
Received 8 December 2023, accepted 29 December 2023, date of publication 10 January 2024, date of current version 22 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3352114

‘‘Interrupting’’ the Status Quo: A First Glance at
the RISC-V Advanced Interrupt Architecture (AIA)
FRANCISCO MARQUES , MANUEL RODRÍGUEZ, BRUNO SÁ, AND SANDRO PINTO
Centro ALGORITMI/LASI, Universidade do Minho, 4800-058 Guimarães, Portugal

Corresponding author: Francisco Marques (fmarques_00@protonmail.com)

This work was supported in part by the Secure Systems Research Center (SSRC) - Technology Innovation Institute (TII); in part by
Zero-Day Labs; in part by FCT—Fundação para a Ciência e Tecnologia within the Research and Development Units Projec Scope under
Grant UIDB/00319/2020; and in part by the Scholarships Project Scope under Grant SFRH/BD/07707/2021.

ABSTRACT Interrupt controllers are a crucial component in computing platforms. From cloud computing
to embedded systems, interrupts and respective controllers enable more efficient management and operation
of a platform’s resources. Modern computer architectures incorporate hardware interrupt controllers (e.g.,
Arm Generic Interrupt Controller (GIC)) that are well-established in modern processors and system-on-
chips (SoCs). This article describes our work and research on developing the first open-source RISC-V
Advanced Interrupt Architecture (AIA) IP compliant with the recently ratified specification (v1.0). Our
contribution is multifold and encompasses architecture, microarchitecture, and evaluation. In particular,
we explored alternative designs and microarchitectural enhancements for the implemented IP to cope with
mixed-criticality systems (MCS) requirements (e.g., real-time and predictability). From this exploration,
we highlight the proposed Integrated Embedded AIA (IE-AIA) design. For each configuration, we assess
the impact on hardware utilization and interrupt latency. Due to the increased proliferation of virtualization
in MCS, we measured the interrupt latency for a system configuration built atop the Bao hypervisor.
At the macro level (i.e., considering both hardware and software), and in particular for a full-blown
virtualization stack, we observed a reduction of ∼99.5% in the average interrupt latency when comparing
the Platform-Level Interrupt Controller (PLIC) IP (full trap and emulation) with the standard AIA IP (no
hypervisor mediation due to IMSIC direct interrupt injection). For the IE-AIA, our evaluation focused on
the micro view (i.e., hardware only), where we observed that under interference, the IE-AIA IP shows a
reduction of ∼ 7× in the average interrupt latency and deterministic behavior compared to the standard AIA
implementation. We also provide the first empirical-based comparison between the RISC-V PLIC and the
RISC-V AIA. Finally, all artifacts described in this article are open source to foster collaboration and further
explore additional design configurations.

INDEX TERMS Advanced interrupt architecture, AIA, RISC-V, virtualization, interrupt controller, CVA6,
microarchitecture, architecture, FPGA.

I. INTRODUCTION
In the realm of computer architectures, interrupts and
respective hardware controllers play a pivotal role in guaran-
teeing efficient operations and optimal resourcemanagement.
Interrupts refer to signals generated by various system-on-
chip (SoC) components (e.g., DMA, timer, UART, USB)

The associate editor coordinating the review of this manuscript and

approving it for publication was Tomas F. Pena .

that require the central processing unit (CPU) attention.
The responsibility of interrupt controllers is to manage
these interrupts, which can be generated by peripherals and
processors, and assign them to a specific CPU [1], [2], [3].
As a result, dedicated modules can handle particular tasks,
freeing the CPU to perform other operations [4].

Modern computing systems implement advanced hardware
interrupt controllers, including the Arm Generic Interrupt
Controller (GIC) [5] and the Intel Advanced Programmable

9822

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0001-1624-6510
https://orcid.org/0000-0003-4580-7484
https://orcid.org/0000-0002-7622-4698


F. Marques et al.: ‘‘Interrupting’’ the Status Quo: A First Glance at the RISC-V AIA

Interrupt Controller (APIC) [6]. Over the years, these
interrupt controllers have been evolving to cope with the
ever-growing number of features and requirements [7], [8].
For example, both the APIC and GIC (since version 2)
support Message Signalled Interrupts (MSIs) which are key
for standards such as Peripheral Component Interconnect
Express (PCIe). Also, with the increasing adoption of virtual-
ization technology [9], mainstream interrupt controllers such
as the APIC and GICv3/GICv4 started to add virtualization
support.

RISC-V sets itself apart from the established classical
mainstream Instruction Set Architectures (ISAs) by provid-
ing an open standard ISA. This unique ISA incorporates
a modular and adaptable extension mechanism, enabling
it to scale seamlessly from compact microcontrollers to
supercomputers [10], [11], [12]. The RISC-V Platform-Level
Interrupt Controller (PLIC) [13] was the first (standard)
interrupt controller in RISC-V systems. However, its spec-
ification posed scalability and feature richness limitations,
including a lack of support for message-signaled interrupts
(MSIs) and virtualization. The RISC-V community has
then been focusing on devising a new interrupt controller
specification. The RISC-V Advanced Interrupt Architecture
(AIA) [14] is the state-of-the-art reference specification
for interrupt-handling functionality. This recently ratified
specification is paving the way for integration into modern
and next-generation RISC-V SoC blueprints. To the best of
our knowledge, while some proprietary implementations of
the RISC-V AIA (e.g., SiFive, Ventana, MIPS) have been
designed, no functional open-source implementation has
been found at the time of writing. Furthermore, in the context
of the RISC-V AIA, no existing work has (i) performed a
design exploration, in particular, driven by mixed-criticality
systems (MCS) requirements and (ii) an empirical evaluation
in terms of hardware costs and interrupt latency, focusing on
predictability under interference in virtualization setups.

In this article, we describe our research on the RISC-V
AIA. To carry out this study, we first developed a parametriz-
able Advanced Platform-Level Interrupt Controller (APLIC)
IP and an Incoming Message-Signaled Interrupt Controller
(IMSIC) IP - which together form the AIA IP - fully
compliant with the RISC-VAIA specification v1.0. These IPs
were integrated into a CVA6-based SoC with virtualization
support [15]. Then, we explore alternative designs and
microarchitectural enhancements for the implemented IP
to cope with the MCS requirements (e.g., real-time and
predictability). This research culminates into three new
design options (IPs): (i) APLIC Minimal, (ii) IMSIC Island,
and (iii) Integrated Embedded AIA (IE-AIA). The first
two IPs are intended to reduce the hardware resources of
the standard AIA IP implementation. The IE-AIA aims
to provide deterministic interrupt latency in multi-core
system configurations (and in the presence of other bus
masters connected through the main system bus). Then,
we perform an empirical evaluation (hardware resources and
interrupt latency) of different AIA hardware configurations

and microarchitectures, with a focus on modern embedded
and MCS requirements (e.g., real-time, predictability) [9],
[16]. The experiments carried out on a Genesys 2 FPGA
board, show an improvement in the average interrupt latency
of ∼99.5% between the AIA/IE-AIA IP and the PLIC.
When comparing the AIA IP with the IE-AIA at the micro
level (i.e., hardware only), results show a reduction of the
interrupt latency worst-case execution time (WCET) by
96.43% while providing deterministic execution. We made
our hardware design and RTL implementation open source1

to (1) encourage the RISC-V AIA adoption among the
RISC-V community (both academia and industry) and (2)
foster research to validate and (potentially) improve the AIA
specification in different use cases.

In summary, with this work, we make four major
contributions. (1) We provide the first open-source RISC-V
AIA IP, fully compliant with the RISC-V AIA specification
v1.0 (Section III). (2) We explore alternative designs and
microarchitectural enhancements targeting MCS require-
ments (Section IV). (3) We carry out an empirical evaluation
of different AIA hardware configurations and microarchi-
tectures, providing insights concerning hardware costs and
interrupt latencies introduced in a virtualized system (Sec-
tion V). (4) Lastly, based on the knowledge and experience
gained while conducting this research, we discuss a set
of alternative designs and architectural/microarchitectural
changes to further optimize and enhance our RISC-V AIA
IP in particular and the specification, in general (Section VI).

