found that the relations are the same
for every thread configuration.

VOLUME 12, 2024 9431



S. Bertazzoni et al.: DSE for Edge Machine Learning Featured by MathWorks FPGA DL Processor: A Survey

FIGURE 18. DarkNet-53 Frames Per Second (FPS). (a) 3D surface. (b) Conv
threads axis projection. (c) FC threads axis projection.

For the sake of clarity, in Fig. 19 we show only the
(25, 16) processor results, which is compatible with all the
CNNs.

SqueezeNet is the best choice if the application requires
high speed; however, its accuracy is the lowest one.
MobileNet-v2 and DarkNet-19 would be the best trade-offs
when both good accuracy and speed are required. If speed is
not a critical constraint, but accuracy is, we think Inception-
v3 would be the best designer choice.

These results are comparable with other similar
works [22].

TABLE 11. Computational overhead of DarkNet-19 layers in (25, 8)
configuration.

FIGURE 19. Accuracy on ImageNet dataset vs Frame Per Second (FPS)
for 25 Convolutional and 16 Fully Connected threads.

8) CONSIDERATIONS ON PERFORMANCE
According to the previous results, the speed of the considered
network is related to the size of the processor. However,
in ResNet and DarkNet families, 36 and 49 Conv threads
configurations may show a performance drop. For such
reason, it would be better to avoid such parameters and to take
into consideration only 64 Conv threads setups when higher
speeds are mandatory.

It is possible to state that Conv threads are the leading
parameters when considering the inference speed. Again, it is
highly suggested that particular attention be paid to Conv
threads. Less attention can be paid to the tuning of FC threads,
especially when less than 25 Conv threads are used.

9432 VOLUME 12, 2024



S. Bertazzoni et al.: DSE for Edge Machine Learning Featured by MathWorks FPGA DL Processor: A Survey

TABLE 12. Computational overhead of DarkNet-53 layers in (25, 8)
configuration.

We also highlighted that speed and accuracy are not
necessarily related, since the most accurate network can not
necessarily be the slowest one (e.g. Inception-v3).

B. ENERGY EFFICIENCY
We evaluated how much energy every processor configura-
tion needs to process a frame. The data are given in terms of
energy per frame (J) for every CNN considered.

FIGURE 20. Inception-v3 energy required to process one frame. (a) 3D
surface. (b) Conv threads axis projection. (c) FC threads axis projection.

1) SQUEEZENET
Since SqueezeNet runs only on 25 Conv threads, we do not
show any plots for it. Below are the results for the CNN.

• (25, 4) - 0.621 J
• (25, 8) - 0.625 J
• (25, 16) - 0.664 J

The SqueezeNet behavior is very peculiar since it is the
only network which energy increases with the number of FC
threads.

VOLUME 12, 2024 9433



S. Bertazzoni et al.: DSE for Edge Machine Learning Featured by MathWorks FPGA DL Processor: A Survey

FIGURE 21. DenseNet-201 energy required to process one frame. (a) 3D
surface. (b) Conv threads axis projection. (c) FC threads axis projection.

2) INCEPTION-V3
Figure 20 shows the Inception-v3 energy requirements.

While FC threads are not as influential, we can see a huge
energy drop-off from 4 to 25 Conv threads. There is little to
not benefit from using a high number of Convs.

The minimum energy to process one frame is about 5 J
with (64, 16) configuration, while the maximum energy is
about 40 J with (4, 4).

FIGURE 22. MobileNet-v2 energy required to process one frame. (a) 3D
surface. (b) Conv threads axis projection. (c) FC threads axis projection.

3) DENSENET-201
Figure 21 shows the DenseNet-201 energy requirements.

In this case, FC threads make a substantial difference in
energy, especially above 9 Conv threads. Other considera-
tions can be transposed from Inception-v3 network.

The minimum energy to process one frame is about 50 J
with (64, 16) configuration, while the maximum energy is
about 425 J with (4, 4).

9434 VOLUME 12, 2024



S. Bertazzoni et al.: DSE for Edge Machine Learning Featured by MathWorks FPGA DL Processor: A Survey

FIGURE 23. ResNet-18 energy required to process one frame. (a) 3D
surface. (b) Conv threads axis projection. (c) FC threads axis projection.

4) MOBILENET-V2
Figure 22 shows the MobileNet-v2 energy requirements.

Same considerations apply to this CNN but there is no
advantage in using 16 FC threads instead of 8. Furthermore,
the (4, 16) configuration requiresmore energy than the (8, 16)
one.

