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ABSTRACT This paper provides a thorough examination of strategies related to the design of the polynomial
multiplication approach, which is essential to resolving large number operations, including multiplication
in the post-quantum cryptography algorithm. Our research specifically centers on the implementation of
Toom-Cook-based multiplication algorithms for high- and half-degree quantum multiplication, up to 20.5-
way degrees, considering that existing Toom-Cook lower degrees are combinedwith a lattice-based approach
like the Saber algorithm. In particular, we propose the quantum multiplication design, conduct computation
step experiments, and implement the division-free method. In addition to examining the Toom-Cook 20.5-
way algorithm, this study also provides an overview of the results obtained from the Toom-Cook 8.5-way
and Toom-Cook 10.5-way algorithms. The Toom-Cook 20.5-way design exhibits significant performance
improvement over its predecessor, as evidenced by its lower value of asymptotic complexity and lower
cost of quantum implementation, with a qubit count of n1.186, approximately 522nlog21 41 − 540n Toffoli
count, and n1.033 Toffoli depth. Concerning the asymptotic performance analysis and quantum cost compared
to alternative Toom-Cook-based multiplication, the results indicate the development of a more efficient
multiplication polynomial that may be utilized in the evaluation of post-quantum security.

INDEX TERMS Toom-cook, high- and half-degree quantum multiplication, asymptotic performance
analysis, quantum cost.

I. INTRODUCTION
The Toom-Cook algorithm, which is based on work from [1],
[2], is well recognized as a highly efficient strategy for
resolving complex multiplication problems involving large
numbers. The concept can often be referred to as a
universal multiplication [3]. In general, the approach entails
decomposing the multiplication procedure into smaller
multiplications and additions, resulting in a reduction of
the overall computational complexity. In numerous fields,
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approving it for publication was Jiafeng Xie.

including computer algebra systems and cryptography, this
method is utilized extensively to enhance the performance
of polynomial multiplication operations, including the mul-
tiplication portion of the post-quantum cryptography (PQC)
algorithm.

There has been a significant surge in the adoption of
Toom-Cook and number theoretic transform (NTT)-based
polynomial multiplication as a result of their incorporation
as essential elements in the post-quantum standardization
initiative [3], [4]. In addition to classical and quantum mul-
tiplication designs, i.e., [5], [6], [7], [8], several studies [3],
[4], [9] have put forth an interesting investigation concerning
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Toom-Cook multiplication. The current investigation, which
reveals the vulnerabilities of the Toom-Cook multiplication
algorithm, was carried out by [4] and [10]. Hence, the
research described in [11] gives an insight into increasing
the number of iterations to mitigate the vulnerability to
peak analysis attacks in the correlation power analysis
(CPA) technique to lower degree Toom-Cook, as noted
by [4].
In their preliminary investigation, Bodrato et al. [6] pro-

posed a multiplication method known as Toom’n’half, which
integrates high- and half-degree multiplication to enhance the
efficacy strategy and outperforms Toom-Cook in classical
computing. In this work, we design the Toom-Cook-based
multiplication algorithms for high- and half-degree quantum
multiplication, up to 20.5-way degrees, and investigate
asymptotic performance analysis and quantum resources for
Toom-Cook-based multiplication in terms of qubit count,
Toffoli count, and Toffoli depth.

This work presents a novel design that significantly
improves the efficiency of the multiplication algorithm
based on the substantial strategy for Toom-Cook high-degree
algorithm from several prior works (e.g., [4], [5], [6], [7],
[8], [11], [12], and [13]). To the best of our understanding,
this is the first work to integrate high- and half-degree
quantum multiplication in classical and quantum design
while maintaining an architecture degree of up to 20.5-way
for Toom-Cook-based multiplication. Achieving the highest
possible asymptotic performance result while utilizing fewer
quantum resources is the principal aim.

The contributions of the paper can be summed up as
follows:

1) We conduct a thorough examination and synthesis of
literature pertaining to multiplication techniques and
works based on the Toom-Cook algorithm, focusing on
strategies for polynomial multiplication in classical and
quantum designs and also attacks based on Toom-Cook
multiplication. In addition, we examine the application
of the multiplication operation in the construction
of a post-quantum algorithm, such as the lattice-
based methodology, i.e., Saber and Kyber. In addition,
we capture relevant research on multiplication-based
attack techniques that can potentially be performed
with a lower degree of Toom-Cook-based multiplica-
tion, specifically CPA.

2) We elaborate on several approaches and strategies from
prior related works ([5], [6], [7], [8], [11]) to reduce
computational resources, i.e., opposite points, inverses,
and cost-exploiting symmetries. Our focus lies on
the implementation of high- and half-degree quantum
multiplication techniques, specifically addressing the
design strategies employed in the Toom-Cook 8.5-way,
10.5-way, and 20.5-way methodologies.

3) We design the proposed multiplication and experiment
computation steps such as splitting, evaluation, recur-
sive multiplication, interpolation, and recomposition in
a sequential manner and derive the quantum circuit for

performing high- and half-degree quantum multiplica-
tion. As a result, we present the Toom-Cook 8.5-way,
10.5-way, and 20.5-way quantum design architectures,
wherein the highest degree of Toom-Cook 20.5-
way exhibits the lowest asymptotic performance and
minimal utilization of quantum resources.

4) We analyze the asymptotic performance and quan-
tum resource utilization of various multiplication
algorithms, with a particular focus on the Toom-
Cook-based multiplication algorithm for degrees up
to 20.5-way degrees. Our investigation leads to the
conclusion that the Toom-Cook 20.5-way architecture
demonstrates the lowest quantum resource utilization,

requiring qubit count of n( 4121 )
log 41

(2 log 41−log 21) log21 n ≈

n1.186, 522nlog21 41 − 540n Toffoli count, and
n( 4121 )

1− log 41
(2 log 41−log 21) log21 n ≈ n1.033 Toffoli depth.