II. BACKGROUND
A. RISC-V PRIVILEGED ISA AND HYPERVISOR EXTENSION
The RISC-V privileged ISA [17] organizes its execution
model into three distinct privilege levels: (i) machine mode
(M-mode), the highest privileged level, executes software
implementing the supervisor binary interface (SBI); (ii)
supervisor mode (S-Mode) runs Unix type operating systems
(OSes); and (iii) user mode (U-Mode) executes user applica-
tions.

The RISC-V Privileged Architecture specifies that a
machine with multiple harts must provide (for each hart) an
implementation-defined memory address that can be written
to signal a machine-level software interrupt (major code 3) at
that hart. Machine-level IPIs can consequently be sent to any
hart in the form of machine-level software interrupts.

The Hypervisor extension is a RISC-V privileged architec-
ture extension to support virtualization in RISC-V platforms
efficiently. This extension restructures the execution model.
The S-Mode is transformed into an extended hypervisor
mode (HS-mode), accommodating both type-1 and type-2
hypervisors. Additionally, it introduces two new privileged
modes, enabling the execution of guest OS in virtual
supervisor mode (VS-mode) and virtual user mode (VU-
mode).

1https://github.com/zero-day-labs/riscv-aia

VOLUME 12, 2024 9823



F. Marques et al.: ‘‘Interrupting’’ the Status Quo: A First Glance at the RISC-V AIA

B. RISC-V PLIC
The Platform-Level Interrupt Controller (PLIC) was the
first interrupt controller available for RISC-V architectures,
offering a naive solution for interrupt management. However,
the PLIC specification presents several limitations in terms of
scalability and feature-richness.

First, memory-mapped registers require a large part of
the physical address space. Second, the global configuration
registers are shared across two privilege rings: M-mode and
S-mode. Third, the PLIC lacks support for MSIs, which
are interrupts implemented as write operations to special
interrupt controller registers and propagated through the
system interconnect. This deficiency limits the flexibility
of the interrupt controller signaling mechanisms. Fourth,
the PLIC does not provide the capability to change the
Interrupt Request (IRQ) line sensing configuration at run-
time. Finally, the PLIC also lacks virtualization support,
resulting in hypervisors needing to rely on techniques like
trap-and-emulate, increasing the interrupt delivery latency to
Virtual Machines (VMs) [16].

C. RISC-V AIA: AN OVERVIEW
In response to the well-known PLIC limitations, the RISC-V
community developed a new interrupt controller specifica-
tion. The RISC-V AIA is the novel reference specification
for interrupt-handling functionality.

The AIA consists of (i) an extension to the RISC-V
privilege ISA [17], i.e., Smaia/Ssaia, (ii) two standard
interrupt controllers, i.e., the APLIC and the IMSIC, and
(iii) a set of requirements for other system components (e.g.,
I/O memory management unit (IOMMU)). Furthermore,
the protection against undesirable accesses is guaranteed
at the core level, via the physical memory protection
PMP [17], and at the system level via either the I/O physical
memory protection (IOPMP) [18], and RISC-V IOMMU [19]
(or any other customized system-level memory protection
controller), specifying rules with devices (or groups of
devices), and access types that should be blocked. Some rules
may be hard-coded in the microarchitecture, but usually, they
are configured in software. The PMP and the IOPMP also
have a lock feature, i.e., they can ignore modifications to a
rule or set of rules. Once locked, the (IO)PMP entries remain
locked until the system is reset. Figure 1 shows an SoC
configuration that implements the AIA.

1) AIA PRIVILEGED EXTENSIONS
The AIA introduces i) a few Control and Status Registers
(CSRs) to interface with the IMSIC IP, ii) a mechanism that
permits themajor interrupt priorities configuration and allows
mixing major and minor interrupts, and iii) a set of registers
to support HS/VS modes.

2) AIA IMSIC
The IMSIC architecture includes a collection of interrupt
files that collectively provide the essential framework to

FIGURE 1. Simplified view of a generic multi-core SoC microarchitecture
with AIA-related components (highlighted in blue).

facilitate the utilization of MSIs. Within a single interrupt
file, interrupt priorities are determined directly from interrupt
identity numbers, i.e., lower identity numbers have higher
priority. At its core, each interrupt file constitutes a hardware
module with two arrays: one to monitor pending interrupts
and another responsible for their activation. The arrangement
is such that for every privilege level and individual virtual
hardware hart capable of receiving MSIs, there is a dedicated
interrupt file within the hart’s corresponding IMSIC. This
mechanism is also used for the virtualization support. The
number of guest interrupt files is exactly the number of
supported guest external interrupts (GEILEN), as defined by
the hypervisor extension. The GEILEN corresponds to the
maximum number of active virtual harts (within a hart) that
can receive interrupts directly. The IMSIC controller, per the
specification, must be located in close proximity to the hart.

3) AIA APLIC
The APLIC controller introduces two distinct delivery
modes: (i) direct mode and (ii) MSI mode. In the direct
mode, the APLIC has the same role as the pre-existing
PLIC, i.e., effectively operating as an external interrupt
controller. However, when in pair with the IMSIC(s), the
APLIC acts as a translator of (physical) wired interrupts
into MSIs. Subsequently, these MSIs are dispatched to the
IMSIC for further processing. Regarding the APLIC internal
structure, it encompasses a structured collection of interrupt
domains. Each domain can be assigned for either M-mode
or S-mode, i.e., guaranteeing that interrupt propagation is
exclusive to a specific privilege level. The APLIC presents
a more versatile interrupt priority configuration mechanism,
allowing the software to define, for each interrupt source,
a specific priority, with lower priority numbers having higher
priority.

4) AIA IPIs
The AIA provides interprocessor interrupt (IPI) support via
the IMSIC subsystem. Similarly to regular MSIs, an IPI
can be sent to a hart by writing to the destination hart’s
IMSIC interrupt file (seteipnum_[l/b]e). Subsequently, when
a RISC-V hart does not implement an IMSIC, it receives
IPIs through the software major interrupt IRQ line. Within

9824 VOLUME 12, 2024



F. Marques et al.: ‘‘Interrupting’’ the Status Quo: A First Glance at the RISC-V AIA

our scope, heterogeneous platforms can be divided into
i) RISC-V-only heterogeneous platforms, i.e., harts are
implemented with different IPI mechanisms and ii) multi-
ISA (e.g., RISC-V andArm) heterogeneous platforms. RISC-
V-only heterogeneous platforms may implement various
harts with distinct use cases and requirements (e.g., real-
time, general purpose). It is possible that different RISC-V
harts implement IPIs via i) the IMSIC mechanism or ii)
the RISC-V privileged architecture. In these heterogeneous
systems, the privileged architecture’s mechanism guarantees
the compatibility between AIA and non-AIA subsystems.
In multi-ISA platforms (e.g., AMD Versal Adaptive SoC),
several subsystems support IPIs differently. The RISC-V
AIA would be just another interrupt controller, as is the
case with the Arm GIC. Consequently, sending IPIs between
architecturally distinct subsystems depends exclusively on
the platform’s interrupt system that manages the various
interrupt controllers.

D. CVA6
The CVA6 [20] is an application class RISC-V core
that implements RV64 and RV32 RISC-V instruction sets.
To support Unix-like OSes, this core fully supports the
M/S/U privilege modes and provides hardware support for
virtual memory by implementing a Memory Management
Unit (MMU). Internally, the CVA6microarchitecture encom-
passes a 6-stage pipeline, single issue, in-order CPU. The
MMU has separate TLBs for data and instructions, and
the page table walker implements the Sv39 and Sv32
translation modes. Recent enhancements to the CVA6
include an energy-efficient Vector Unit co-processor [21] and
hardware virtualization support (a.k.a. RISC-V Hypervisor
extension) [22].

