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ABSTRACT The fast development of smart home devices and the Internet of Things (IoTs) presents
unprecedented accessibility into our day-to-day lives; however, it has also increased major problems
regarding security and privacy. A smart home network is a vital element of modern home automation systems,
enabling the interconnectivity and control of different smart devices. These networks allow homeowners
to remotely control lighting, security, temperature, and entertainment systems via voice commands or
smartphones. These offer energy efficiency, convenience, and improved security by permitting residents to
monitor and modify their living surroundings. Safeguarding the flexibility of smart home networks against
cyberattacks and unauthorized access is important to comprehending the maximum ability of smart living
while retaining data integrity and privacy of connected devices. This research develops the Blockchain
with Red-Tailed Hawk Algorithm-Enabled Deep Learning (BC-RTHADL) model, aimed to strengthen the
safety of smart home systems. BC-RTHADL integrates the safety features of blockchain with a strong
malicious action recognition procedure. The blockchain module certifies immutability, transparency, and
decentralization, donating to a safe smart home atmosphere. The malicious action detection influences the
Red-Tailed Hawk Algorithm for feature selection and an ensemble of Extreme Learning Machine (ELM),
Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM) techniques for precise recognition.
The Equilibrium Optimizer algorithm enhances parameters for improved effectiveness. Complete tests show
the greater performance of BC-RTHADL across numerous metrics, reaffirming its promising potential in
safeguarding smart home networks.

INDEX TERMS Blockchain, deep learning, ensemble learning, red-tailed hawk algorithm, feature selection.

I. INTRODUCTION healthiness, enhanced regular living, etc [1]. Smart home
A smart home is nothing but an Internet of Things (IoT) techniques have been mainly proficient in creating people’s
combined residence that provides users security, comfort, lives more easily and improved. It offers beneficial tools such
as tracking behaviors and then safety assessments, which

The associate editor coordinating the review of this manuscript and involve consumers’ and device designers’, care [2]. While
approving it for publication was Byung-Seo Kim . intelligent homes deliver many profits to landholders and
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concerned individuals these can theoretically be in malicious
danger of cyberattacks to risk consumers’ security as well
as confidentiality. Such dangers have predictable solutions,
which are federal and helpless to fierce occurrences [3].
Therefore, scalability and flexibility are needed for the right
use in innovative regions of independent smart home uses
and facilities. Numerous intelligent techniques make people’s
lives easier. This kind of program offers a massive quantity of
data [4]. The storage of such regularly developing data into
sources forms security worries.

Blockchain (BC) provides promising performance as a
keystone of cybersecurity organizations in a diversity of smart
home models such as data transmission and remote connec-
tivity. BC models and centralized storage systems are mainly
employed to find out these problems [5]. BC technique
was invented by Satoshi Nakamoto in 2008 and contained
within a timestamped assortment of malice-proof documents
that measured by a community of decentralized methods.
Decentralization, inflexibleness, and honesty are the bases of
the BC method. The 3 functions protracted their doors to a
huge extent of uses such as the nature of digital money and
probability analysis of intelligent uses, while the BC model
assurances safety [6]. For example, types of attacks currently
grow highly difficult such as the majority of attacks directed
choose, Sybil attacks for false identity formation in observing
accord.

BC technique is a decentralized database. The dealings
being achieved by the chain are support of technology. The
blocks of data spread are protected by employing crypto-
graphical models. After a novel block is combined into the
chain, it is highly thought that the novel block can able to
cooperate with all other blocks in the chain [7]. Proof of
Work (PoW) is an effective method that is mainly employed
for merging blocks by adding a hash function in the present
block and then piting it. PoW offers a very simple technique
with broad control and acquires node-free access. However,
with the benefits, it is likely to be a waste of energy [8].
For managing the continuously developing smart BC-based
applications [9], it is important to make a versatile and robust
system. Machine learning (ML) is a technique that comprises
computers, which clarifies itself by employing an intelligent
approach [10]. Based on one argument, ML is the foremost
usage case of Artificial Intelligence (AI). The system of
ML supports machines for solving activities without being
programmed [11]. The main aim of this category of analysis
is to design a realistic technique, which can be obtained data
from the input and predict it. Also modifying the outputs
employing statistical analysis [12]. By implementing ML,
one could process a large data quantity and attain a decision
that depends on facts.