The paper is structured in the following manner: Section I
gives an overview related to the research. Section II
presents a thorough examination of the existing literature,
specifically focusing on the Toom-Cook algorithm and its
associated works. In Section III, we present a succinct
summary of the utilization and multiplication-based attacks.
In Sections IV and V, the strategies and detailed procedures
for designing the proposed high- and half-degree quantum
multiplication are outlined, specifically the Toom-Cook 20.5-
way designs. Section VI presents a comprehensive analysis
of the space and time complexity, along with a comparative
evaluation of multiplication techniques utilizing the Toom-
Cook algorithm. Section VII encompasses the discussion
and future work directions, while Section VIII presents the
conclusions of the current study.

II. RELATED WORKS
The Toom-Cook algorithm, particularly the Toom-Cook
k-way approach for multiplication, has superior time com-
plexity when compared to the naive Schoolbook multipli-
cation algorithm, which has a time complexity of O(n2).
Furthermore, this approach also achieves a lower asymptotic
performance analysis compared to the Karatsuba algorithm,
which is regarded as equivalent to the Toom 2-way algorithm
with a complexity of (nlog(3)/log(2)) ≡ O(n1.58). In Table
1, a comprehensive analysis and synthesis of works related
to multiplication methodologies and investigations centered
around the Toom-Cook algorithm are presented. The dis-
cussion primarily revolves around approaches employed for
polynomial multiplication, both in classical and quantum
environments, as well as potential vulnerabilities stemming
from Toom-Cook multiplication.

Alberto Zanoni [5] presents a computational implementa-
tion of a balanced Toom-Cook 8-way algorithm in a classical
environment, specifically designed for integer multiplication
and squaring. The Toom-8 classical method employs a tech-
nique that divides components into eight distinct portions.
Previously, Bodrato and Zanoni have made advancements
in the original Toom approach family, as discussed in
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TABLE 1. Toom-Cook-based multiplication related research. We extracted information from [4], [5], [6], [7], [8], [11], [12], and [13] to elucidate on their
particular Toom-Cook-based-related task in a classical-quantum environment.

their work [15], by incorporating unbalanced operands,
which refer to polynomials with varying degrees. This has
been achieved by the utilization of the Toom−(k + 1/2)
approaches. Later, in Marco Bodrato’s advanced research in
[6], several strategies and techniques for achieving a high
degree of precision in the implementation of Toom-Cook
algorithms, specifically for both balanced and unbalanced
scenarios, are clarified in classical hardware implementation.

Dutta et al. [7] conducted a thorough investigation of
the utilization of the Toom-Cook 2.5-way technique within
the quantum circuit for multiplication, offering a detailed
explanation of its workings. A bound on the count of Toffoli
gates and qubits was found by analysis of the recursive
tree structure of the method. The proposed quantum circuit

exhibits superior asymptotic bounds for several performance
metrics compared to previous implementations of multiplier
circuits utilizing schoolbook and Karatsuba methods. Later,
the research continued by Larasati et al. [8] shows findings
that demonstrate the possibility of the k−way Toom-
Cook method, which employs higher-degree polynomial
interpolation, to exhibit lower asymptotic complexity in
comparison to alternative approaches such as Toom-Cook
2.5-way.

In their study, Larasati et al. [8] expound upon the
Toom-Cook 3-way algorithm by incorporating the division
gate. This research specifically devised the quantum circuit
that aligns with Bodrato’s suggested sequence, aiming to
minimize the number of operations required, particularly
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FIGURE 1. Runtime analysis of Open Quantum Safe Lattice-based Cryptographic algorithms
(Key Encapsulation Mechanisms).

in relation to nontrivial division. This approach effectively
reduces the need for nontrivial divisions, as only one exact
division by 3 circuit is utilized per iteration. Furthermore,
in order to further reduce the expenses associated with the
remaining division, the researchers employ the distinctive
characteristics of the specific division circuit. Based on
the result of the numerical analysis, it can be observed
that the circuit exhibits a reduced asymptotic complexity in
terms of Toffoli depth and qubit count when compared to
Toom-Cook 2.5-way [7]. However, it is worth noting that a
significant number of Toffoli gates are required primarily for
the implementation of the division operation.

The research on [6], [8], and [11] highlights the existence
of a challenge in designing high degree Toom-Cook-based
multiplication. However, it also presents an opportunity to
achieve superior performance in asymptotic performance
analysis, both in classical or quantum environments.

III. LOWER-DEGREE USAGE AND ATTACK
VULNERABILITY OF TOOM-COOK IN THE PQC ERA
Numerous investigations have been conducted on the
enhancement of public-key cryptosystems, aiming to protect
against potential attacks deriving from both classical and
quantum computing paradigms. The period characterized
by the need for quantum-resistant encryption is commonly
denoted as the PQC era, as elucidated in [16]. In this
subsection, we highlight a brief example of the usage and
implementation of Toom-Cook-based multiplication in the
Saber and Kyber PQC algorithm, as well as the potential
vulnerability that arises from the utilization of lower-degree
multiplication.

According to the NIST PQC standardization process,
the two main algorithms that are suggested for a range
of applications, including digital signatures, are Crystals-
Kyber [17] for public-key setup and Crystals-Dilithium [18]
Lattice-based encryption is expected to exhibit optimal

efficiency and resilience against quantum attacks, rendering
it a feasible solution within the domain of PQC and appears to
be the most rapid implementation as in [19], [20], [21], and
[22]. Dilithium, Falcon, FrodoKEM, Kyber, NTRU, NTRU
Prime, and Saber are seven of the fifteen candidates in the
NIST third round that use lattice-based cryptography [16].

