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ABSTRACT Cloud gaming allows users to play high-quality games on low-end devices by offloading
game processing to the cloud. However, network latency remains a significant issue affecting the gaming
experience. Speculative execution is a promising approach to hide network latency by predicting and
transmitting future frames early. However, existing methods generate excessive compute load and network
traffic due to many potential input patterns. This paper introduces a pattern reduction method that uses a
bit field representation of the input and facilitates efficient speculative execution in cloud games. There
are two pattern reduction techniques: analyzing temporal patterns to detect frequent transitions and using
LSTM-based predictions to estimate input probabilities. Experiments using actual gaming data show that
the proposed methods significantly reduce rendered frames and network traffic versus prior speculative
execution methods. The results demonstrate the method’s effectiveness and scalability across diverse game
genres.

INDEX TERMS Cloud-gaming, speculative execution, low-latency.

I. INTRODUCTION
The spread of smartphones has allowed people to play games
anytime and anywhere. Over the past few years, smartphone
games have gained a lot of attention [1]. As network
technology advances, smartphone games and cloud gaming
systems are attracting increasing attention [2]. In a cloud
gaming system, the cloud performs game processing based
on user operations and sends only the resulting video frames
to the user’s terminal [3]. This service allows users to
play the latest games anywhere as long as they have an
Internet connection, even if they do not have a high-spec
PC or game console. Additionally, the fact that users do
not need to purchase the equipment necessary to play the
latest games separately also contributes to an increase in the
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number of players. However, in cloud gaming systems where
players engage in games over a network, the impact of delay
emerges as a significant issue. If the response delay from user
operation to screen display increases, the game’s operational
feel will be impaired [4]. Response time is an essential issue
for specific games, and requirements vary depending on the
game’s characteristics in question [5], [6]. Improving the
response delay in cloud gaming systems is necessary to enjoy
games anytime and anywhere.

Table 1 shows the main research topics related to latency
and traffic issues in cloud gaming systems. Some studies
have applied platform technologies such as mobile edge
computing to reduce response times [7], [8]. Many focused
on platform optimization, including dynamic video quality
adjustment [9], cloud resource optimization [10], [11], and
cloud-native game development. However, no matter how
much latency is reduced, the gaming experience in cloud
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TABLE 1. Major research topics on response time and traffic challenges in cloud gaming.

gaming systems is different from that in the local game.
In order to ensure that a cloud gaming system provides an
equivalent gaming experience, the system must be designed
to create the illusion for the user that there is no network
delay.

On the other hand, [12], [13] proposes speculative execu-
tion to reduce response time. In these approaches, the server
pre-renders and sends frames corresponding to all potential
user input patterns. Because the server sends video frames
before user input, speculative execution reduces response
time on the user side, ideally reducing the response time
to zero. However, two challenges arise when implementing
speculative execution in cloud gaming systems. First, cloud
gaming servers require enormous computing power. The
number of possible input patterns between frames of each
game ranges from hundreds to thousands. It increases
exponentially as the number of frames that need to be
speculatively executed increases. Secondly, this process
generates a large amount of video traffic. Even with sufficient
computational power for speculative execution, the system
must send many generated frames in advance. Consequently,
speculative execution in cloud gaming systems leads to a
significant increase in traffic.

We are investigating how to solve the problem of
speculative execution in cloud gaming systems and improve
its feasibility. This research proposes a pattern reduction
method that enables speculative execution in cloud gaming
systems. By reducing the number of speculative execution
patterns, we aim to resolve computing power and traffic
issues fundamentally. We developed and proposed a new
pattern reduction method for speculative execution based on
bit fields to adapt it to various games and devices running
on cloud gaming systems. In this system, we save the input
signals from each user’s device as a bit field input log
and analyze the input patterns. We propose and discuss
two methods: pattern detection-based analysis and Long

Short-Term Memory (LSTM) based pattern analysis. Pattern
detection-based analysis analyzes the received input logs
over time to obtain the potential transition patterns. The
LSTM-based analysis uses LSTM architecture to capture
the input log’s short-term and long-term temporal patterns.
This method enables effective speculative execution in-game
environments that require complex input prediction [14].
To verify the effectiveness and scalability of the proposed
method, we collected input logs from multiple users playing
games of different genres, such as fighting games, action
games, and first-person shooter (FPS) games, and based
on these input logs, we developed a detailed method.
We carried out experimental measurements. The evaluation
results revealed that the speculative execution method using
our proposed system could reduce the number of rendered
game frames and significantly reduce traffic compared to the
existing speculative execution methods.