This study presents a blockchain with a red-tailed hawk
algorithm-enabled deep learning (BC-RTHADL) technique
for securing smart home networks. The purpose of the
BC-RTHADL technique is to accomplish security via BC and
malicious activity detection. Besides, the BC-RTHADL tech-
nique, the malicious activity recognition process takes place

VOLUME 12, 2024

using the based feature selection (FS) approach. The extreme
learning machine (ELM), gated recurrent unit (GRU), and
long short-term memory (LSTM) models are the ensem-
ble of three models of the BC-RTHADL technique for the
recognition process. At last, the equilibrium optimizer (EO)
algorithm is applied for the optimal parameter tuning process.
A wide range of experiments were implemented to illustrate
the higher efficiency of the BC-RTHADL method.

Il. LITERATURE REVIEW

Almugren et al. [13] propose a BC-aided secured Smart
Home Network employing a Gradient Optimizer with a
Hybrid DL (BSSHN-GBOHDL) approach. The proposed
method uses BC methodology to enhance data privacy
in the smart home atmosphere. GBO technique helps in
expert hyperparameter selection of HDL as well as to
achieve enlarged recognition efficiency. Shah et al. [14] pre-
sented an Al- and BC-assisted safe structure to challenge
network-related occurrences on smart home methods. Mean-
while, IoT devices in smart home methods utilize weaker
network edges and rules, attackers influence this state and
exploit sensor data exchange. Therefore, the vulnerability of
these methods to cyber threats as well as unapproved access
is considerably delicate, posing dangerous safety hazards and
underlining essential for strong defensive events and innova-
tive safety answers.

The authors in [15] present an Optimal ML-based IDS
for Privacy-Preserving BloT in (OMLIDS-PBIoT) Smart city
environments. The developed method feats BC and ML mod-
els to achieve safety in the smart city atmosphere. To achieve
this, the developed technology uses data pre-processing in an
early phase to convert information into a well-matched setup.
Furthermore, the study presents a golden eagle optimization
(GEO)-based feature selection (FS) technique to originate
suitable feature subsets. Apat et al. [16] developed a Block-
CFS architecture which is an advanced BC-aided fog com-
puting structure as a secure data-tranmiss system for smart
homes. As well as it demonstrates a systematic sequence
diagram for BlockCFS to register and transmit information
from a wide range of smart devices that are related.

Li et al. [17] present a novel ITS structure by employing
the BC technique that solves confidentiality shield and safety
issues as well as helping consumers and vehicles to offer
data to ITSs. The offered design employs BC as a trust struc-
ture to guard consumers’ confidentiality and deliver reliable
services. It is also well-matched with legacy ITS structure
and services. In [18], recommended a BC-aided secured data
management framework (BSDMF) for information on health
depending on IoMT to firmly alter patient information and
improve scalability as well as data availability healthcare
atmosphere. A developed BSDMF delivers secured data man-
agement among individual servers and implantable medical
strategies amongst personal and cloud servers.

Algaralleh et al. [19] project DL with BSDMF and
analysis technique for IoMT atmosphere. At first, elliptic
curve cryptography (ECC) is used, and the main group
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of ECC takes place by employing the grasshopper with
fruit fly optimization (GO-FFO) method. Next, the neigh-
borhood indexing sequence with burrow wheeler transform
(NIS-BWT) is mainly utilized to translate hash values.
Lastly, a DBN model is applied for detection techniques
to identify the occurrence of disease. Bargayary et al. [20],
authors greatly use features of BC to authorize consumers in
Software-Defined Network IoT (SDN-IoT) systems. It offers
central organization of rising IoT devices. BC is nothing but
the tamper-proof and decentralized technique for sharing and
storing authentication data that makes it appropriate for the
system.

Khan et al. [21] present a resource-efficient, BC-based
solution for safe and private IoT. The effective solution is
made likely over new exploitation of computational resources
in a usual IoT atmosphere (e.g., smart homes), besides the
usage of an example of Deep Extreme Learning Machine
(DELM). Lee et al. [22] developed a BC-based smart home
gateway network that stands probable attacks on the gateway
of smart homes. The BC technology is used at the gateway
layer where data is kept and replaced in the method blocks
of BC to support decentralization and overcome the issue
from traditional centralized architecture. In [23], private BC
execution employing Ethereum smart contract is proposed for
the smart home to ensure only the homeowner can access
and observe home uses. Simple smart contracts are intended
to permit devices to interconnect without the necessity for
a reliable third party. In [24], a private BC-based smart
home network architecture for assessing intrusion detection
empowered with a Fused Real-Time Sequential DELM (RTS-
DELM) model is presented. This research examines the
approach of RTS-DELM employed in BC-based smart homes
to detect any malicious action.

Ill. THE PROPOSED MODEL

In this study, we have presented a new BC-RTHADL tech-
nique for securing smart home networks. The purpose of the
BC-RTHADL technique is to accomplish security via BC and
malicious activity detection. Fig. 1 demonstrates the entire
process of the BC-RTHADL technique.