Polynomial multiplications, such as Toom-Cook and NTT,
play a crucial role in lattice-based post-quantum encryption
by serving as the essential constituents. Lattice-based crypto-
graphic systems commonly employ either the NTT with time
complexity of (O(n log n)) [23] or the Toom-Cook/Karatsuba
algorithm with time complexity of (O(n1+ϵ), where 0 <

ϵ < 1), [1], [2], [24], to achieve efficient polynomial
multiplication involving n coefficients [10]. These multipli-
cations facilitate the division of the resultant sub-polynomial,
as highlighted in [10]. The results of the runtime analysis
for a post-quantum lattice-based cryptographic algorithm,
specifically a key encapsulation mechanism, are displayed
in Figure 1. In this figure, our focus is solely on the
Kyber algorithm. The analysis is conducted by comparing
the algorithm’s runtime behavior and memory consumption
statistics, as documented in the work by Mujdei et al. [10].
While the majority of other research concentrates on opti-

mizing NTT-based multiplications, research [9] optimizes
a Toom-Cook-based multiplier to an exceptional degree.
A memory-efficient striding Toom-Cook with delayed inter-
polation yields a highly compact, low-power implementation
that allows for a very regular memory access scheme. Besides
the usage of Toom-Cook multiplication, they demonstrate
the multiplier’s effectiveness and integrate it into one of
the four NIST finalists, the Saber post-quantum accelerator.
The Saber algorithm employs an additional division of
the resultant sub-polynomials into two Karatsuba layers,
followed by the execution of a 16-coefficient schoolbook
operation [10]. Figure 2 displays an image that portrays
an occurrence of Toom-Cook-based multiplication executed
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FIGURE 2. The Toom-Cook 4-way and Karatsuba Multiplication used in
Saber Post-Quantum Cryptography Algorithm.

within the Saber structures. We redraw to demonstrate
the application of the Toom-Cook 4-way method in the
implementation of the Saber post-quantum cryptography
algorithm from the work of Mera et al. [3].

Regarding attacks based on multiplication, the utilization
of side-channel information can be targeted towards the mul-
tiplication process, as demonstrated in recent studies [4], [10].
The exploitation of side-channel information, such as power
consumption, electromagnetic radiation, and execution time,
has been shown to be a method for gaining unauthorized
access to sensitive data [25]. CPA is widely recognized
as a very effective technique that leverages the correlation
between a device’s power consumption and the data it is
processing. This approach exploits power fluctuations that
are caused by mathematical processes such as multiplication.
Hence, the evaluation of potential risks associated with
multiplication exploitation in side-channel analysis attacks,
particularly when utilizing the CPA approach, is crucial
during the construction of cryptographic algorithms. This
concern arises due to the frequent use of arithmetic multipli-
cation as a sub-operation multiplier in real implementations.

Mujdei et al. conducted an experimental analysis to inves-
tigate the potential occurrence of CPA peaks when employing
the schoolbook sub-operation in the processing of 3-way and
4-way Toom-Cook within the lattice-based PQC algorithm.
The post-quantum algorithm NTRU−HPS−4096821 elab-
orated in [10], can be subjected to a multiplication-based
attack utilizing side-channel measurements. Mujdei et al.
study encompasses an examination of the variance plot
of 500 instances of schoolbook multiplication, wherein a
comprehensive analysis reveals the identification of a total of
72 apparent peaks. Proficiency in mathematical approaches
is essential for the development of PQC algorithms that
can effectively withstand SCA. Furthermore, the utilization
of effective mathematical techniques is imperative in the
construction of quantum circuits, which can be employed for
the creation of cryptanalysis circuits. The primary function

of these cryptanalysis circuits is to evaluate the resilience of
a method.

Efficient arithmetic operations, particularly multiplication,
play a vital role in conducting comprehensive investiga-
tions within the domain of quantum-based cryptanalysis.
According to Roche [26], Parent et al. [27], Gidney [28],
Banegas et al. [29], and Putranto et al. [11], [14], the
development of a fundamental arithmetic constructor that
demonstrates efficiency in terms of space use and time
consumption is crucial for expediting the cryptanalysis
process. The primary objective of these investigations is to
reduce the complexity that is typically encountered during
the execution of quantum cryptanalysis. The efficacy of
basic mathematical operations, particularly multiplication,
can significantly impact the predictive analysis of the
utilization of multiplication inside the lattice-based PQC
algorithm, as well as the quantum computer’s ability to solve
conventional public key cryptography through cryptanalysis,
which further leads to post-quantum security evaluation.

IV. TOOM-COOK MULTIPLICATION COMPUTATIONAL
STEPS AND STRATEGIES
A. TOOM-COOK COMPUTATION STEPS
In the present subsection, we employ the identical overarch-
ing parameter as Marco Bodrato’s prior study on classical
computation [6] to establish a direct correlation. Given two
polynomials, u and v, belonging to the ring of polynomials
over an integral domain R[x], we aim to calculate the product
R[x]. The algorithm can be delineated into five distinct steps,
denoted as splitting, evaluation, recursive multiplication,
interpolation, and recomposition.

1) SPLITTING
Let Y = xb be selected as the fundamental value.
Subsequently, u and v can be represented by two homoge-
neous polynomials, namely u(y, z) = 6n−1

i=0 uiz
n−1−iyi and

v(y, z) = 6m−1
i=0 viz

m−1−iyi. These polynomials consist of n
and m coefficients, respectively, and their degrees, denoted
as deg(u) = n − 1 and deg(v) = m − 1, align with the
aforementioned coefficients and degrees. Such that u(xb, 1)
equals the variable u and v(xb, 1) equals the variable v under
the specified circumstances. The coefficients of ui, vi ∈ R[x]
can be represented as polynomial functions and can be chosen
to have a specified degree, denoted as ∀i, deg(ui) < b,
deg(vi) < b.