The contributions of this research are as follows.

1) We proposed a bit-field-based pattern reduction
method to realize the speculative execution of various
games and devices running on cloud gaming systems.

2) To investigate the scalability of the proposed method,
we performed experimental measurements using input
logs obtained by having multiple users play various
games, including fighting games, action games, and
FPS games.

3) We clarified the scenarios in which the two proposed
analysis methods are most effective and specifically
discussed and suggested the types of games and
situations to which each method is most suitable.

II. RELATED WORK
Several approaches have been proposed to reduce or hide
the effects of response time in cloud gaming systems.
We can broadly categorize these into methods for individual
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FIGURE 1. Proposed cloud gaming server architecture.

latency reduction, zero-latency solutions through speculative
execution, and input prediction methods.

A standard method for reducing individual latencies is
to optimize the network architecture specifically for cloud
gaming traffic. For individual delay reduction, Suzujevic [15]
proposed an adaptive video coding method to reduce trans-
mission and processing delays. Specifically, the cloud gaming
server degrades game video frames and their frame rate
to reduce the video traffic and corresponding transmission
delay. In [7], they aim to reduce propagation delay by
decreasing the distance between the cloud gaming server
and the user terminal. Specifically, each user connects to
a physically nearby cloud gaming server and exchanges
packets, thus achieving an experienced quality closer to a
local gaming system. Zhang [8] utilized edge networks to
reduce network delay and bandwidth consumption. They
form edge networks to a data center for cloud gaming
and perform computationally demanding operations, such as
video rendering, on the edge networks. Other studies [16],
[17] adjust the game system to reduce the effect of a network
delay on the quality of experience.

Speculative execution has been proposed as a zero-latency
method. Outatime [13] and CloudHide [12] transmit pre-
dicted game frames to clients in advance based on heuristics.
Outatime transmits speculatively generated game frames and
correction information early in the response time of the
server-user network. Each user outputs a game frame from the
received multiple game frames by applying the appropriate
image synthesis method according to the user’s input.
On the contrary, user devices require high computational
costs to perform the sophisticated image synthesis method.
By transmitting all speculatively generated game frames to
the user in advance, CloudHide effectively reduces response
time and increases video traffic. The key limitation is the
computational overhead required for sophisticated client-side
image processing. There is also a tradeoff between latency
reduction and additional network bandwidth consumed by
sending multiple speculatively generated frames.

Input prediction is another active area of research for
hiding latency. GGPO [18] masks network delays by

FIGURE 2. Threading process in cloud gaming servers with speculative
execution for two future frames. Here, the cloud gaming server has
transmitted the user’s game frames for t + 1 at T = t − 1 and t at
T = t − 2 to the user.

speculatively applying inputs locally, assuming they will
match future actual inputs. This approach has proven effective
in fast-paced fighting games where experienced players can
predict opponents’ moves reliably. Extensions apply hidden
Markov models [19] and AI agents [20], [21] to improve
fighting game input predictions. However, current methods
are narrowly focused on one specific genre and may not
generalize well to others.

Our proposed methods take inspiration from zero-delay
and input prediction solutions. Our methods are novel
in introducing heuristic pattern reduction methods and
LSTM-based input prediction methods to increase the
feasibility of speculative execution. We propose a method
that is not limited to specific conditions, accommodating
multiple game genres and operating terminals in a cloud
gaming system.