III. RISC-V AIA: BUILDING AN IP
In this section, we discuss the design and implementation
of the AIA IP, focusing on the implementation challenges
and the main insights gained through the journey. Our
goal is to complete an AIA implementation that is both
modular and scalable, suitable for a wide range of market
segments ranging from embedded and MCS to general-
purpose platforms. The implementation of AIA IP was
carried out in SystemVerilog.

A. AIA PRIVILEGED EXTENSIONS
The AIA specification adds a set of CSRs at the various
execution levels of the RISC-V core (M, S, HS, and VS).
To include the new CSRs, we modified the CVA6 CSR
module. The CVA6 decoder module was also modified
to support the new interrupt delivery scheme to the core.
As depicted in Table 1, the registers related to configuring the
major interrupt’s priority (e.g.,mvip, hviprio1) have been just
partially implemented. Thus, setting major interrupts priority
in software is not possible. The priority order is enforced by
the default priorities table present in the specification. This

TABLE 1. Current state of AIA CSRs/IMSIC/APLIC registers implemented
in the CVA6:  fully-implemented; G# partially implemented; # not
implemented.

FIGURE 2. Simplified view of a generic IMSIC top-level and interrupt file
design.

decision aligns with the current upstream software support,
i.e., openSBI or Linux does not currently support this feature.

B. AIA IMSIC
Figure 2 depicts the developed IMSIC interface and compo-
sition design. Our design allows the IMSIC IP to have an
arbitrary number of VS-files through RTL parameterization.
The number of interrupt files implemented include: (i) at
least 2 for M-mode and S-mode and (ii) a user-defined (at
design time, by modifying a module parameter) number of
VS-files, with a maximum of 63 for RV64 or 31 for RV32.
The IMSIC IP was also designed to facilitate the protocol
replacement for receiving MSIs on the system interconnect.
These design choices minimize the requirement for extensive
modifications to the RTL code, guaranteeing a smoother
and more adaptable integration process of IMSIC into new
platforms.2

1) INTERRUPT FILES
The IMSIC is composed of a set of interrupt files. Each inter-
rupt file includes a register controller and a notifier, which
together form the interrupt file core logic. For modularity,
the IMSIC’s interrupt file is generic and adaptable to each
privilege mode, facilitating the IMSIC configurability.

2In the near future, we plan to develop a Python-based tool that utilizes
templating to generate designs, offering increased flexibility and better
integration with other protocols.

VOLUME 12, 2024 9825



F. Marques et al.: ‘‘Interrupting’’ the Status Quo: A First Glance at the RISC-V AIA

FIGURE 3. APLIC top-level module design with one M-level domain and one S-level domain.

2) CORE LOGIC: REGISTER CONTROLLER
The register controller is conceptually divided into a frontend
and a backend module to isolate the IMSIC logic from a
particular communication protocol. The register controller’s
backend is the protocol-dependent module. This module
must translate a specific protocol request from the MSI
channel into discriminated signals for the frontend. The
frontend, in turn, is responsible for processing incoming
MSIs, modifying the pending array, and sending it to the
notifier module.

3) CORE LOGIC: NOTIFIER
The notifier module receives the IMSIC pending and enabled
arrays and searches for the highest interrupt, notifying the
hart if an interrupt is both pending and enabled. Since in the
IMSIC interrupt sources, a higher priority corresponds to a
lower interrupt ID, we implement the notifier module with a
linear algorithm3 that iterates over each interrupt source. The
algorithm checks if an interrupt is both pending and enabled,
stopping the search when it encounters the first interrupt
available to be notified to the hart.

4) IMSIC INTERFACES
Figure 2 also shows the two IMSIC communication inter-
faces: (i) the CSRs configuration channel and (ii) the
MSI reception channel. The CSRs configuration channel
is a non-standard channel that enables the RISC-V hart to
configure the IMSIC through CSR reads and writes. This
channel provides a direct mechanism for the RISC-V hart to
manage the IMSIC’s operation. The second communication
channel is responsible for receiving MSIs (and, therefore,
IPIs). This channel i) is unidirectional, i.e., the MSI flows
from the system interconnect to the IMSIC, and ii) does not
include a handshake mechanism between agents, e.g., if hart
0 sends an IPI for hart 1, writing to the latter’s IMSIC, hart
0 will never receive any confirmation if hart 1 received the
IPI. However, as the interface is implemented with the AXI4
lite protocol, the MSI transaction uses the AXI handshake
mechanism to guarantee that the MSI arrives successfully at

3Given the IMSIC IP modular design, the internal logic (algorithm) of
the notifier can be easily modified. We defer such exploration for future
activities.

FIGURE 4. APLIC domain top-level design overview, comprised by a
gateway, a register controller, and a target notifier. The target notifier only
implements one of the coloured modules (light blue or purple),
depending on the domain operation mode.

the IMSIC. We implement this channel using the AXI4 lite
protocol as proof of concept due to its widespread use and
maturity in RISC-V platforms. It is, however, worth noting
that the implementation is not dependent on this protocol and
can be replaced by another without the rest of the IMSIC
being modified.

C. AIA APLIC
Figure 3 depicts the APLIC top-level module. As can be seen,
the APLIC IP is the instantiation of a set of domains. In this
implementation, we create an APLIC with two domains, i.e.,
M and S-mode. It is also visible in the figure the existence
of a two-stage synchronizer. The synchronizer prevents
metastability issues, preventing against data corruption or
loss in the interrupt signal, i.e., providing stability and
reliability of the interrupt source line connected to the root
domain. To keep the APLIC interface simple, the APLIC
is implemented with only one configuration port and, when
supporting theMSImode, with oneMSI channel. Thus, in the
top-level module, it is necessary to use a demultiplexer to
correctly map a configuration request to its domain and a
multiplexer to forward MSIs from the correct domain.

Figure 4 depicts an APLIC domain containing three
modules: (i) gateway, (ii) notifier, and (iii) register control.

1) REGISTER CONTROLLER
Similar to the IMSIC implementation, the APLIC register
controller is also divided into two modules, i.e., frontend and
backend, to facilitate the adaptability of the IP with various

9826 VOLUME 12, 2024



F. Marques et al.: ‘‘Interrupting’’ the Status Quo: A First Glance at the RISC-V AIA

FIGURE 5. APLIC minimal top-level module design with one generic
physical domain.

communication protocols (Figure 4). The backend depends
on the protocol that connects the APLIC configuration
interface with the system interconnect. The frontend is
responsible for managing the APLIC registers independently
of the protocol used in the backend. The backend module
is implemented using an AXI4 lite protocol for the very
same reasons advocated in the IMSIC (widespread use and
maturity).

2) GATEWAY
The gateway module is responsible for receiving the interrupt
source and its configuration and evaluating if an interrupt
source can become pending. The gateway also implements
the source mode for each interrupt source (i.e., level-
sensitive high and low, edge-sensitive high and low, inactive,
and detached). In the current implementation, to simplify
APLIC’s parameterization interface, the source mode is
the same for all interrupts. The APLIC’s line sensings to
implement can be discovered by grouping the required source
modes in each interrupt source. This design choice only
impacts the hardware resource utilization. The capability
to change the IRQ line sensing configuration at run-time
remains unaffected. It is worth noting that in future iterations,
the IP will be adapted to allow each interrupt to individually
select themodes it wants to implement, making the IP suitable
for application-centric platforms.

3) TARGET NOTIFIER
The notifier implementation depends on the APLIC delivery
mode. If the APLIC is in direct mode, i.e., highlighted in
purple in Figure 4, in that case, the notifier implements
an algorithm to discover the highest pending and enabled
interrupt, notifying the hart. If the APLIC is in MSI mode,
represented in light blue in Figure 4, the notifier forwards
newly pending and enabled interrupts to a hart’s IMSIC.
In the last, the notifier design is split into frontend and
backend. Notwithstanding, the backend must provide the
discriminated signals to the frontend. The frontend will then
translate these signals into an actual protocol request, sending
them through the system interconnect. The frontend module
is implemented using an AXI4 lite protocol.