The typical way of implementing the Toom k-way
algorithm requires the operands to be evenly sized, with
one operand m being the same size as the other operand
n. In contrast to the same-size operand value, we expand
our approach to elaborate on unbalanced or not-the-same-
size operand value circumstances. This approach refers to
[5] and [6] that labels the methodology as Toom- n+m2 for
Toom’n’half terminology. In this research, we specifically
refer to it as Toom-Cook high- and half-degree quantum
multiplication.
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2) EVALUATION
In order to calculate the product w = u · v, where the
degree of the polynomial is denoted as d = n + m − 2, it is
necessary to have d + 1 = n + m − 1 evaluation points
Pd = (α0, β0), . . . , (αd , βd ), where (αi, βi) ∈ R[x]. The
process of computing the evaluation of a single polynomial,
for example u, at specific positions (αi, βi), can be achieved
by the utilization of matrix by vector multiplication.

3) RECURSIVE MULTIPLICATION
During this stage, the computation of ∀i, w(αi, βi) =

u(αi, βi)v(αi, βi) will be performed, which will involve the
multiplication of d + 1 polynomials with degrees that are
either less than or equal to the degree of Y = xb.

4) INTERPOLATION
The outcome of this phase is solely determined by the
expected degree of the result d as well as the selection of d+

1 points (αi, βi). It is not influenced by n and m individually.
The coefficients of the polynomial w(y, z) = 6d

i=0wiz
d−iyi

are currently required. Given that we possess the values of w
assessed at d + 1 distinct points, we are met with a classical
interpolation problem. We apply the inverse of the Ad , as also
described in the [6] paper, often referred to as a (d+1)x(d+1)
Vandermonde-like matrix.

5) RECOMPOSITION
Calculating the required output in an effectivemanner ismade
possible by performing an additional evaluation using w =

w(xb, 1). This particular stage requires at most d shifts and
additions to be implemented.

B. DESIGN STRATEGIES
Within the classical context strategies for Toom-Cook mul-
tiplication, prior work [6] notes the presence of two critical
stages, notably evaluation and interpolation. The rationale
provided is that both evaluation and interpolation necessitate
the utilization of matrix by vector multiplication. Therefore,
both of these stages necessitate numerous operations such as
additions, subtractions, shifts, and even little multiplications
or precise divisions (that is, interpolation) involving small
elements in R[x]. Furthermore, within the [6] works, the
process of splitting apart is executed by a mix of all phases
and interlaced operations, with the objective of reducing both
memory consumption and the overall count of operations
in R. This section provides a concise explanation of the
methods employed in classical Toom’n’half by Bodrato [6].
These strategies include the utilization of opposite points,
the implementation of inverse matrix strategies during the
interpolation step, and the incorporation of cost-exploiting
symmetries.

1) OPPOSITE POINTS
The interpolation can be achieved by performing a series of
operations on the rows of the matrix during the interpolation

step. By eliminating more entries in each step, it is possible
to shorten the sequence [15]. The lines produced by two
contrasting evaluations exhibit identical absolute values, with
all values being positive on one line and alternating on
the other. By performing the operations of addition and
subtraction on the two lines and subsequently dividing the
result by two, we are able to derive the following lines:(

βd αβd−1 α2βd−2 . . . αd

βd −αβd−1 α2βd−2 . . . (−α)d

)
(1)

In this procedure, half of the entries are adjusted to zero.(
0 αβd−1 0 α3βd−3 . . .

βd 0 α2βd−2 0 . . .

)
(2)

In this work, we employ opposite points, which implies
the necessity of consistently employing pairs of points.
This implies that in the presence of the two unusual
points (1,0) and (0,1), commonly referred to as zero and
infinity, it is desirable to have an even number of points.
In the case of the conventional balanced Toom-Cook k-way
algorithm, the number of points needed is determined by
the equation d + 1 = 2n − 1, which always results in
an odd value. On the other hand, we have advantages that
serve as the primary motivation for investigating the unbal-
anced Toom’N’half algorithm which necessitates the use
of 2n points.

2) INVERSES
In the interpolation matrix, if we evaluate (α, β) and its
inverse (β, α), it reveals the presence of two symmetric
lines in the matrix. These lines exhibit identical values and
signs but are arranged in opposite orders, as described in
Equation 3. By performing the operations of addition and
subtraction on the two lines, we are able to derive two distinct
lines. One of these lines exhibits symmetry, while the other
does not possess this characteristic (asymmetric), as shown
in Equation 4.(

βd αβd−1 . . . αβd−1 αd

αd αd−1β . . . αd−1β βd

)
(3)(

αd + βd αd−1β + αβd−1 . . . βd + αd

αd − βd αd−1β − αβd−1 . . . βd − αd

)
(4)

If each line in the interpolation matrix possesses its own
inverse, it is possible to derive a new matrix that can be
represented in a block-wise manner [6], as presented in
Equation 5. (

c|cA A′

−B B′

)
(5)

The matrices A′ and B′ represent the mirrored versions of
matrices A and B, respectively. The two exceptional points,
(1, 0) and (0, 1), were disregarded, as they can be handled
independently. The two regular patterns, (1, 1) and (−1, 1),
exhibit symmetrical lines and should be included in A, A′

without the requirement of precomputations. In the following
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FIGURE 3. The Toom-Cook 20.5-way Multiplication Recursion Tree
Structure, where T represents the Toom-Cook k−way Multiplication and n
and N represent the bit length for each level and the overall depth of the
tree, respectively.

steps, when operating lines in A, any entry that is zeroed in
A will have a corresponding entry zeroed through the same
action in A′. A similar phenomenon occurs with both B and
B′. In this manner, the nullifying impact of the following
operations is doubled.