A. BC TECHNOLOGY

The BC-RTHADL method exploits BC technology to
increase data confidentiality in the smart home environ-
ment. In the CPS environment, the BC technique was mainly
developed to reinforce security [25]. A BC is an absolute dis-
tributed dataset where time-marked transactions are gathered
as well as attached to a hash chain of blocks.

A fundamental protocol of BC defines how many copies
of the block could be kept and built in a spread method.
One of the critical factors of this procedure is to determine
how a network of contestants termed miners can able to
define agreement on the current state of BC. Public, private,
permissioned, and permission-less are the different types of
BC architecture. Also, PoW and Proof of Stake (PoS) are
the dual dominant methods. When this task finished, a novel
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FIGURE 1. Overall process of the BC-RTHADL technique.

transaction was added to BC. Entire blocks hold an exclusive
code termed hash that contains previous blocks in the chain
and is used for linking blocks collected in a certain order. Few
miners must execute a set of computations to create reliability.
This calculation solves a puzzle for charting arbitrary-sized
data into stable size. Whereas in other methods, a leader
must be preferred over one among the dual models. In PoW,
numerous miners attempt to solve the puzzle, and one who
finishes at an initial stage will be broadcasted to group proof.
Then, the other miner authorizes whether the work finished
is precise or not. When the confirmation is over, they select
a definite miner as leader. The foremost aim of the block
is to keep a list of established transactions by cryptographic
hash function. This function is useful due to the following
properties:

« Delivers an output of fixed size irrespective of input size.

o Determined that make related output for a delivered

input.
« Itis unchangeable that receiving related input from out-
put is difficult.

« An original input creates a novel output.

o Hash computation quicker with minimum overhead.

The block in BC is associated with early genes of block
and established by hash. Every block is related through the
link of each hash that suggests all blocks contain the previous
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hash and acquire hash in the next block. Such alteration to
hash prompts the chain to be destroyed then a unique hash is
attached to the subsequent block. Recount the original hash
for rejuvenating and then the chain needs a huge amount of
computation power. In addition, we add nonce so the miner
plays with data to create a hash that output has 3 zeroes.
Once the miner originates a nonce, then it chiefs to block hash
below the challenging threshold. At last, it is considered that
the block is effective and spread to the network. BC can able
to shield the honesty of data storage and safeguard procedure
transparency as well as can be used in an intrusion detection
area. The deficiency of universal trust suggests an essential
for the distributed consensus tool for block validation in BC
technology. BC-based anomaly classification techniques are
mainly employed to improve security.

B. FEATURE SELECTION USING RTHA
The malicious activity recognition process takes place using
RTHA for the feature selection process. The RTHA technique
stimulates the hunting behaviour of red-tailed hawks [26].
The actions taken during the hunting process are modelled
and presented. Low soaring, high soaring, and stooping and
swooping are three different phases of RTHA.

High soaring: the individuals soar far into the sky, search-
ing for a better place relating to food availability, and the
mathematical modelling is shown in Eq. (1):

X (t):Xbest"‘(Xmean_X (t_l)) 'Levy (dlm) -TF (t) (1)

In Eq. (1), the red-tailed hawk location at the ™ iteration
is X (), the optimal location attained so far is Xpes, Xmean
denotes the locations’ mean, Levy denotes the levy fight dis-
tribution function and the transition factor function is denoted
as TF(1).

-0

Levy(dim) = s'u—f1
v|P

o F(1+ﬁ)-sin(%) o

r (#) B .2(1—§)

where the problem dimension is dim, § is a constant (1.5), s
is a constant (0.01), and u and v are random integers [0,1].

TF (t)=1+sin (2.5+ (T;)) 3)

where Thax indicates the maximum iteration counter.

Low soaring: the individuals encircle the target by flying
lower toward the ground in a spiral line and the mathematical
modelling is shown in Eq. (4):

X (1) = Xpest + (x (t) +y (1)) .StepSize (t)
StepSize(t) = X (1) — Xmean 4)

where x and y are coordinate directions

x(t) = R(t) - sin0®)) [ R(t) = Ro-(r — t/Tmax)-rand
¥(t) = R(t) - cos(@(t)) | 6 (t) = A-(1—t/Tmax)-rand
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[ x(t) = x(t)/max|x(?)| (3)

y(t) = y(t)/max]y () |

where r denotes a control gain [1], [2], the initial value ranges
within [0.5—3] is Rp, A indicates the angel gain [515], and
rand shows the random integer [0,1]. This parameter helps
the hawk fly around the target with spiral movement.
Stooping and Swooping: The hawk rapidly stoops and
attacks the target from the optimum location during low
soaring and the mathematical modelling is shown in Eq. (6):