IV. RISC-V AIA: MICROARCHITECTURAL
ENHANCEMENTS
In the following section, we propose a set of microarchitec-
tural design enhancements that aim to address embedded and

FIGURE 6. IMSIC Island top-level module design.

MCS requirements. The enhancements focus on optimizing
hardware resources, minimizing interruption latency, and
providing deterministic execution. This exploration led to the
development of three IPs: (i) APLIC Minimal, (ii) IMSIC
Island, and (iii) IE-AIA, which we describe next.

A. APLIC MINIMAL
In the APLIC IP described so far, we have implemented an
internal physical instance per domain, i.e., as depicted in
Figure 3, there is a physical M-level interrupt domain and a
physical S-level interrupt domain (two independent internal
hardware subsystem). However, we noted that in the overall
APLIC behavior, only one domain is active at a given point
in time. Thus, we optimized the APLIC IP to provide a
single physical domain multiplexed among multiple logical
domains, i.e., the same physical domain may multiplex, for
example,M-level and S-level. This results in further hardware
optimizations since registers like sourcecfg, setip, setie, and
target are not duplicated for all physical domains. There
is, however, a small additional logic that was added, which
is related to the correct interrupt masking to the respective
domain.

The APLIC minimal leverages the vanilla APLIC top-
level module. As illustrated in Figure 5, we implemented
only one physical domain, referred to as the generic level
domain, that handles two logical domains (M-mode and S-
mode). As a result of this optimization, we eliminate the
AXI mux and demux modules present in the vanilla APLIC
(Figure 3). We also modified the register controller frontend
module, highlighted in Figure 4. It is important to note that
the domain top-level, gateway, and target modules were kept
almost identical (very few changes), as they already received
the processed data from the register controller in the vanilla
APLIC IP.

B. IMSIC ISLAND
The IMSIC IP presented in Section III is designed to be
instantiated near the hart. So, it means that the number of
IMSICs is proportional to the number of harts, and each
IMSIC instantiation reflects into an extra connection to the
system bus interconnect, directly increasing the hardware
resources consumption. To mitigate this, we created a new
IP that groups all the IMSICs inside a single logical module,

VOLUME 12, 2024 9827



F. Marques et al.: ‘‘Interrupting’’ the Status Quo: A First Glance at the RISC-V AIA

FIGURE 7. Integrated Embedded AIA top-level design.

exposing a single interface to connect to the system bus.
This design is possible in the context of embedded and
MCS, as mainstream SoCs typically embed up to four cores.
Therefore, IMSICs are anyway placed in proximity to the
harts.4

As illustrated in Figure 6, we modified the IMSIC
IP to offer configurability on the number of interrupt
files and IMSICs. This design reduces the number of
protocol-dependent interfaces connecting to the system
interconnect and decreases the overall size of the IMSIC
register controller. Due to its ability to support multiple
IMSICs within a single module, we refer to this IP as IMSIC
Island.

C. INTEGRATED EMBEDDED AIA
As discussed in Section II-C, the AIA virtualization support
is provided via the IMSIC. In a typical virtualization-based
software for MCS, the hypervisor manages and provides
isolation for the consolidated VMs, guaranteeing the overall
system integrity. Thus, in a system lacking virtualization
support at the interrupt controller (i.e., IMSIC IP with
VS interrupt file), the hypervisor must rely on techniques
like trap-and-emulate to securely deliver interrupts to the
VMs. This approach significantly impacts the overall system
performance, mainly interrupt latency [9], [16]. Therefore,
implementing the IMSIC IP is highly recommended for
embedded and MCS. However, as seen in Section III-B, the
IMSICmodule interfaces with interrupts in the form ofMSIs.
Transmitting these messages across the standard system bus
(per the suggestion of the AIA spec) may open a venue
for issues related to interference, which has a very negative
effect on predictability and determinism (in some cases, may
potentially result in some denial-of-service (DoS) attack)
[23], [24].

The IE-AIA IP, Figure 7, reflects the proposed AIA
microarchitecture for embedded and MCS. This design
merges the APLIC Minimal and the IMSIC Island described
above. Regarding IP scalability, we reiterate that this
microarchitecture strongly focuses on embedded and MCS.
Therefore, the centralization of AIA components does not
constitute a severe microarchitectural scalability problem,

4We acknowledge that placing the IMSICs at the chip level is not precisely
the same as that at the hart level, but this comparison is in perspective with
designs for HPC and the cloud, where we may have hundreds of harts.

as these platforms typically have 2-4 cores. The design logic
focuses on instantiating the IMSICs within the APLIC target
notifier. In this design, the APLIC can send MSIs directly
to the target IMSIC, avoiding the system interconnect and
eliminating the necessity for the target notifier frontend.
Since the MSIs are delivered directly to their IMSIC without
passing through any interconnect, the interrupt latency is
expected to be lower and deterministic. To materialize such
a design, we made the following modifications: one to the
APLIC Minimal and other to the IMSIC Island.

Firstly, we had to (i) adapt the APLIC Minimal’s target
notifier by removing the frontend module that converts MSI
requests into protocol-specific requests and (ii) instantiate
the IMSIC Island. Since SoCs may support interrupts in the
form of MSIs, we kept the MSI channel interface (although
its implementation is now optional). Please note that we
also modified the APLIC top-level interface to add this extra
communication interface. Secondly, for the APLIC to send an
MSI directly to an IMSIC, we added a new communication
channel to the IMSIC interface named APLIC Channel. This
channel consists of 3 signals: (i) one to indicate the pending
and enabled interrupt source, (ii) another to indicate the target
interrupt file, and (iii), finally, a control signal that ensures the
data validity.

V. EVALUATION
System and Tools: The evaluation was conducted using
a single-core CVA6-based SoC (@50 MHz), with the
RISC-V hypervisor extension, on a Genesys 2 FPGA board.
The software stack includes OpenSBI (version 1.1), Bao
hypervisor (version 1.0) [25], [26], and Linux (version
6.1-rc4). Bao and OpenSBI were compiled using SiFive’s
GCC version 10.1.0 for riscv64 unknown targets, and Linux
was compiled using GNU RISC-V GCC version 10.3.0 for
riscv64 Linux targets. We compiled the entire software stack
with the optimization level -O2. The (A)PLIC interrupt
controller and the IMSIC interrupt files IPs were generated to
support 32 and 64 interrupt sources, respectively. The design
was synthesized using Vivado version 2021.2.
Methodology: We started by performing a functional

validation of the AIA IP. We then focused on evaluating
the interrupt latency. We borrowed the same methodology
as in works [9] and [16], i.e., we use a custom lightweight
baremetal benchmark to measure the interrupt latency and
variance. This is a well-established approach used among the
real-time systems community. This benchmark measures the
latency of periodic interrupts triggered by the timer within
the CVA6 SoC. Within the context of this benchmark, the
timer operates in auto-reload mode, continuously triggering
interrupts at 10 ms intervals and capturing 100,000 samples.

A. FUNCTIONAL VALIDATION
To guarantee a minimal level of soundness of our AIA IP
implementation, we conducted a comprehensive functional
validation, which encompassed the following key compo-
nents. (i) Hardware unitary tests: we performed unitary tests,

9828 VOLUME 12, 2024



F. Marques et al.: ‘‘Interrupting’’ the Status Quo: A First Glance at the RISC-V AIA

TABLE 2. Hardware resources comparison (in a Genesys 2) between SoC
configurations: (1) Original SoC with PLIC, (2) AIA APLIC Scalable, and (3)
AIA APLIC Minimal. The percentual values marked with * translate the
comparison between (3) and (2).

created from scratch, using the Cocotb framework [27]. (ii)
Basic software framework: we expanded upon the framework
developed in [16] to validate the hypervisor extension by
incorporating AIA baremetal tests. These low-level test cases
cover scenarios such as external interrupt line triggering and
MSI interrupt generation. This framework enables the first
validation of the AIA IP in a software stack environment.
(iii) Custom baremetal application: we built a baremetal
application with AIA support and made a blob with openSBI.
(iv) Linux boot and execution: we successfully booted and
ran the vanilla Linux for RISC-V. (v) Custom baremetal
application atop Bao hypervisor: with the same baremetal
used in (iii), we built and ran a virtualization-based software
stack based on Bao. (vi) Linux atop of Bao: we successfully
booted the Linux OS on top of Bao.