3) COST EXPLOITING SYMMETRIES
It is observed from the studies of [6] that, in order to
encompass all symmetries, it is necessary to consider
quartets of points denoted as ±α, ±α−1, along with the
four ‘‘standard’’ points 0, ±1, and ∞. To fully exploit
this advantage, we aim to minimize computational costs
in our quantum design. It is crucial to carefully determine
the appropriate selection of the 4k evaluation points. The
extremal points 0 and ∞ do not necessitate any operations
for evaluation. To satisfy the condition of n + m − 1 = 4k ,
the two operands must be denoted by two polynomials, each
possessing a degree of n andm, respectively. This implies that
the evaluation of each pair of ±α incurs a cost (n+1)+ (m+

1) = (4k + 1). There are a total of 2k − 1 couples. Hence,
evaluation necessitates the consideration of (4k + 1)(2k − 1)
combinations. To address a wide range of unbalancements,
Toom balanced addresses the issue of operand ratios that
are unbalanced and cannot be handled well [6]. One such
approach is to disregard the evaluation at ∞ and substitute
it with a value of zero. A potentially more efficient approach
might involve disregarding the assessment in 0, as the desired
product from the evaluation in∞ could potentially be shorter.

V. HIGH- AND HALF-DEGREE QUANTUM
MULTIPLICATION DESIGN
Figure 3 depicts the visual interpretation of the recursive
tree structures associatedwith Toom-Cook 20.5-way. Further,
Figure 4 draws quantum circuits pertaining to the Toom-Cook
20.5-way multiplications design. The function block boxes
are utilized as visual representations of the discrete stages
encompassed in the construction process of the Toom-Cook
quantum circuit. The multiplication algorithm employs a

FIGURE 4. Quantum Design for the Toom-Cook 20.5-way Multiplication
Algorithms.
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quantum circuit wherein red triangles are employed to
represent the input and output of each operation within the
function blocks. A notation symbol is utilized to represent
the quantum state of the input, where each line corresponds
to a necessary register in the quantum circuit. The inclusion
of triangles situated on the left side of a block serves to
emphasize the positioning of its input entry point. The
symbolization of the output location on the right side is
represented by triangles. In order to preserve a sense of
simplicity, the ancilla registers have been excluded from the
visual representation.

The computational steps encompass the following steps:
splitting, evaluation, recursive multiplication, interpolation,
and recomposition, as expounded upon in prior literary
investigations [5], [6], [8], [11]. The input operands, denoted
as variables x and y, represent the quantities to be multiplied.
The variable x is employed as a symbol to denote the entirety
of the numerical input. The subscripts x0, x1, x−1, x−2, . . .

are employed to denote the individual constituents of the
input. Conversely, the symbols x(0), x(1), x(−1), x(−2), . . .
are utilized to denote the outcomes derived from assessing the
variable x at certain places.

In the splitting computation stage of Toom-Cook 20.5-way,
the two given homogeneous polynomial inputs, represented
by Equations 6 and 7 as x and y correspondingly, are divided
into 20 and 21 smaller pieces of length n

21 each. These
polynomials consist of n andm operands, respectively, 20 and
21, which align with the aforementioned coefficients and
degrees.

x = x19s19j + x18s18j + x17s17j + x16s16j + x15s15j + x14s14j

+ x13s13j + x12s12j + x11s11j + x10s10j + x9s9j + x8s8j

+ x7s7j + x6s6j + x5s5j + x4s4j + x3s3j + x2s2j

+ x1sj + x0 (6)

y = y20s20j + y19s19j + y18s18j + y17s17j + y16s16j + y15s15j

+ y14s14j + y13s13j + y12s12j + y11s11j + y10s10j + y9s9j

+ y8s8j + y7s7j + y6s6j + y5s5j + y4s4j + y3s3j + y2s2j

+ y1sj + y0 (7)

In the beginning stages of Toom-Cook’s splitting steps,
when employing Toom-Cook’s k−way algorithm to partition
a given quantity into k segments, it is imperative to select a
base Y = xb and compute the radix j value in the equations,
which can be predetermined by utilizing Equation 8.

j = max
{⌊

⌈log2 x⌉
21

⌋
,

⌊
⌈log2 y⌉

20

⌋}
+1 (8)

In the evaluation computation step, Values in Equation 9
are utilized to evaluate the points x and y, specifically,
all 41 predefined evaluation points. In order to achieve
evaluation as described in equation 10, 41 predefined
evaluation points in Equation 9 are utilized. The utilization
of the infinity value is intentionally avoided, as it aligns
with the strategies outlined in the research conducted by [6].

One possible strategy involves disregarding the evaluation at
infinity and replacing it with a value of zero.