The minimum energy to process one frame is about 1 J
with (64, 16) configuration, while the maximum energy is
about 5 J with (4, 4).

5) RESNET FAMILY
Figures 23, 24, and 25 show the energy requirements of
ResNet-18, ResNet-50, and ResNet-101 respectively.

FIGURE 24. ResNet-50 energy required to process one frame. (a) 3D
surface. (b) Conv threads axis projection. (c) FC threads axis projection.

ResNet-18 considerations are the same of MobileNet-
v2 ones, however, the other two CNNs exhibit a similar
different behavior. After 25 Conv threads, the energy
requirements increase, making 49 and 64 configurations
less efficient. Moreover, it is more favorable to upgrade
from 4 to 8 FC threads than using 16 versions.

For ResNet-18, the minimum energy to process one
frame is about 0.5 J with (64, 16) configuration, while the
maximum energy is about 3.75 J with (4, 4). For ResNet-
50, the minimum energy to process one frame is about 7.5 J
with (64, 16) configuration, while the maximum energy is
about 50 J with (4, 4). For ResNet-101, the minimum energy

VOLUME 12, 2024 9435



S. Bertazzoni et al.: DSE for Edge Machine Learning Featured by MathWorks FPGA DL Processor: A Survey

FIGURE 25. ResNet-101 energy required to process one frame. (a) 3D
surface. (b) Conv threads axis projection. (c) FC threads axis projection.

to process one frame is about 15 J with (64, 16) configuration,
while the maximum energy is about 100 J with (4, 4).

6) DARKNET FAMILY
Figures 26 and 27 show the energy requirements of DarkNet-
19 and DarkNet-53 respectively.

The trends are almost superimposable, indeed, energy has
a decreasing pace for Conv threads with the exception of
36 configurations where the requirements may increase. This
makes 36 Conv threads an unfavorable choice for designers.
Like the deepest ResNets, it is more favorable to upgrade
from 4 to 8 FC threads than using 16 versions.

FIGURE 26. DarkNet-19 energy required to process one frame. (a) 3D
surface. (b) Conv threads axis projection. (c) FC threads axis projection.

For DarkNet-19, theminimum energy to process one frame
is about 1.5 J with (64, 16) configuration, while themaximum
energy is about 10J with (4, 4). For ResNet-50, the minimum
energy to process one frame is about 3 J with (64, 16)
configuration, while the maximum energy is about 27 J with
(4, 4).

7) ENERGY-ACCURACY ANALYSIS
We evaluated the accuracy of the considered networks with
respect to their energy requirements in order to assess the best
trade-off for every application.We found that the relations are
the same for every thread configuration.

9436 VOLUME 12, 2024



S. Bertazzoni et al.: DSE for Edge Machine Learning Featured by MathWorks FPGA DL Processor: A Survey

FIGURE 27. DarkNet-53 energy required to process one frame. (a) 3D
surface. (b) Conv threads axis projection. (c) FC threads axis projection.

For the sake of clarity, in Fig. 28 we show only the (25, 16)
processor results which is compatible with all the CNNs.

The plot shows how the relations, if inverted, are the
same of Fig. 19. This means that SqueezeNet is the best
choice if the application requires low energy, however, its
accuracy is the lowest one. MobileNet-v2 and DarkNet-19
would be the best trade-offs when both good accuracy and
energy efficiency. If energy is not a critical constraint but
accuracy is, we think Inception-v3 would be the best designer
choice.

FIGURE 28. Accuracy on ImageNet dataset vs energy per frame
for 25 Convolutional and 16 Fully Connected threads.

8) CONSIDERATIONS ON ENERGY EFFICIENCY
According to the previous results, the energy requirements
of the considered networks are related to the size of the
processor. In general, the more threads, the less energy
is required to process a frame. However, in ResNet and
DarkNet families, 36 and 49 Conv threads configurations
may show reduced efficiency. For such reasons, it would be
better to avoid such parameters and to take into consideration
only 64 Conv thread setups when demanding constraints are
mandatory.

It is possible to state that the Conv threads are the leading
parameters when considering the energy efficiency. Again,
it is highly suggested that particular attention be paid to Conv
threads. Less attention can be paid to the tuning of FC threads,
especially when more than 25 Conv threads are used.

We also highlighted that energy and accuracy are not
necessarily related, since the most accurate network can
not necessarily be the most energy-demanding one (e.g.
Inception-v3).

V. CONCLUSION
We provided a Design Space Exploration analysis targeted to
Edge Machine Learning applications. We focused our work
on the FPGA deployment of the most common CNNs using
the novel MATLAB Deep Learning HDL Toolbox on the
AMD-Xilinx ZC706 development board.