B. HARDWARE RESOURCES
Tables 2 and 3 summarise FPGA resource utilization across
various SoC configurations. These numbers aim at offering an
initial reference point for system designers.5 Configuration
(1) represents the original SoC with the RISC-V PLIC,
while in configurations (2) and (3), we replace the PLIC
with the AIA APLIC IP and AIA APLIC Minimal IP, both
in direct mode, respectively. Configuration (4) includes the
complete AIA IP (APLIC Minimal IP + 1 IMSIC IP).
Configuration (5) implements the IE-AIA IP with 1 IMSIC.
Finally, to demonstrate the advantages of the IE-AIA in an
SoC that is closer to what is used in high-end platforms for
MCS [25], configurations (6) and (7) implement 4 IMSICs
(representing a 4-core setup). For configurations (4), (5),
(6), and (7), the IMSICs implement three interrupt files: the
mandatory M-mode and S-mode, as well as the VS-mode file
to support virtualization for one guest. Tables 2 and 3 yields
three key conclusions.

1) HARDWARE RESOURCES: APLIC
Firstly, when comparing SoC configuration 1 (vanilla PLIC)
with configuration 2 (APLIC IP), the utilization of FPGA
Look-Up Table (LUT) resources increased by 8.24% and
Flip-Flops (FF) by 5.42%. These results decrease when
replacing the APLIC IP with the APLIC Minimal (config-
uration 3). Thus, when comparing configuration 1 with 3
(i.e., PLIC vs APLIC Minimal), we observe an increase

5There may be deviations in hardware cost assessment between FPGA and
ASIC synthesis. We plan to conduct this study in future work by integrating
our AIA IP into an evolving version of Shaheen [15].

TABLE 3. Hardware resources (in a Genesys 2) comparison between SoC
configurations: (3) AIA APLIC Minimal and (4) AIA IP 1 IMSIC (w/ 1
VS-File), (5) IE-AIA 1 IMSIC (w/ 1 VS-File), (6) AIA IP 4 IMSIC (w/ 1
VS-File), and (7) IE-AIA 4 IMSIC (w/ 1 VS-File).

of 3.86% in LUTs and 2.79% in FFs. Notably, this aligns
with expectations, as the APLIC implements two domains,
leading to an anticipated reduction of approximately 50% in
both LUTs and FFs between APLIC Scalable and APLIC
Minimal IPs. However, it is important to highlight that there
is still a slight increase in hardware resource consumption
between the PLIC (configuration 1) and the APLIC Minimal
(configuration 3). This is justified by (i) the additional
functionalities offered by APLIC compared to PLIC and (ii)
our focus on modularity over optimization.

2) HARDWARE RESOURCES: SINGLE-CORE AIA
Secondly, from Table 3, when comparing configurations
4 and 3 (AIA w/ 1 IMSIC vs APLIC Minimal), we perceived
an increase of 2.73% in LUTs and 1.34% in FFs. The
observed hardware increase results from adding AIA ISA
extensions to the CVA6 hart and implementing an IMSIC
IP with three interrupt files. This extra hardware cost can
be minimized with the IE-AIA design (configuration 5).
Therefore, from the comparison between configurations
5 and 3, we observe a total increase of 1.67% in LUTs
and 1.32% in FFs. Based on these results, we can conclude
that using the IE-AIA IP (configuration 5), rather than the
AIA IP (configuration 4), results in less utilization of FPGA
resources. This reduction is attributed to the integration of
the IMSIC within the APLIC, eliminating the necessity to
implement hardware for translating an MSI into a protocol-
specific request.

3) HARDWARE RESOURCES: MULTI-CORE AIA
Thirdly, adopting the IE-AIA design instead of AIA IP further
benefits from the increasing number of harts in the system.
While public and open-source SoCs based on the CVA6
target single-core configuration,6 we have built two SoCs that
implement the AIA and IE-AIA IPs with support for up to
four harts, i.e., AIA w/ 4 IMSIC and IE-AIA w/ 4 IMSIC,
respectively (no cache coherence - just for hardware resource
evaluation purposes). As observed, configuration 6 (AIA w/
4 IMSIC) presents a rise of 6.65% in LUTs and 3.18% in
FFs when compared to configuration 3 (APLIC Minimal).

6OpenPiton-Ariane [28] and ESP [29] provide multi-core support but do
not targetMCS. There is ongoingwork to enable embeddedmulti-core CVA6
configurations based on snoop-based coherence, but it is not finished yet.

VOLUME 12, 2024 9829



F. Marques et al.: ‘‘Interrupting’’ the Status Quo: A First Glance at the RISC-V AIA

FIGURE 8. Base interrupt latency for the lightweight baremetal
application benchmark for each SoC configuration: (1) Original SoC with
PLIC, (2) AIA APLIC Scalable, (3) AIA APLIC Minimal, (4) AIA IP 1 IMSIC
(w/ 1 VS-File), and (5) IE-AIA 1 IMSIC (w/ 1 VS-File).

Notably, when comparing configurations 7 and 3 (IE-AIA w/
4 IMSIC vs APLICMinimal), we observe an increase of only
3.97% in LUTs and 2.6% in FFs. The observed difference is
explained by the fact that with AIA IP (configuration 6), each
of the IMSICs will be individually connected to the system
interconnect, whereas, with the IE-AIA (configuration 7), the
implementation of an additional IMSIC does not increase the
number of interfaces connected to the system interconnect.

C. INTERRUPT LATENCY
To recap, as aforementioned, we resort to the same method-
ology described in [9] and [16] to assess the interrupt latency.
We developed a customized lightweight baremetal applica-
tion benchmark. We split our evaluation into three parts for
the various SoC configurations presented in Section V-B.
First, we measured the base interrupt latency by running
the benchmark as a baremetal application directly on top of
each SoC. Second, we repeated the same experiments for a
virtualization-based software stack using the Bao hypervisor.
In these experiments, the benchmark runs as a baremetal VM
atopBao for each SoC configuration. Finally, we extended the
virtualization-related experiments and focused our research
on comparing AIA IP and IE-AIA IP when the system
interconnect is under interference.

1) BASE LATENCY
Figure 8 depicts the violin plots for the base interrupt latency
of the custom application benchmark running atop each SoC
configuration. For configuration 1 (PLIC), we measure an
average interrupt latency of 7.80 us. This was the highest base
interrupt latency measured among all the SoC configurations.
At the same time, we can notice some variation in the
interrupt latency, which, in the worst case, reaches 7.90 us.
Next, for SoC configurations 2 (APLIC Scalable IP) and 3
(APLICMinimal), we observe a decrease in average interrupt
latency of about 3.72% (from 7.80 us to 7.51 us). The
reduction in latency between configuration 1 (PLIC) and
2/3 (APLIC Scalable and Minimal, respectively) is justified
by the interrupt handling process, i.e., in the PLIC it
requires two stages - claim and complete - whereas, in the
APLIC, this process completes in a single stage. Regarding
configurations 2 and 3, we see that, as expected, they
do not show different interrupt latency results since the

FIGURE 9. Interrupt latency in a virtualization stack environment -
benchmark application running atop Bao hypervisor for SoCs: (1) Original
SoC with PLIC, (3) AIA APLIC Minimal, (4) AIA IP 1 IMSIC (w/ 1 VS-File),
and (5) IE-AIA 1 IMSIC (w/ 1 VS-File).