x1 = 0, x2 = 1, x3 = −1, x4 = 2, x5 = −2, x6 = 4,

x7 = −4,

x8 = 0.5, x9 = −0.5, x10 = 0.25, x11 = −0.25,

x12 = 0.125, x13 = −0.125, x14 = 0.0625,

x15 = −0.0625, x16 = 0.03125, x17 = −0.03125,

x18 = 0.015625, x19 = −0.015625, x20 = 0.0078125,

x21 = −0.0078125, x22 = 0.00390625,

x23 = −0.00390625, x24 = 0.001953125,

x25 = −0.001953125, x26 = 0.000976565,

x27 = −0.000976565, x28 = 0.0004882825,

x29 = −0.0004882825, x30 = 0.0002441415,

x31 = −0.0002441415, x32 = 0.00012206,

x33 = −0.00012206, x34 = 0.00006103,

x35 = −0.00006103, x36 = 0.000030515,

x37 = −0.000030515, x38 = 0.0000152575,

x39 = −0.0000152575, x40 = 0.00000762875,

x41 = −0.00000762875 (9)

x(0), x(1), x(−1), x(2), x(−2), x(4), x(−4), x(0.5),

x(−0.5), x(0.25), x(−0.25), x(0.125), x(−0.125),

x(0.0625), x(−0.0625), x(0.03125), x(−0.03125),

x(0.015625), x(−0.015625), x(0.0078125),

x(−0.0078125), x(0.00390625), x(−0.00390625),

x(0.001953125), x(−0.001953125), x(0.000976565),

x(−0.000976565), x(0.0004882825), x(−0.0004882825),

x(0.0002441415), x(−0.0002441415), x(0.00012206),

x(−0.00012206), x(0.00006103), x(−0.00006103),

x(0.000030515), x(−0.000030515), x(0.0000152575),

x(−0.0000152575), x(0.00000762875),

x(−0.00000762875) (10)

Note that, in the interest of clarity, the exact equation
used to calculate the evaluation points has been excluded.
However, it can be inferred from the evaluationmultiplication
equation, Tables 3 and 4 in the Appendix. The evaluation
points, represented as x and y in the evaluation step of the
Toom-Cook 20.5-way multiplications design, are illustrated
in the Appendix in Figure 5 and Figure 6, respectively.
It is important to note that we propose the utilization of the
free-division design as a means to mitigate the complexity
associated with multiplication operations, particularly when
dealing with high-degree multiplications, such as polynomial
multiplication.

After the completion of the splitting and evaluation
computation steps, the subsequent computational step for
Toom-Cook 20.5-way involves recursivemultiplication as the
third step of computation in Toom-Cook. A single iteration
of non-recursive point-wise multiplication for Toom-Cook
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20.5-way multiplication utilizes a total of 41 multiplications,
each with n

21 lengths. To multiply each value of Equation 10,
the result is expressed in Tables 3 and 4 (in the Appendix),
denoted as A, B, C , D, E , F , G, H , I , J , K , L,M , N , O, P, Q,
R, S, T , U , V , X , Y , Z , AA, AB, AC , AD, AE , AF , AG, AH ,
AI , AJ , AK , AL, AM , AN and AO respectively.

(11)

For the fourth computation step, the interpolation,
we present the mathematical formulation for the interpolation
computation step that employs matrix operations. This
procedure is the inverse operation of point multiplication,
as depicted in Equation 11, as shown at the bottom of the
previous page. The aforementioned procedure employs an
inversematrix derived from the coefficient sub-multiplication
(k0 . . . k40) in Tables 3 and 4, further clarified in Equation 11.

In this work, we utilize opposite points and inverse
strategies, as previously discussed in the relevant literature [6]
and subsection. This highlights the importance of consistently
employing specific pairs of points to reduce themultiplication
complexity. Conversely, there exist certain benefits that
act as the principal impetus for examining the unbalanced
Toom’n’half algorithm, which requires the utilization of 2n
points.

In the context of the Toom-Cook 20.5-way algorithm, the
recomposition computational step involves the recomposition
originating from the interpolation result. The recomposition
is denoted by a series of variables, namely YY , YX , YW , YV ,
YU , YT , YS, YR, YQ, YP, YO, YN , YM , YL, YK , YJ , YI , YH ,
YG, YF , YE , YD, YC , YB, YA, XZ , XY , XX , XW , XV , XU ,
XT , XS, XR, XQ, XP, XO, XN , XM , XL, and XK .
The mathematical expression xy in Equation 12 represents

the recomposition outcome of the interpolation process, or in
other words, the final result obtained from the Toom-Cook
20.5-way multiplication algorithm.

xy = XK240j + XL239j + XM238j + XN237j + XO236j

+ XP235j + XQ234j + XR233j + XS232j + XT231j

+ XU230j + XV229j + XW228j + XX227j + XY226j

+ XZ225j + YA224j + YB223j + YC222j + YD221j

+ YE220j + YF219j + YG218j + YH217j + YI216j

+ YJ215j + YK214j + YL213j + YM212j + YN211j

+ YO210j + YP29j + YQ28j + YR27j + YS26j + YT25j

+ YU24j + YV23j + YW22j + YX2j + YZ (12)

VI. RESULTS AND ANALYSIS
A. TOFFOLI GATE COUNT
The variable Tn is employed as a symbol to denote the
cost associated with the execution of multiplication on
two larger n-bit quantities using the Toom-Cook multiplier.
Therefore, the term An represents costs linked to the addition
or subtraction of n-bit. In order to implement an n-bit Toom-
Cook 20.5-way multiplication, we carried out a total of
41 operations, which encompass n

21 sub-multiplications as
well as three distinct types of adders that possess varying
lengths. The number of operations required for n

21 -bit adders
is 130, while 2n

21 -bit adders require 1640 operations.

Tn = 41T n
21

+ 130A n
21

+ 1640A 2n
21

(13)

The Toffoli cost associated with a Toom-Cook 20.5 mul-
tiplication operation on n-bit can be calculated using
Equation 13. The cost of recursive implementations increases
with Equation 14, and Equation 15 becomes equivalent when
the Toffoli cost of An = 2n is substituted.

Tn = 41log21 nT1 + 130(A
n
21

+ 65A
n

441
+ · · · + 65log21(n)−1A1)

+ 1640(A
2n
21

+ 820A
2n
81

+ · · · + 640log21(n)−1A2)

(14)
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TABLE 2. Asymptotic Performance and Quantum Implementation Cost Multipliers Comparison.