X (1) = o (t) Xpess + x (t) .StepSizel (¢)

+ y (¢) .StepSize2 (t) 6)
StepSizel (t) = X (1) — TF (t) Xmean
StepSize2(t) = G(t)-X(1)—TF (t)-Xpest @)

where the acceleration and the gravity factors are @ and G
respectively:

o (t) = sin?(2.5—1/ Tmax)

t
G(t) =2 (1 - T{ﬂﬂ) ®)

In Eq. (8), the acceleration « of hawk rises with increasing ¢
to improve the convergence rate and the gravity effect G that
reduces the exploitation diversity once they get nearer to the
target.

Choosing a relevant feature that aids the classifier in iden-
tifying a sample class in data is challenging [27]. In the
selection process, it is necessary to improve the performance
of classification problems and automatically eliminate the
unnecessary ones for the classification once the selected fea-
ture. The RTHA is used to find the optimum feature subset
and exploits the classifier for calculating the classification
performance. Where A, denotes classification accuracy by
represents the feature subset dimension, and D is the overall
amount of features in the dataset. Thus, the classifier error
is 1 — A, and the subset of features selected from the data
is represented as I‘:ZTS,. Therefore, the fitness function can be
described as follows:

iFitness:M-(l—AC)+(1_M).% 9)
t

In Eq. (9), the weight allocated to the error classification is
n e [0,1].

C. ENSEMBLE LEARNING-BASED CLASSIFICATION

In this work, GRU, LSTM, and ELM models are used in the
ensemble of three models in the BC-RTHADL technique for
the recognition process.

1) LSTM

LSTM is a kind of RNN that is proficient in forecasting long
as well as short-term needs in time sequence information [28].
When compared to a simple RNN, the use of LSTM is
capable of solving the vanishing gradient problems, where
the training behavior of the system overloads after a defi-
nite amount of training iteration. Additionally, time-delayed
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FIGURE 2. LSTM architecture.

effects representation is significant for unstable aerodynamic
modelling and combined in the LSTM model. The LSTM cell
procedures external data via forget, input, and output gates.
Fig. 2 represents the structural design of LSTM.

The forget gate f procedures input of present time stage x;
and vector signifies output from preceding time phase 4;_1,
which is mentioned as a hidden layer (HL) of LSTM cell:

fi =0 (Wpxi + Whi—y + by) . (10)

Both inputs of the forget gate increased with weights Wy
and bias by added. By using sigmoid (o) activation, portions
of data received are rejected from the cell.

Equivalent to the forget gate, the input gate also procedures
existing time phase x; and HL from the previous time step
h;—1 by sigmoid activation function:

ir =0 (Wix; + Wihy_1 + b)) (1D

W; defines weigh and b; defines the bias of the input gate.
In 2nd stage, both inputs are managed by the tanh activation
that forms novel cell state vector ¢;:

¢;= tanh (Wyx; + Wyhi_1 + byp) . (12)

Depending on the new cell state ¢;, old data in the cell is
upgraded. So, the cell state from the prior time stage c;_1
increased with forgetting gate vector f; and the current cell
state upgraded by input gate vector i;:

¢t = fici—1 +ircy. (13)

After passing the input gate, the current input data is x;, the
previous HL is h;_1 and the current cell state is ¢; managed
by a sigmoid and tanh activation:

0 =0 (Wox; + Wohi—1 + by)
hy = o; - tanh (¢;) . (14)

A forecast labeled by upgraded HL #; that are conveyed to
the next HL or output layer.
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2) GRU
GRU and LSTM belong to RNN [29]. The main dissimilarity
of GRU is that it integrates input and forget gate into the
update gate, hence GRU has less trainable parameters, simple
converges, and quicker trainable rapidity. Similarly, GRU is a
modified LSTM that deals with the extended distance neces-
sity issue of RNN, precisely forecasts via engaged memory
data, and trains semantic data that follows to number of exact
areas. GRU training text comes with robust suitability as well
as the significance of non-continuous related data. So, we can
employ GRU for feature learning as well as memory.

Due to the special gate structure, GRU selects information
to transfer to control data. The expressions are described
below:

2 =0 (Wox; + Uzhy—y) (15)
rr =0 (Wyx; + Urhi—1) (16)
hy = tanh (Wyx, + Uy, (ry © hy—1)) (17)
he = (1 — z) Ohy—1 + 2 Oh (18)

whereas W;, U, W,, and U, signify the weight matrix of
update and reset gates. Wy and Up denote candidate HL.
o () represents the sigmoid function, r;, and z; symbolize
the status of reset and update gates, tanh(-) signifies the
hyperbolic tangent function, and © represents the Hadamard
product operator. A, signifies hidden state at time 7.t refers to
candidate HL.x; characterizes model input.