FIGURE 10. Hardware interrupt latency under interference for SoCs: (4)
AIA IP 1 IMSIC (w/ 1 VS-File) and (5) IE-AIA 1 IMSIC (w/ 1 VS-File).

redesign of the latter focuses solely on better management
of hardware resources. Therefore, in the remaining parts of
this subsection, only configuration 3 (APLIC Minimal) will
be taken into consideration. In configuration 4 (AIA IP),
compared to the base configuration 1 (PLIC), we observed a
decrease in the average interruption latency of about 10.77%
(from 7.80 us to 6.96 us). Such as with the APLIC, the process
of handling an interrupt with the AIA IP just one step. The
difference found between configuration 4 and configuration
2/3 (APLIC Scalable and Minimal, respectively) is due to
the fact that with AIA, the software handles the interrupt by
writing and reading to CSRs instead of reading and writing to
memory-mapped regions (MMIO). Finally, configuration 5
(IE-AIA) had the lowest average interruption latency of all
the configurations. Compared to PLIC, there was a reduction
of 11,41% (from 7.80 us to 6.91 us). Although it is already
clear that there is a difference between the average interrup-
tion latency in configurations 4 (AIA) and 5 (IE-AIA), these
will be further explored in the last part of this subsection.

2) VIRTUALIZATION STACK
Figure 9 shows the results for interrupt latency when using
a virtualization stack (the baseline results from Figure 8 are
also included to facilitate the comparison). When using a
software stack with virtualization, we observe that the PLIC
(base configuration 1) introduces a latency of ∼1489 us.
This latency primarily arises from the traps between the
application and the hypervisor during the claim and complete
processes [16]. In configuration 3 (APLIC Minimal), there
is a reduction of ∼35.80% (from ∼1489 us to ∼956 us)
due to the APLIC’s design that allows the interrupt to
be handled with a single operation. This happens because
reading the APLIC’s claimi register simultaneously clears the
pending bit for the reported interrupt. Therefore, when the

9830 VOLUME 12, 2024



F. Marques et al.: ‘‘Interrupting’’ the Status Quo: A First Glance at the RISC-V AIA

TABLE 4. RISC-V AIA spec implementation status and features: ✓- supported; X - not supported; #- under development; ? - no information available.

baremetal benchmark runs atop Bao hypervisor and receives
an interrupt, it will only trap once. Finally, for configurations
4 and 5 (AIA and IE-AIA), the interrupt delivery has a latency
similar to the respective baseline value (6.98 us and 6.90 us,
respectively). Therefore, when comparing configuration 4/5
(AIA/IE-AIA) with configuration 1 (PLIC), we observe a
reduction of ∼99.5% (from ∼1489 us to 6.98/6.90 us). This
massive reduction results from the guest’s direct access to the
IMSIC’s VS interrupt file, not requiring hypervisor interven-
tion and mediation. Next, we focus on the interrupt latency
and predictability of AIA and IE-AIA design approaches.

3) AIA VS IE-AIA
Due to the lack of an embedded/MCS multi-core SoC (i.e.,
snooping-based coherent multi-core design) based on the
CVA6, we added 12 PULP iDMAs [30] to the SoC config-
urations 4 and 5 (AIA and IE-AIA) to create configurations
where the system interconnect is under interference. For the
AIA vs IE-AIA comparison, we focused the evaluation at the
micro level, i.e., only on the hardware, because the software
component will always be dependent on the software stack
and identical for both setups. The obtained results are
depicted in Figure 10. As it can be seen, with 2DMAs causing
interference to the AIA IP (configuration 4), we observe an
increase in average interrupt latency of ∼1.42 × and notice
a non-negligible increase of the interrupt variance. For the
experiments with 4 and 8 DMAs (still for configuration 4
- AIA), the average interrupt latency increases by ∼2.92
× and ∼2.95 ×, respectively. However, the variance is
higher when the 8 DMAs cause interference. Finally, for
the experiment with 12 DMAs, we observed an increase
in average interrupt latency of ∼7.17 ×, along with an
accentuated rise in the variation of interrupt latency, ranging
from a minimum of 380 ns to a maximum of 1120 ns.
For the same experiments, the IE-AIA (configuration 5)
microarchitecture guarantees no additional interrupt latency,
since the APLIC does not have to send the MSI through
the system interconnect and is, therefore, not affected by
interference. Thus, considering the WCET, we perceive a
reduction of interrupt latency by 96.43%,7 comparing to the
IE-AIA (from 1120 ns to 40 ns). Therefore, IE-AIA presents

7Please note this reduction only takes into account the hardware
component that contributes to the overall interrupt latency (which typically
is the sum of the hardware and software components). Considering both
components, we calculate a theoretical reduction of the WCET of 14,02%.

a completely deterministic behavior combined with lower
interrupt latencies compared to the standard AIA.

VI. DISCUSSION AND FUTURE DIRECTIONS
A. AIA VALIDATION AND OPTIMIZATIONS
As of this writing, the software setup and the functional
validation focused exclusively on a single hypervisor, i.e.,
Bao. Thus, we will perform additional functional validation
with alternative hypervisor solutions, namely KVM [31] and
XVisor [32], to guarantee seamless integration within a wide
range of software. Furthermore, the current implementation
of APLIC focuses on high modularity, which allows excellent
compatibility with plenty of protocols and better RTL code
maintainability. However, the need for generic interfaces to
ensure IP modularity also results in higher utilization of
hardware resources. Therefore, we have started a streamline
of work towards implementing an optimized APLIC IP
focused on low resource usage.

B. PLIC VS AIA
As demonstrated in Section V, APLIC requires more
hardware resources than the PLIC. This increase is justified
by the new features, including the robust privilege mode
isolation. Notwithstanding, the APLIC presents advantages
concerning interrupt latency (virtualization system setup)
compared to PLIC (fewer traps needed). However, given
that both controllers do not provide intrinsic support for
virtualization, this has a non-negligible impact on interrupt
latency and predictability. Thus, both solutions are unsuitable
for use in time-sensitive applications, such as MCS. The
RISC-V AIA specification adds virtualization support via the
IMSIC. However, the specification suggests implementing
separate APLIC and IMSIC components, resulting in the
AIA microarchitecture from configuration 4. We identified
a drawback in the suggested approach, as the APLIC
communicates with the IMSIC via the main platform system
bus interconnect. This has implications on the interrupt
latency and respective predictability, particularly under the
interference of other bus masters. To address such an issue,
we developed the IE-AIAmicroarchitecture, which presented
empirical evidence on the advantages of embedded and
mixed-criticality systems.

VII. RELATED WORK
Interrupt controllers have a longstanding presence within
computing platforms. In academia, several studies have

VOLUME 12, 2024 9831



F. Marques et al.: ‘‘Interrupting’’ the Status Quo: A First Glance at the RISC-V AIA

been conducted to enhance these components with specific
features for embedded and MCS [1], [2], [3], [4], [33], [34],
[35], [36], [37]. In industry, there are several well-established
interrupt controllers targeting mainstream computing ISAs.
On the x86/x64 spectrum, Intel has the PIC [38] and its
successor APIC [6]. Arm, in turn, has specified theNVIC [39]
for the Cortex-MMCU family and the several versions of the
GIC (GICv1 [40], GICv2 [41], GICv3, and GICv4 [5], [42])
for the Cortex-A APU family. The AMD Versal has a system
interrupt that manages multiple and architecturally distinct
interrupt controllers (e.g., GICv2, GICv3, PSMMicroBlaze),
allowing their co-existence onto the same platform [43].
The RISC-V AIA specification was just recently ratified

(June 2023). Notwithstanding, there are already (or there
is work in progress) a few commercial and open-source
designs/IPs available: (i) the open-source APLIC IP from
John Hauser, the major contributor for the AIA spec [14];
(ii) the commercial APLIC and IMSIC IPs for P400, P500,
and P870 series, from SiFive [44], [45]; (iii) the commercial
APLIC and IMSIC for Veryon V1/V2, from Ventana; (iv) the
commercial APLIC and IMSIC for the space-grade NOEL-
V [46], [47], from Cobham Gaisler; and (v) the commercial
APLIC for eVocore P8700 and I8500 series, fromMIPS [48].