Tn = 41log21 n +

log21(n)−1∑
i=0

[
260n(

41
21

)i
]

(15)

The Toffoli cost of a recursive implementation can be
determined by utilizing the geometric series calculation∑m−1

i=0 r i =
1−rm
1−r , as denoted by Equation 16. However,

the result obtained from Equation 16 does not incorporate
the conventional practice of uncomputation carried out in a
quantum environment. In Equation 17, we incorporated the
concept of an uncomputed operation as a strategy to reduce a
significant increase in the previously determined cost. It is of
utmost importance to acknowledge that the term ‘‘clean cost’’
utilized in the following equation aligns with the definitions
put forth by Larasati et al. [8] and Putranto et al. [11].

Tn = 41log21 n + 2604n
(
1 − ( 4121 )

log21 n

1 − ( 4121 )

)

= nlog21 41 + 260n
(
1−nlog21(

41
21 )

1 − ( 4121 )

)
(16)

m = 261nlog21 41 − 270n

Tn(clean) = 522nlog41 21 − 540n (17)

B. SPACE-TIME COMPLEXITY ANALYSIS
A prior work from Bennett in [30] introduced the technique
of reversible pebble games as a means to measure asymptotic
improvements in performance, specifically in relation to
space consumption within the framework of space-time
complexity analysis. The utilization of this technique is
widespread in the field of reversible computing, allowing for
the analysis of time and space complexity analysis possible
and enabling time-efficient finite-space computing [31].
This approach will enable us to assess the difference
in the cost of the efficiently optimized multiplication
and compare it with the findings of prior investigations.
The optimal cost of multiplication was determined by

implementing the methodologies described in the works of
Parent et al. [27], Dutta et al. [7], Larasati et al. [8], and
Putranto et al. [11].

The Toom-Cook 20.5-way algorithm involved the execu-
tion of 41 concurrent multiplications through a recursive
process, resulting in the formation of a 21 structure. There are
41l nodes of size 21−ln for an input of size n at level l, and this
input has a total circuit cost of n( 4121 )

l . The equation presented
as Equation 18 represents the aggregate cost associated with
the quinary tree. To ascertain the most suitable height k of a
tree for achieving optimal performance, Equation 20 should
be employed.

n
N∑
i=0

(
41
21

)i
, N = log21 n (18)

n
N−k−1∑
i=0

(
41
21

)i
=

1
21N−k

k−1∑
i=0

(
41
21

)i
(19)

In a manner identical to Equation 17, the identity of the
geometric series enables us to locate the boundaries specified
by Equation 20. Therefore, it is possible to decrease the
amount of space required, as demonstrated by the qubit count
equation presented in Equation 21. The result obtained from
Equation 21, which is approximately equal to O(n1.245),
is found to be smaller than the initially estimated space
requirement determined by Equation 22, which is limited to
the value O(nlog8 15) ≈ O(nn1.30229).

k ≤
N

2 −
log 21
log 41

≈ 0.847 (20)

QC = O
(
n
(
41
21

(
log 41

2 log 41−2 log 21

)
log21 n

))
≈ O(n1.186) (21)

n
log41 n−1∑
k=0

(
41
21

)k
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TABLE 3. The Evaluation Multiplication.
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TABLE 4. The Evaluation Multiplication(continued).

= n
(1 −

(
41
21

)log21 n
1 −

41
21

)
(22)

The Toffoli depth of a circuit is a commonly used metric
for quantifying its time complexity [7], [32]. The calculation
can be performed by multiplying the quantity of subtrees Sk
at the k-th level by the respective depth Dk . Therefore, the
Toffoli depth Td can be represented as shown in Equation 23.

Sk = 41

(
1− log 41

2 log 41−log21

)
log21 n

Dk =
n

21

(
1− log 41

2 log 41−log 21

)
log21 n

Td = SkDk = n
(
41
21

)(1− log 41
2 log 41−log 21

)
log21 n

≈ n1.0335 (23)

C. COMPLEXITY ANALYSIS COMPARISON
To provide a comprehensive overview of advancements in
complexity multiplication research, particularly in relation to
methodologies based on Toom-Cook algorithms, we present
the results of our cost analysis in Table 2. In this evaluation,
the assessment of space-time complexity is conducted by
employing metrics such as the Toffoli count, qubit count, and
Toffoli depth.

The present study examined briefly different degrees
of Toom-Cook multiplication complexity, including Toom-
Cook 2-way [11], Toom-Cook 2.5-way [7], Toom-Cook
3-way [8], Toom-Cook 4-way [11], and Toom-Cook 8-
way [5], [11], which have been extensively discussed in prior
prominent research studies. In order to gain a comprehensive
understanding of the distinctions, we additionally reported
and examined the asymptotic performance and quantum
resource allocation of the Toom-Cook 8.5-way, 10.5-way,
and 20.5-way quantum design architectures. This analysis
is presented in a consolidated table, Table 2. As a result,
the designed 20.5-degree demonstrates a high degree of

polynomial multiplication with superior asymptotic perfor-
mance outcomes and the lowest utilization of quantum
resources.

Based on the results from the analysis, it can be observed
that Equation 17, denoting the Toffoli count, and Equation 23,
representing the Toffoli Depth, indicate that the Toom-Cook
20.5-way method demonstrates more favorable multiplica-
tion costs in comparison to earlier Toom-Cook investigations,
as well as commonly employed multiplication techniques
such as the naive schoolbook and karatsuba methods. The
naive algorithm exhibits a time complexity of O(n2), where
n denotes the size of the input. On the other hand, the
Karatsuba algorithm has a time complexity of O(nlog2(3)).
According to Dutta et al. [7], the utilization of the Toom-
Cook 2.5-way algorithm leads to reductions in the number
of qubits (n1.404), Toffoli gates (49nlog6 16), and Toffoli gate
depth (n1.143) compared to naive Schoolbook or Karatsuba.
Based on Dutta et al.’s study, Larasati et al. [8] conducted a
comprehensive examination of the asymptotic performance
measures related to qubit count, Toffoli count, and Toffoli
depth. They found that the estimated Toom-Cook 3-way value
for the qubit count is n1.353, the Toffoli count has a complexity
ofO(n2), and the Toffoli depth follows a power law of n1.112.