Overall, the Convolutional threads of the implemented
Deep Learning Processor IP are the leading parameter to
tune the required hardware resources, energy efficiency,
and inference speed. The choice of the number of Fully
Connected threads does not make a real difference in the
general performance. Moreover, we discourage the use of
medium-sized systems (i.e. 25, 36, and 49 Conv threads)
since their performance may not be improved if compared
to small-sized ones.

In order to evaluate the amount of FPGA resources needed
by the design, BRAM usage can be considered as the worst

VOLUME 12, 2024 9437



S. Bertazzoni et al.: DSE for Edge Machine Learning Featured by MathWorks FPGA DL Processor: A Survey

case. The only exception is in 64 Conv threads configuration,
where the worst usage case depends on DSP. Since power
dissipation is always between 4.5W and 7.5W, we can state
that the system is suitable for Edge, embedded, and IoT use
cases.

Among the compatible CNNs for classification tasks,
SqueezeNet is the fastest, while DenseNet-201 is the slowest.
It is important to note that, according to our study, faster
inference speed does not necessarily imply higher recognition
accuracy. Inception-v3 is the best trade-off in terms of
speed/accuracy balance.

Concerning energy, we can state that the maximum con-
figuration (64, 16) has the best figure for energy efficiency.
In general, bigger systems have better efficiencies. Moreover,
we observed that the faster a network is, the lower is the
energy required to process one frame.

This paper proposes to be an aid for developers in
implementing CNN on FPGA devices using automated CAD
tools. We have shown how, depending on the need and
application, performance and power consumption inherent to
Edge Computing can be achieved [5].

Future developments will include the study of LSTM-type
networks, and the development of a software toolbox to find
the best combination of parameters from the specifications
given by the designer.

ACKNOWLEDGMENT
This work has been supported by the Spoke 1 FutureHPC &
BigData of the Italian Research Center on High-Performance
Computing, Big Data and Quantum Computing (ICSC)
funded by MUR Mission 4 - Next Generation EU. The
authors would like to thank Advanced Micro Devices Inc.
(AMD) for providing the FPGA hardware and software tools
with the AMD-Xilinx University Program.

REFERENCES
[1] Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W.-J. Hwang,

and Z. Ding, ‘‘A survey of multi-access edge computing in 5G and beyond:
Fundamentals, technology integration, and state-of-the-art,’’ IEEE Access,
vol. 8, pp. 116974–117017, 2020.

[2] G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino, M. Re, A. Ricci,
and S. Spano, ‘‘An FPGA-basedmulti-agent reinforcement learning timing
synchronizer,’’ Comput. Electr. Eng., vol. 99, Apr. 2022, Art. no. 107749.

[3] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, ‘‘Learning-
based computation offloading for IoT devices with energy harvesting,’’
IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1930–1941, Feb. 2019.

[4] Z. Xing, S. Zhao, W. Guo, F. Meng, X. Guo, S. Wang, and H. He, ‘‘Coal
resources under carbon peak: Segmentation of massive laser point clouds
for coal mining in underground dusty environments using integrated graph
deep learning model,’’ Energy, vol. 285, Dec. 2023, Art. no. 128771.

[5] V. H. Kim and K. K. Choi, ‘‘A reconfigurable CNN-based accelerator
design for fast and energy-efficient object detection system on mobile
FPGA,’’ IEEE Access, vol. 11, pp. 59438–59445, 2023.

[6] C. Sestito, S. Perri, and R. Stewart, ‘‘Design-space exploration of quantized
transposed convolutional neural networks for FPGA-based systems-on-
chip,’’ in Proc. IEEE Int. Conf. Dependable, Autonomic Secure Comput.,
Int. Conf Pervasive Intell. Comput., Int. Conf. Cloud BigData Comput., Int.
Conf. Cyber Sci. Technol. Congr. (DASC/PiCom/CBDCom/CyberSciTech),
Sep. 2022, pp. 1–6.

[7] L. R. Juracy, A. de Morais Amory, and F. G. Moraes, ‘‘A fast, accurate, and
comprehensive PPA estimation of convolutional hardware accelerators,’’
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 69, no. 12, pp. 5171–5184,
Dec. 2022.

[8] N. Ali, J.-M. Philippe, B. Tain, and P. Coussy, ‘‘Exploration and generation
of efficient FPGA-based deep neural network accelerators,’’ in Proc. IEEE
Workshop Signal Process. Syst. (SiPS), Oct. 2021, pp. 123–128.