Table 4 summarizes existing and ongoing efforts related
to the RISC-V AIA. As observed, the IPs developed by
SiFive, Ventana, and MIPS are primarily oriented toward
high-performance systems within their respective processor
families. For instance, MIPS has introduced the APLIC
component, but there is no available information regarding
future IMSIC implementations. Cobham Gaisler has imple-
mented an APLIC focusing on space applications with its
high-performance and fault-tolerant design. Currently, the
IMSIC IP is under development, and version 9 of NOEL-V
is expected to feature the entire AIA specification. All these
implementations are either closed-source and/or maintained
under a commercial license. Ongoing efforts to provide
an open-source AIA design are minimal. John Hauser is
developing a RISC-V APLIC in System Verilog to offer an
open-source, generic reference implementation to the RISC-
V community. As of this writing, this IP has not been made
publicly available. With our work, we provide a complete
open-source AIA reference design for both general use
(standard AIA IP) and for embedded and MCS (IE-AIA IP).

VIII. CONCLUSION
This work described our work and research on the RISC-
V AIA. We implemented the first open-source AIA IP
fully compliant with the recently ratified specification.
We then explored microarchitectural design enhancements
for mixed-criticality systems (e.g., real-time and predictabil-
ity). Based on our exploration, we proposed the IE-AIA
IP. We also conducted a comprehensive evaluation to
collect the first empirical evidence regarding hardware costs
and interrupt latencies introduced in a virtualized system.
We concluded by discussing further optimizations and other

design alternatives to enhance the RISC-V AIA IP and the
specification.

ACKNOWLEDGMENT
The authors would like to thank John Hauser, the major driv-
ing force behind the AIA specification, for the discussions,
insights, and research directions that greatly influenced the
content of this article.

REFERENCES
[1] W. Chipin, L. Z. lin, Z. Qingwei, Y. Jianfei, and L. Shenglong, ‘‘Design of a

configurable multichannel interrupt controller,’’ in Proc. 2nd Pacific-Asia
Conf. Circuits, Commun. Syst., vol. 1, Aug. 2010, pp. 327–330.

[2] A. Tumeo, M. Branca, L. Camerini, M. Monchiero, G. Palermo,
F. Ferrandi, and D. Sciuto, ‘‘An interrupt controller for FPGA-based
multiprocessors,’’ in Proc. Int. Conf. Embedded Comput. Syst., Archit.,
Modeling Simulation, Jul. 2007, pp. 82–87.

[3] T. Gomes, P. Garcia, F. Salgado, J. Monteiro, M. Ekpanyapong, and
A. Tavares, ‘‘Task-aware interrupt controller: Priority space unification in
real-time systems,’’ IEEE Embedded Syst. Lett., vol. 7, no. 1, pp. 27–30,
Mar. 2015.

[4] T. Harnath and K. L. Kishore, ‘‘IDevelopment of customized interrupt
controller logic,’’ Int. J. VLSI Des. Commun. Syst., vol. 3, no. 10,
pp. 1446–1449, Dec. 2015.

[5] Arm Generic Interrupt Controller Architecture Specification GIC Archi-
tecture Version 3 and Version 4, Arm, Cambridge, U.K., 2022.

[6] Intel64 and IA-32 Architectures Software Developer’s Manual, Intel,
Santa Clara, CA, USA, 2023.

[7] M. Bechtel and H. Yun, ‘‘Denial-of-service attacks on shared cache in
multicore: Analysis and prevention,’’ in Proc. IEEE RTAS, Apr. 2019,
pp. 357–367.

[8] S. Pinto, H. Araujo, D. Oliveira, J. Martins, and A. Tavares, ‘‘Virtualization
on trustzone-enabled microcontrollers? Voilà!’’ in Proc. IEEE RTAS,
Apr. 2019, pp. 293–304.

[9] J. Martins and S. Pinto, ‘‘Shedding light on static partitioning hypervisors
for arm-based mixed-criticality systems,’’ in Proc. IEEE RTAS, May 2023,
pp. 40–53.

[10] C. Chen, X. Xiang, C. Liu, Y. Shang, R. Guo, D. Liu, Y. Lu, Z.
Hao, J. Luo, Z. Chen, C. Li, Y. Pu, J. Meng, X. Yan, Y. Xie,
and X. Qi, ‘‘Xuantie-910: A commercial multi-core 12-stage pipeline
out-of-order 64-bit high performance RISC-V processor with vector
extension : Industrial product,’’ in Proc. ACM/IEEE 47th Annu. Int.
Symp. Comput. Archit. (ISCA). Chicago, IL, USA: Industrial, May 2020,
pp. 52–64.

[11] L. Valente, Y. Tortorella, M. Sinigaglia, G. Tagliavini, A. Capotondi,
L. Benini, and D. Rossi, ‘‘HULK-V: A heterogeneous ultra-low-power
Linux capable RISC-V SoC,’’ in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Apr. 2023, pp. 1–6.

[12] F. Ficarelli, A. Bartolini, E. Parisi, F. Beneventi, F. Barchi, D. Gregori,
F. Magugliani, M. Cicala, C. Gianfreda, D. Cesarini, A. Acquaviva, and
L. Benini, ‘‘Meet Monte cimone: Exploring RISC-V high performance
compute clusters,’’ in Proc. 19th ACM Int. Conf. Comput. Frontiers,
May 2022, pp. 207–208.

[13] RISC-V Platform-Level Interrupt Controller Specification, Document
Version 1.0.0, RISC-V International, 2023. [Online]. Available:
https://github.com/riscv/riscv-plic-spec/blob/master/riscv-plic-1.0.0.pdf

[14] J. Hauser. RISC-V Advanced Interrupt Architecture (AIA), RISC-V, 2023.
[Online]. Available: https://github.com/riscv/riscv-aia

[15] L. Valente, A. Veeran, M. Sinigaglia, Y. Tortorella, A. Nadalini,
N. Wistoff, B. Sa, A. Garofalo, R. Psiakis, M. Tolba, A. Kulmala,
N. Limaye, O. Sinanoglu, S. Pinto, D. Palossi, L. Benini, B. Mohammad,
and D. Rossi, ‘‘Shaheen: An open, secure, and scalable RV64 SoC for
autonomous nano-UAVs,’’ in Proc. IEEE Hot Chips 35 Symp. (HCS), Aug.
2023, pp. 1–12.

[16] B. Sá, J. Martins, and S. Pinto, ‘‘A first look at RISC-V virtualization from
an embedded systems perspective,’’ IEEE Trans. Comput., vol. 71, no. 9,
pp. 2177–2190, Sep. 2022.

[17] A. Waterman, K. Asanovic, and J. Hauser, Eds., ‘‘The RISC-V instruction
set manual, volume II: Privileged architecture, document version
20211203,’’ RISC-V Int., Dec. 2021. [Online]. Available:https://github.
com/riscv/riscv-isa-manual/releases/download/Privv1.12/riscv-
privileged-20211203.pdf

9832 VOLUME 12, 2024



F. Marques et al.: ‘‘Interrupting’’ the Status Quo: A First Glance at the RISC-V AIA

[18] RISC-V IOPMP Architecture Specification. Version 1.0.0, IOPMP Task
Group, 2023. [Online]. Available: https://github.com/riscv-non-isa/iopmp-
spec/blob/main/riscv_iopmp_specification.pdf

[19] RISC-V IOMMU Specification Document. Version 1.0, IOMMU Task
Group, 2023. [Online]. Available: https://github.com/riscv-non-isa/riscv-
iommu/blob/v1.0/riscv-iommu.pdf

[20] F. Zaruba and L. Benini, ‘‘The cost of application-class processing: Energy
and performance analysis of a Linux-ready 1.7-GHz 64-bit RISC-V core in
22-nm FDSOI technology,’’ IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 27, no. 11, pp. 2629–2640, Nov. 2019.

[21] M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini, ‘‘Ara:
A 1-GHz+ scalable and energy-efficient RISC-V vector processor with
multiprecision floating-point support in 22-nmFD-SOI,’’ IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 28, no. 2, pp. 530–543, Feb. 2020.

[22] B. Sá, L. Valente, J. Martins, D. Rossi, L. Benini, and S. Pinto, ‘‘CVA6
RISC-V virtualization: Architecture, microarchitecture, and design space
exploration,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 31,
no. 11, pp. 1713–1726, Nov. 2023.