In a recent study by Putranto et al. [11], they presented an
improved analysis of the asymptotic performance in terms of
qubit count for the Toom-Cook 8-way and 8.5-way approach.
The Toom-Cook 8-way estimation of the specific quantity is
determined by the qubit count, which can be expressed as

n( 158 )
log 15

(2 log 15−log 8) log8 n, the approximation can be classified as
O(n1.245). In the realm of efficient computation, the concept
of Toffoli depth holds significance. In this regard, it is worth
noting that the Toom-Cook 8-way design yields a lower limit
on logical depth amounting to O(n1.0569), accompanied by a
Toffoli count of O(nlog8 15).

Our current work presents the findings displayed in
Table 2. The Toom-Cook 8.5method asymptotic performance
analysis is observed to yield a qubit count of O(n1.236),
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FIGURE 5. Evaluation point x.
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FIGURE 6. Evaluation point y.
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a Toffoli count of O(nlog9 17), and a Toffoli depth count of
O(n1.053). The quantum implementation costs an identifiable

cost, resulting in a certain number of n( 179 )
log 17

(2 log 17−log 9) log9 n ≈

n1.236 qubits, 186nlog9 17−202n Toffoli count operations, and

Toffoli depth with n( 179 )
1− log 17

(2 log 17−log 9) log9 n ≈ n1.053.
Additionally, the analysis of the performance of the Toom-

Cook 10.5 method can be reported that it demonstrates
an asymptotic qubit count of O(n1.222), a Toffoli count of
O(nlog11 21), and a Toffoli depth count of O(n1.047). The
cost of implementation in quantum is resulting in a quantity

of n( 2111 )
log 21

(2 log 21−log 11) log11 n ≈ n1.222 qubits. Additionally,
the computational Toffoli count overhead is given by
206nlog11 21 − 132n. The Toffoli depth can be approximated

by the expression n( 2111 )
1− log 21

(2 log 21−log 11) log1 1n ≈ n1.047.
The optimal outcome of this endeavor is the computation

result of high- and half-degree quantum multiplication,
particularly utilizing the Toom-Cook 20.5-way method,
necessitates a qubit count with a complexity of O(n1.186),
a toffoli count of O(nlog21 41), and a toffoli depth count with
a complexity ofO(n1.033). The cost of quantum implementa-

tion for this multiplication is n( 4121 )
log 41

(2 log 41−log 21) log21 n ≈ n1.186

qubits, 522nlog21 41 − 540n Toffoli count operations, and

Toffoli depth with n( 4121 )
1− log 41

(2 log 41−log 21) log21 n ≈ n1.033.

VII. DISCUSSION
An extensive analysis from different multiplication tech-
niques revealed that, despite a high degree, the Toom-Cook
20.5-way multiplier achieves reduced resource utilization.
It is crucial to recognize that the effectiveness of the recently
developed Toom-Cook 20.5-way algorithm exceeds that of
the currently employed multiplication methods, particularly
the Toom-Cook 4-way technique utilized in algorithms based
on lattice algorithms during the post-quantum cryptography
era.

The role of quantum cryptanalysis is significant in identi-
fying potential weaknesses in classical cryptographic systems
when confronted with quantum attacks. Additionally, it plays
a crucial role in evaluating the security of post-quantum
cryptographic algorithms to determine their capacity to
provide a robust defense against quantum adversaries. For
future work, the design multiplication needs to be incorpo-
rated into the real implementation of the PQC algorithm or
notable cryptanalysis circuit, for example, utilizing the Shor
algorithm technique. Moreover, it is crucial to improve the
implementation by offering a more thorough explanation of
multiplication-based attacks using SCA or CPA techniques,
as well as measuring the potential for errors in quantum
design for high-degree multiplication.

VIII. CONCLUSION
This work extensively analyzed the Toom-Cook algorithm
and employed advanced techniques, including division-
free approaches, tree-structured methods, opposite points,
inverses, and cost-exploiting symmetries, to devise efficient

strategies for implementing high- and half-degree quantum
multiplication. The specific focus was on the Toom-Cook
8.5-way, 10.5-way, and 20.5-way degree multiplication
approaches. The implementation outcome demonstrates
exceptional performance in comparison to the existing
cutting-edge outcomes, as determined by analyzing the
asymptotic performance and the cost associated with quan-
tum implementation, particularly in terms of qubit counts,
Toffoli counts, and Toffoli depth. Our analysis indicates that
the Toom-Cook 20.5-way architecture demonstrates the high-
est level of efficiency in utilizing quantum resources. This is
observable from the qubit counts of the n1.186, 522nlog21 41 −

540n Toffoli counts, and the n1.033 Toffoli depth required.
This outcome represents a significant advancement when
compared to the previous approach of employing classical
schoolbook multiplication with a complexity of O(n2) or
utilizing quantum design for Karatsuba multiplication with a
complexity of O(nlog2(3)). Moreover, the result demonstrates
a significant improvement in comparison to the presently
employed Toom-k-way, Toom-Cook 2.5-way, Toom-Cook
8.5-way, and 10.5-way approaches.

APPENDIXES
See Tables 3 and 4 and Figures 5 and 6.
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