GRU defines its output over dual instants beforehand as
well as afterwards so that it learns semantic features of
context when handling consecutive text. However, it does
not have special attention, therefore we include a word-level
attention device on the GRU base for improving the symbol
of references compared to other words.

3) ELM MODEL

The ELM model allows a unified pattern with a broad range
of feature communications used in the HL that are directly
exploited in multi-class classification and regression [30].
ELM is a learning algorithm for Single Hidden Neural Net-
work (SHNN) that offers random initialization for input
weights and biases together with the evaluation of analytic
output weights. D-dimension classification with N number
of training instances can be given as follows:

(xm)’ t(")) ’

Forn=1: N,t™eRK and x"eRP,
A feedforward ELM model can be expressed as follows:

n=1:N 19)

M
(=" Bmg (whe® + b (20)
m=1

In Eq. (20), b,, denotes the bias of m' neurons of the HL,
g(+) describes the activation function, M defines the neurons
of HL, wy,= [Win1, Wm2, - . . ,Wimp] indicates the weight input
vector that links the input neuron to the m™ neurons of the HL,
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Bm = [Bm1s Bm2, - - -, Bmk] defines the weight vector which
links the output layer to m"" neurons of HL. This concept can
be obtained by the following expression:

HxpB=T 1)
where
¢ (WD + b)) ¢ (x4 by)

H = : : (22)
g (wlTx(N) + b]) g (w,{,,x(N) + bM)
H=1B{. By - Bulisn (23)
T=0T (24)

Meanwhile, if the number of training instances is more
than HL neurons, then H will be a non-square matrix. Hence,
the Moore-Penrose matrix inverse (H 1) is used. To overcome
these problems:

p=HIxT (25)

D. EO-BASED PARAMETER TUNING
At last, the EO algorithm is exploited for the optimal param-
eter tuning process. EO is the new optimization algorithm
inspired by the physical behavior and the balance of control
volume mass with equilibrium and dynamic states [31]. Every
searching agent randomizes its concentration in line with the
better solution attained so far to obtain the optimum solution
(viz., equilibrium state). To prevent from getting into local
minima and improve its search abilities, the EO applied ‘““gen-
eration rate”’. The EO optimization strategy can be discussed
in the following

Stepl: Randomly generate the initial population of concen-
tration.

ngitial = lbj =+ l"(ll’ldj.(ubj — lbj),
i=1,2,... N, j=1,2,....n (26)

In Eq. (26), the size of the population is N, the i’ initial
vector of particles of the j concentration is QZ””“I. rand
denotes the random integer ranges within [0,1].

Step2. In the optimization-seeking technique, generate the
equilibrium pooling (équ poot) With the four different particles
as follows:

Qeq,pool = {Qeq(l)a Qeq(2)9 Qeq(?’)’ Qeq(4)a Qeq(ave)} (27)

Step3. Update the particle concentration after randomly
choosing candidate Q to guide the search.

lal

0 =0c+ (0= 0cq) F+=(1-F) (28)

14
F

In Eq. (28), V represents a unit, and F' denotes the vector

of the exponential term
F = by.sign (7—0.5) [1 — e—V’] (29)

In Eq. (29), y is a turnover rate that falls within [0,1],
and ¢ represents the time that relies on iteration (It) that gets
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TABLE 1. Details on database.

Classes No. of Samples
Normal 65495

Attack 60743

Total No. of Samples 126238

smaller once the iteration count increases and is formulated

below.
lt (b2 hn’;ax )
t=11- 30
( ltmax ( )

The following description applies to the starting point at
time (fp).

fo = %m (—bl.sign F-0.5) [1 — e_7t]) +i Gl

where [It.x defines the maximal iteration size, the con-
stant parameters b1, and by manage the exploration and the
exploitation abilities set to 2, and 1 correspondingly, 7 rep-
resents a uniform distribution random vector within [0-1].
Furthermore, G denotes the generation rate to enhance the
exploitation stage:

G=e¢ 7670 G=FG (32)

0 — — (054 ay>sP
Go = GCP(Q,, — 1.0),GCP = [0 ! ai o O

Now, a; and a, are randomly generated integers within
[0,1]; the parameter GCP controls the generation rate. The
switching probability SP is fixed as 0.5 to accomplish
a good balance between the exploitation and exploration
features.