[23] J. P. Cerrolaza, R. Obermaisser, J. Abella, F. J. Cazorla, K. Grüttner,
I. Agirre, H. Ahmadian, and I. Allende, ‘‘Multi-core devices for safety-
critical systems: A survey,’’ ACM Comput. Surv., vol. 53, no. 4, pp. 1–38,
Jul. 2021.

[24] P. Radojković, S. Girbal, A. Grasset, E. Quiñones, S. Yehia, and
F. J. Cazorla, ‘‘On the evaluation of the impact of shared resources in
multithreaded COTS processors in time-critical environments,’’ ACM
Trans. Archit. Code Optim., vol. 8, no. 4, pp. 1–25, Jan. 2012.

[25] J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto, ‘‘BAO: A
lightweight static partitioning hypervisor for modern multi-core embedded
systems,’’ in Proc. Workshop Next Gener. Real-time Embedded Syst.
(NG-RES), 2020, pp. 1–14.

[26] M. A. Alomari, H. Aris, M. Ghaleb, Y. Almurtadha, G. A. Alkawsi,
I. A. A. Al-Hadi, Y. Baashar, and K. Samsudin, ‘‘Embedded devices secu-
rity: Design and implementation of a light RDBMS encryption utilizing
multi-core processors,’’ IEEE Access, vol. 11, pp. 19836–19848, 2023.

[27] B. J. Rosser, ‘‘Cocotb: A Python-based digital logic verification frame-
work,’’ Micro-Electron. Section Seminar, CERN, Geneva, Switzerland,
2018.

[28] J. Balkind, K. Lim, F. Gao, J. Tu, D. Wentzlaff, M. Schaffner, F. Zaruba,
and L. Benini, ‘‘OpenPiton+Ariane: The first open-source, SMP Linux-
booting RISC-V system scaling from one to many cores,’’ in Proc.
Workshop Comput. Archit. Res. RISC-V (CARRV), 2019, pp. 1–6.

[29] P. Mantovani, D. Giri, G. Di Guglielmo, L. Piccolboni, J. Zuckerman,
E. G. Cota, M. Petracca, C. Pilato, and L. P. Carloni, ‘‘Agile SoC
development with open ESP: Invited paper,’’ in Proc. IEEE/ACM ICCAD,
Nov. 2020, pp. 1–9.

[30] T. Benz, M. Rogenmoser, P. Scheffler, S. Riedel, A. Ottaviano, A. Kurth,
T. Hoefler, and L. Benini, ‘‘A high-performance, energy-efficient modular
DMA engine architecture,’’ 2023, arXiv:2305.05240.

[31] S. Zhao, ‘‘Trap-less virtual interrupt for KVM on RISC-V,’’ KVM
Forum, 2020. [Online]. Available: https://www.youtube.com/watch?v=
KIJuqtHC4bQ

[32] A. Patel, M. Daftedar, M. Shalan, and M. W. El-Kharashi, ‘‘Embedded
hypervisor xvisor: A comparative analysis,’’ in Proc. 23rd Euromicro Int.
Conf. Parallel, Distrib., Netw.-Based Process., Mar. 2015, pp. 682–691.

[33] A. de Gloria, P. Faraboschi, and M. Olivieri, ‘‘A self timed interrupt
controller: A case study in asynchronous micro-architecture design,’’ in
Proc. 7th Annu. IEEE Int. ASIC Conf. Exhib., Sep. 1994, pp. 296–299.

[34] J. E. Amiri and M. Kargahi, ‘‘A predictable interrupt management policy
for real-time operating systems,’’ in Proc. CSI Symp. Real-Time Embedded
Syst. Technol. (RTEST), Oct. 2015, pp. 1–8.

[35] I. Behnke, L. Pirl, L. Thamsen, R. Danicki, A. Polze, and O. Kao,
‘‘Interrupting real-time IoT tasks: How bad can it be to connect your
critical embedded system to the Internet?’’ inProc. IEEE 39th Int. Perform.
Comput. Commun. Conf. (IPCCC), Nov. 2020, pp. 1–6.

[36] M. De Alba, A. Andrade, J. González, J. Gómez-Tagle, and
A. D. García, ‘‘FPGA design of an efficient and low-cost smart phone
interrupt controller,’’ Latin Amer. Appl. Res., vol. 37, no. 1, pp. 59–63,
2007.

[37] B. Li, J. Lu, D. Wu, and G. Liu, ‘‘Design of many core interrupt controller
based on ARMv8 architecture,’’ WSEAS Trans. Circuits Syst., vol. 14,
pp. 468–473, 2015.

[38] C. Y. Sia, B. A. Rosdi, and M. C. Lee, ‘‘Synchronous design of 8259
programmable interrupt controller,’’ in Proc. IEEE ICCAIE, Dec. 2011,
pp. 195–200.

[39] Cortex-M3 Technical Reference Manual, Arm, Cambridge, U.K., 2010.

[40] Application Note GIC Stream Protocol Interface, Arm, Cambridge, U.K.,
2020.

[41] ARM Generic Interrupt Controller Architecture Version 2.0—Architecture
Specification, Arm, Cambridge, U.K., 2008.

[42] Locality-Specific Peripheral Interrupts Arm Generic Interrupt Controller
V3 and V4, Arm, Cambridge, U.K., 2022.

[43] Versal Adaptive SoC Technical Reference Manual (AM011), AMD, Santa
Clara, CA, USA, 2023.

[44] SiFive. (2023). SiFive Performance P400-Series. [Online].
Available: https://sifive.cdn.prismic.io/sifive/60ff3edf-baa2-4656-b067-
68f3b006ded6_sifive-p400-datasheet.pdf

[45] SiFive. (2022). SiFive Performance P600-Series. [Online]. Available:
https://sifive.cdn.prismic.io/sifive/7be0420e-dac1-4558-85bc-
50c7a10787e7_p600_datasheet.pdf

[46] Gaisler. (2022). GRLIB IP Core Users Manual. [Online]. Available:
https://www.gaisler.com/products/grlib/grip.pdf

[47] J. Andersson, ‘‘Development of a NOEL-V RISC-V SoC targeting space
applications,’’ in Proc. 50th Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Netw. Workshops (DSN-W), Jun. 2020, pp. 66–67.

[48] MIPS. (2023). eVocore P8700 Multiprocessing System. [Online]. Avail-
able: https://tinyurl.com/mips-product-brief

FRANCISCO MARQUES received the bachelor’s
degree in electronics and computer engineering.
He is currently pursuing the M.Sc. (master’s)
degree in embedded systems and micro and
nanotechnologies with the Embedded Systems
Research Group, University of Minho, Portugal.
His research interests include computer architec-
ture, digital systems design, low-level program-
ming, operating systems, and cybersecurity.

MANUEL RODRÍGUEZ received the bachelor’s
degree in electronic and computer engineering,
in 2021. He is currently pursuing the M.Sc. degree
in embedded systems and micro/nanotechnologies
with the Embedded Systems ResearchGroup, Uni-
versity of Minho, Portugal. His research interests
include computer architecture, hardware design,
embedded virtualization, operating systems, and
automotive.

BRUNO SÁ received the master’s degree in
electronics and computer engineering with spe-
cialization in embedded systems and automation,
control and robotics. He is currently pursuing
the Ph.D. degree with the Embedded Systems
Research Group, University of Minho, Portugal.
His research interests include operating systems,
virtualization for embedded systems, computer
architectures, the IoT systems, and artificial intel-
ligence.

SANDRO PINTO received the Ph.D. degree
in electronics and computer engineering. He is
currently an Associate Research Professor with
Centro ALGORITMI, Universidade do Minho,
Portugal. He has a deep academic background and
several years of industry collaboration focusing
on operating systems, virtualization, security for
embedded, CPS, and the IoT systems. He has
published more than 90 peer-reviewed articles and
is a skilled presenter with speaking experience in

top-tier academic and industrial conferences.

VOLUME 12, 2024 9833