[9] M. Ferianc, H. Fan, D. Manocha, H. Zhou, S. Liu, X. Niu, and W.
Luk, ‘‘Improving performance estimation for design space exploration for
convolutional neural network accelerators,’’ Electronics, vol. 10, no. 4,
p. 520, Feb. 2021.

[10] A. Montgomerie-Corcoran, S. I. Venieris, and C.-S. Bouganis, ‘‘Power-
aware FPGA mapping of convolutional neural networks,’’ in Proc. Int.
Conf. Field-Program. Technol. (ICFPT), Dec. 2019, pp. 327–330.

[11] S. Goel, R. Kedia, R. Sen, and M. Balakrishnan, ‘‘EXPRESS: CNN
EXecution time PREdiction for DPU DeSign space exploration,’’ in Proc.
Int. Conf. Field-Program. Technol. (ICFPT), Dec. 2022, pp. 1–2.

[12] L. R. Juracy, M. T. Moreira, A. de Morais Amory, A. F. Hampel, and
F. G. Moraes, ‘‘A high-level modeling framework for estimating hardware
metrics of CNN accelerators,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 68, no. 11, pp. 4783–4795, Nov. 2021.

[13] A.Mazouz and C. P. Bridges, ‘‘Automated offline design-space exploration
and online design reconfiguration for CNNs,’’ in Proc. IEEE Conf.
Evolving Adapt. Intell. Syst. (EAIS), May 2020, pp. 1–9.

[14] M. Hailesellasie, S. R. Hasan, andO. A.Mohamed, ‘‘MulMapper: Towards
an automated FPGA-based CNN processor generator based on a dynamic
design space exploration,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2019, pp. 1–5.

[15] C. Pham Quoc, X. Q. Nguyen, and T. N. Thinh, ‘‘Hardware/software co-
design for convolutional neural networks acceleration: A survey and open
issues,’’ in Proc. Int. Conf. Context-Aware Syst. Appl. Cham, Switzerland:
Springer, 2021, pp. 164–178.

[16] C. Pham-Quoc, X.-Q. Nguyen, and T. N. Thinh, ‘‘Towards an FPGA-
targeted Hardware/Software co-design framework for CNN-based edge
computing,’’Mobile Netw. Appl., vol. 27, no. 5, pp. 2024–2035, Oct. 2022.

[17] The MathWorks, Inc. (2023). Deep Learning HDL Toolbox.
Accessed: Sep. 26, 2023. [Online]. Available: https://www.mathworks.
com/products/deep-learning-hdl.html

[18] L. Canese, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, M. Re, and
S. Spanò, ‘‘FPGA-based road crack detection using deep learning,’’ in
Proc. Int. Conf. Syst.-Integr. Intell., Genova, Italy. Cham, Switzerland:
Springer, Sep. 2022, pp. 65–73.

[19] The MathWorks, Inc. (2023). Deep Learning Processor IP Core
Architecture. Accessed: Sep. 26, 2023. [Online]. Available: https://www.
mathworks.com/help/deep-learning-hdl/ug/deep-learning-processor-
architecture.html

[20] The MathWorks, Inc. (2023). Supported Networks, Layers,
Boards, and Tools. Accessed: Sep. 26, 2023. [Online]. Available:
https://www.mathworks.com/help/deep-learning-hdl/ug/supported-
networks-layers-boards-and-tools.html

[21] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, ‘‘Quan-
tized neural networks: Training neural networkswith low precisionweights
and activations,’’ J. Mach. Learn. Res., vol. 18, no. 1, pp. 6869–6898, 2017.

[22] S. Spanò, L. Canese, and G. C. Cardarilli, ‘‘Profiling of CNNs using the
MATLABFPGA-based deep learning processor,’’ inProc. 17th Conf. Ph.D
Res. Microelectron. Electron. (PRIME), Jun. 2022, pp. 121–124.

[23] The MathWorks, Inc. (2023). AXI Manager. Accessed: Nov. 8, 2023.
[Online]. Available: https://www.mathworks.com/help/hdlverifier/axi-
manager-xilinx.html

[24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

STEFANO BERTAZZONI received the Ph.D.
degree in physics, specializing in microelectronics
and telecommunications, from the Tor Vergata
University of Rome. He is currently a Researcher
with the Department of Electronic Engineering
and a Professor of digital electronics with the
Tor Vergata University of Rome. He is also
the Founder of Xenta, a company specializing
in the Yachting Industry, particularly in the
development and integration of advanced marine

control systems. His research interests include the development of neural
networks with statistical learning functions and VLSI implementation, the
investigation of electronic device performance in radiation environments,
and the development of acquisition and data processing systems for optical
RADARs.