The EO system develops an FF to accomplish greater
classification solution. It expresses a positive integer to imply
the optimal result of candidate performance. At this point,
the reduction of the classifier errors is supposed that FF,
as defined in Eq. (34).

fitness (x;) = ClassifierErrorRate (x;)

_ No.of misclassified instances*loo (34)

Total no.of instances

IV. EXPERIMENTAL VALIDATION

In this section, the stimulation outcomes are examined on
the NSL-KDD dataset [32], including 2 class labels and
126238 samples as shown in Table 1.

Fig. 3 illustrates the confusion matrices attained by the
BC-RTHADL algorithm at 70:30 and 80:20 of TRPH/TSPH.
The simulation value referred to the efficient detection of the
normal and attack samples under all classes.
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Training Phase (70%) - Confusion Matrix Testing Phase (30%) - Confusion Matrix
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FIGURE 3. Confusion matrices of (a-b) 70:30 of TRPH/TSPH and (c-d)
80:20 of TRPH/TSPH.

TABLE 2. Classification outcome of BC-RTHADL method under 70:30 of
TRPH/TSPH.

Classes ‘ Accu, | Prec, | Reca,; ‘ Fgeore | MCC
TRPH (70%)

Normal | 98.97 | 99.04 | 98.97 | 99.01 | 97.93
Attack 98.96 | 98.89 | 98.96 | 98.93 | 97.93
Average | 98.97 | 98.96 | 98.97 | 98.97 | 97.93
TSPH (30%)

Normal | 98.90 | 99.05 98.90 | 98.98 | 97.89
Attack 98.99 | 98.83 98.99 | 98.91 | 97.89
Average | 98.95 | 9894 | 98.95 | 98.95 | 97.89

In Table 2 and Fig. 4, the detection result of the
BC-RTHADL method under 70:30 of TRPH/TSPH is por-
trayed. The results pointed out that the BC-RTHADL tech-
nique achieves enhanced recognition results. On 70% of
TRPH, the BC-RTHADL method gains an average accuy of
98.97%, prec,, of 98.96%, reca; of 98.97%, Fscore of 98.97%,
and MCC of 97.93%. Additionally, on 30% of TSPH, the
BC-RTHADL method achieves an average accuy of 98.95%,
prec, of 98.94%, reca; of 98.95%, Fscore Oof 98.95%, and
MCC of 97.89%.

Fig. 3 illustrates the confusion matrices attained by the
BC-RTHADL algorithm at 70:30 and 80:20 of TRPH/TSPH.
The simulation value referred to the efficient detection of the
normal and attack samples under all classes.

In Table 2 and Fig. 4, the detection result of the
BC-RTHADL method under 70:30 of TRPH/TSPH is
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FIGURE 4. Average of BC-RTHADL technique under 70:30 of TRPH/TSPH.

TABLE 3. Classification outcome of BC-RTHADL method under 80:20 of
TRPH/TSPH.

Classes I Accu,, | Prec, | Reca,; ’ Fgeore | MCC
80% of TRPH

Normal | 9837 | 99.26 | 98.37 | 98.81 | 97.56
Attack 99.22 98.26 99.22 98.74 | 97.56
Average | 98.79 | 98.76 | 98.79 | 98.78 | 97.56
20% of TSPH

Normal | 98.54 | 99.22 | 98.54 | 98.88 | 97.67
Attack 99.15 98.42 | 99.15 | 98.79 | 97.67
Average | 98.85 98.82 | 98.85 | 98.83 | 97.67

portrayed. The results pointed out that the BC-RTHADL
technique achieves enhanced recognition results. On 70% of
TRPH, the BC-RTHADL method gains an average accu, of
98.97%, precy, of 98.96%, reca; of 98.97%, Fscore of 98.97%,
and MCC of 97.93%. Additionally, on 30% of TSPH, the
BC-RTHADL method achieves an average accu, of 98.95%,
prec, of 98.94%, reca; of 98.95%, Fscore of 98.95%, and
MCC of 97.89%.

In Table 3 and Fig. 5, the detection outcome of the
BC-RTHADL method at 80:20 of TRPH/TSPH is depicted.
The outcome indicated that the BC-RTHADL system gains
improved recognition outcomes. On 80% of TRPH, the
BC-RTHADL algorithm achieves an average accuy of
98.79%, precy, of 98.76%, reca; of 98.79%, Fscore of 98.78%,
and MCC of 97.56%. Furthermore, on 20% of TSPH, the
BC-RTHADL method reaches an average accu, of 98.85%,
prec, of 98.82%, reca; of 98.85%, Fscore of 98.83%, and
MCC of 97.67%.

The training and validation accu, curves of the
BC-RTHADL technique under 70:30 of TRPH/TSPH dis-
played in Fig. 6, provide valuable insights into the outcome
of the BC-RTHADL technique over multiple epochs. These
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FIGURE 5. Average of BC-RTHADL method under 80:20 of TRPH/TSPH.
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FIGURE 6. Accuy curve of BC-RTHADL technique under 70:30 of
TRPH/TSPH.

curves demonstrate the essential insights into the learning
process and the model’s generalization capability. Besides,
it can be noticeable that there is a consistent improvement
in the TR and TS accu, over maximum epochs. It notes that
the model’s capacity to learn and recognize patterns within
both the training and testing datasets. The increasing testing
accuracy recommends that the model not only adapts to the
training data but also excels in making correct predictions on
previously unseen data, highlighting its robust generalization
abilities.

In Fig. 7, we signify a comprehensive view of the TR and
TS loss values for the BC-RTHADL technique under 70:30
of TRPH/TSPH across various epochs. The TR loss progres-
sively decreases as the model optimizes its weights to reduce
classification errors on both TR and TS databases. These loss
curves provide a clear picture of how well the model aligns
with the training data, underlining its capability to effectively
hold patterns in both datasets. It is worth noting that the
BC-RTHADL technique incessantly refines its parameters to
minimize the discrepancies between the predictive and actual
TR labels.

VOLUME 12, 2024

Training and Validation Loss (70:30)

----- Training
—+— Validation

Loss

0.15 -

0.10

0,05

Epochs

FIGURE 7. Loss curve of BC-RTHADL technique under 70:30 of
TRPH/TSPH.
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FIGURE 8. (a-c) PR curve on 70:30 and 80:20 and (b-d) ROC curve on
70:30 and 80:20.

Fig. 8 signifies the classifier performances of
BC-RTHADL algorithm at 70:30 and 80:20. The PR curve
of the BC-RTHADL algorithm is shown in Figs. 8a-8c.
The outcomes inferred that the BC-RTHADL system out-
comes in higher PR values. Moreover, it can be obvious
that the BC-RTHADL algorithm obtains greater PR val-
ues on all classes. Finally, the ROC outcome of the
BC-RTHADL algorithm is demonstrated in Figs. 8b-8d.
The outcome defined that the BC-RTHADL methodol-
ogy resulted in higher values of ROC. In addition, the
BC-RTHADL algorithm extends higher values of ROC on all
classes.

Table 4 offers a comprehensive comparison analysis of
the BC-RTHADL method [13]. In Fig. 9, a comparative
accuy and Fy,p, analysis of the BC-RTHADL technique. The
results highlighted that the BC-RTHADL technique reaches
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TABLE 4. Comparative outcome of BC-RTHADL technique with existing
models.

== BC-RTHADL mm DELM Model
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FIGURE 10. Precp and reca; outcome of BC-RTHADL technique with other
methods.

TABLE 5. CT outcome of BC-RTHADL technique with existing approaches.

Methods Accu,, Prec, Reca, Fscore
BC-RTHADL 98.97 98.96 98.97 98.97
BSSHN- GBOHDL 98.29 98.34 98.29 98.31
ANN Based IDS 81.43 80.74 81.67 82.26
GAN Algorithm 86.09 87.48 87.68 88.46
DELM Model 93.52 94.75 94.28 93.8
RTS-DELM 94.85 95.2 94.73 94.36
SYD Model 94.83 96.11 96.41 97.55
DNN Algorithm 94.51 94.16 95.21 95.94
Emm BC-RTHADL 1 DELM Model
I BSSHN- GBOHDL mmm RTS-DELM
= ANN Based IDS 3 SYD Model
I GAN Algorithm @ DNN Algorithm
100 -
;‘E —
n
Q —
2
©
>

Accuracy F-Score

FIGURE 9. Accuy and Fscore outcome of BC-RTHADL technique with other
methods.

enhanced performance. Based on accuy, the BC-RTHADL
technique provides increased accuy of 98.97% whereas the
BSSHN-GBODL, ANN-based IDS, GAN, GELM, RTS-
DELM, SYD, and DNN techniques accomplish decreased
accuy values of 98.29%, 81.43%, 86.09%, 93.52%, 94.85%,
94.83%, and 94.51%, correspondingly. Additionally, based
on Feore, the BC-RTHADL approach offers a superior Fseore
of 98.97% whereas the BSSHN-GBODL, ANN-based IDS,
GAN, GELM, RTS-DELM, SYD, and DNN methods gain
reduced F o values of 98.31%, 82.26%, 88.46%, 93.8%,
94.36%, 97.55%, and 95.94%, correspondingly.