9438 VOLUME 12, 2024



S. Bertazzoni et al.: DSE for Edge Machine Learning Featured by MathWorks FPGA DL Processor: A Survey

LORENZO CANESE received the M.S. degree
(summa cum laude) in electronic engineering from
the Tor Vergata University of Rome, in 2020,
where he is currently pursuing the Ph.D. degree
in electronic engineering. His research interests
include machine learning, swarm intelligence,
ASIC/FPGA hardware design, and the design and
digital implementation of multi-agent reinforce-
ment learning algorithms.

GIAN CARLO CARDARILLI (Life Member,
IEEE) was born in Rome, Italy. He received the
Laurea degree (summa cum laude) from Sapienza
Università di Roma, in 1981. Since 1984, he has
been with the Tor Vergata University of Rome,
where he is currently a Full Professor of digital
electronics and electronics for communication
systems. From 1992 to 1994, he was with the
University of L’Aquila. From 1987 to 1988,
he was with the Circuits and Systems Team, EPFL,

Lausanne, Switzerland. He works in the field of computer arithmetic and
its application to the design of fast signal digital processors. He has also
regular cooperation with companies, such as Alcatel Alenia Space, Italy;
STM, Agrate Brianza, Italy; Micron, Italy; and Selex S.I., Italy. His research
interests include VLSI architectures for signal processing and IC design.
In this field, he has published more than 160 papers in international
journals and conferences. His scientific interest includes the design of special
architectures for signal processing.

LUCA DI NUNZIO (Member, IEEE) received the
master’s degree (summa cum laude) in electronics
engineering and the Ph.D. degree in systems and
technologies for space from the Tor Vergata Uni-
versity of Rome, in 2006 and 2010, respectively.
He is currently an Adjunct Professor with the Dig-
ital Electronics Laboratory, Tor Vergata University
of Rome, and an Adjunct Professor of digital
electronics with Guglielmo Marconi University.
He has experience with several companies in the

fields of electronics and communications. His research interests include
reconfigurable computing, communication circuits, digital signal processing,
and machine learning.

ROCCO FAZZOLARI received themaster’s degree
in electronic engineering and the Ph.D. degree in
space systems and technologies from the Tor Ver-
gata University of Rome, Italy, in 2009 and 2013,
respectively. He is currently a Postdoctoral Fellow
and an Assistant Professor with the Department of
Electronic Engineering, Tor Vergata University of
Rome. He works on hardware implementation of
high-speed systems for digital signals processing,
machine learning, the array of wireless sensor

networks, and systems for data analysis of acoustic emission (AE) sensors
(based on ultrasonic waves).

MARCO RE (Member, IEEE) received the Ph.D.
degree in microelectronics. He is currently an
Associate Professor with the Tor Vergata Univer-
sity of Rome, where he teaches digital electronics
and hardware architectures for DSP. He was
awarded two NATO fellowships with Cadence
Berkeley Laboratories, University of California
at Berkeley, as a Visiting Scientist. He has been
awarded the Otto Moensted Fellowship as a
Visiting Professor with the Technical University

of Denmark. He collaborates in many research projects with different
companies in the field of DSP architectures and algorithms. He is the
author of about 200 papers in international journals and international
conferences. His main research interests include low-power DSP algorithms
architectures, hardware-software codesign, fuzzy logic and neural hardware
architectures, low-power digital implementations based on non-traditional
number systems, computer arithmetic, and CAD tools for DSP. He is a
member of the Audio Engineering Society (AES). He is also the Director of a
Master inAudio Engineeringwith theDepartment of Electronic Engineering,
Tor Vergata University of Rome.

SERGIO SPANÒ received the bachelor’s, mas-
ter’s, and Ph.D. degrees (summa cum laude) in
electronic engineering from the Tor Vergata Uni-
versity of Rome, in 2015 and 2018, respectively.
Since 2022, he has been an Adjunct Professor
with the Tor Vergata University of Rome, where
he is currently a Postdoctoral Research Fellow.
In addition, he is an Adjunct Professor with
the ‘‘Guglielmo Marconi’’ University of Rome.
He has several industrial work experiences in the

fields of space and telecommunications. His research interests include
digital signal processing, machine learning, the IoT, the development of
telecommunication systems, and the implementation of machine learning
accelerators for embedded and low-power systems.

Open Access funding provided by ‘Università degli Studi di Roma ''Tor Vergata''’ within the CRUI CARE Agreement

VOLUME 12, 2024 9439