In Fig. 10, a comparative prec, and reca; outcomes of the
BC-RTHADL algorithm. The simulation value defined that
the BC-RTHADL method attains improved outcomes. Based
on prec,, the BC-RTHADL method achieves a maximal
prec, of 98.96% whereas the BSSHN-GBODL, ANN-based
IDS, GAN, GELM, RTS-DELM, SYD, and DNN approaches
realize minimal prec, values of 98.34%, 80.74%, 87.48%,
94.75%, 95.2%, 96.11%, and 94.16%, correspondingly.
Furthermore, based on reca;, the BC-RTHADL technique
provides increased reca; of 98.97% whereas the BSSHN-
GBODL, ANN-based IDS, GAN, GELM, RTS-DELM,
SYD, and DNN approaches achieve reduced reca; values
of 98.29%, 81.67%, 87.68%, 94.28%, 94.73%, 96.41%, and
95.21%, correspondingly.
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Methods Computational Time (Sec)
BC-RTHADL 03.59
BSSHN- GBOHDL 07.85
ANN Based IDS 18.05
GAN Algorithm 18.58
DELM Model 13.63
RTS-DELM 09.51
SYD Model 11.78
DNN Algorithm 09.74
25.0
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FIGURE 11. CT outcome of BC-RTHADL technique with recent approaches.

Finally, a comprehensive computation time (CT) result
of the BC-RTHADL approach with other techniques is
given in Table 5 and Fig. 11. The outcome indicated that
the BC-RTHADL method reaches better performance with
a minimal CT value of 3.59s. On the other hand, the
existing BSSHN-GBODL, ANN-based IDS, GAN, GELM,
RTS-DELM, SYD, and DNN models obtain increased CT
outcomes. Thus, the BC-RTHADL technique is found to be
superior to other models.
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The BC-RTHADL model determines greater performance
owing to its new mixture of BC and the RTHA-Enabled
DL techniques. The integration of BC improves the safety
of smart home systems by delivering immutability, trans-
parency, and decentralization which is vital for protect-
ing sensitive data in linked devices. This safeguards a
tamper-resistant and trustworthy situation. Furthermore, the
combination of the RTHA-enabled DL technique, includ-
ing ensemble learning with ELM, GRU, and LSTM
approaches, donates to strong malicious action recognition.
The RTHA-based FS mechanism improves the model’s
capacity to recognize and diminish safety dangers effectually.
Moreover, the application of the EO system for optimum
parameter tuning perfects the models for the finest per-
formance. The BC-RTHADL model comprehensive model,
uniting the powers of BC and innovative DL systems,
outcomes in a more robust, safe, and effectual result for
certifying the reliability and confidentiality of smart home
systems.

V. CONCLUSION

In this study, we have presented a new BC-RTHADL method
for securing smart home networks. The purpose of the
BC-RTHADL technique is to accomplish security via BC and
malicious activity detection. In the presented BC-RTHADL
technique, BC technique is applied which integrates the trans-
parency, immutability, and decentralized nature of BC for a
secure smart home network. Besides, the BC-RTHADL tech-
nique, the malicious activity recognition process takes place
using RTHA based FS approach. The ELM, GRU, and LSTM
models are the ensemble of three models of the BC-RTHADL
technique for the recognition process. A wide range of exper-
iments were implemented to illustrate the higher efficiency of
the BC-RTHADL method. The comprehensive study analysis
reported the promising performance of the BC-RTHADL
technique under various measures.

The decentralized technique of BC-RTHADL can be
almost executed in smart home safety to find numerous
real-world states. For example, in a smart home atmosphere
where manifold IoT devices communicate, the decentralized
blockchain safeguards protected and obvious communica-
tion. Homeowners can observe and control entree to smart
locks, surveillance cameras, and devices with augmented
confidence, significant that the organism is resilient to
tampering or illegal alterations. Moreover, in scenarios con-
necting common or borrowed smart homes, the decentralized
nature of BC-RTHADL offers an immutable record of device
actions, promising all stakeholders of the honesty of the
logged data.

Network scalability may be a problem as the number
of related devices rises, possibly foremost due to perfor-
mance bottlenecks. Also, decentralized systems frequently
include greater upfront prices and energy utilization, par-
ticularly in BC executions. Future work can discover more
effectual consensus systems and scalable BC architec-
tures to further boost the performance and scalability of
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decentralized methods in the framework of growing smart
home systems. In addition, privacy-preserving technologies
can be proposed that authorize users with rough control
over their data, promising transparency and user-centric algo-
rithms for data confidentiality.
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