III. PROPOSED METHOD
A. OVERVIEW
Fig. 1 shows an overview of the cloud gaming server in the
proposed method. First, a user sends inputs over the network
to the cloud gaming server. The cloud gaming server collects
and analyzes the input logs from the user and generates
log-based input patterns for speculative execution. Next, the
server updates game states speculatively according to the
input the user sends, based on the log-based input patterns
generated in advance. Finally, the server renders the game
states to video frames and encodes to stream data.

Fig. 2 shows the flow of the speculative execution process
on a cloud gaming server. The number of possible input
patterns in each frame is assumed to be two, and the server
performs speculative execution for two future frames. On the
main thread, the cloud gaming server updates the current
game state based on the received bit-field data. The cloud
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FIGURE 3. Overview of the temporal pattern analysis (TPA).

gaming server updates the current game state on the main
thread based on the received bit-field data. The server then
replicates the updated game state to multiple subthreads.
Each subthread asynchronously updates the game state up to
the following two frames. The corresponding game frame is
rendered based on the game’s final state on each subthread,
and the game frame is encoded and transmitted to the user.

B. BIT-FIELD-BASED PATTERN REDUCTION
The cloud gaming system corresponds to various combina-
tions of games and operating devices. Therefore, the pattern
reduction methods should not be limited to specific games or
devices. Our approach enables pattern reduction regardless of
the game or device by treating the input signal independently
as bit-field data. More specifically, pattern reduction is
performed universally by treating the entire data as time-
series bit-field data without establishing a correspondence
between a specific input signal and each bit string. This
section proposes two pattern reduction methods based on bit-
field time-series data: the temporal pattern analysis (TPA)
method and the LSTM-based pattern prediction (LBPP)
method.

1) TEMPORAL PATTERN ANALYSIS METHOD
Fig. 3 shows the overview of the TPA method. The TPA
works by detecting frequent transitions in the input logs over
time. More specifically, the server creates a list of patterns
through time-series analysis and determines speculative
execution patterns from that list. From the input log for
period N obtained from the user, the pattern detection
procedure obtains and lists the transitions in period n from
t → t + n and calculates the probability that occurs.
Here, x ti is a binary value of 0 or 1 that indicates the
value of each bit. Therefore, if the bit length is α and
the pattern length is n, processing a maximum of 2αn

patterns is necessary. Each transition is associated with
a specific probability, labeled as p0,n, p1,n, up to p2αn,n.
The proposed system selects a transition from a list if its
probability is greater than a threshold and then performs
speculative execution. Additionally, the computational space
required will be manageable, as we can manage it by
analyzing it after extracting a unique bit pattern. Additionally,

FIGURE 4. Proposed bit-field-based TPA. In this case, the analysis is
carried out for two future frames.

by constructing a pattern tree structure in advance, the search
speed during actual execution can be completed in a few
milliseconds.

Fig. 4 shows the TPA procedure. Here, the length of
the bit-field data is assumed to be four. The cloud gaming
server analyses a time-series of bit-field data for previous
users and uses unique bit-field data listed from all previous
users’ logs. Redundant input patterns other users have never
input can be removed from speculative execution. The cloud
gaming server selects each unique bit-field data set and
counts the number of transitions from the selected bit-field
data to others based on user logs. Redundant transitions
that other users have never input can be removed. Note
that the cloud gaming server can set the priority of the
transitions based on the number of transitions. Finally, the
tree structure for each unique bit-field data is constructed
based on the above operations, and the bit-field data
corresponding to the leaf nodes are used for speculative
execution.

Here, we define the average framerate and the number of
patterns per frame in the pattern detection procedure. First,
if the bit length is α and the pattern length is n, the sum of the
probabilities is 1.

2nα∑
i=0

pi,n = 1 (1)

When transitions above the threshold τ are used for
speculative execution, the probability of successful prediction
is as follows:

Pn,τ =

2nα∑
i=0

p[i|0≤i≤2nα,pi,n≥τ ]
i,n (2)

Therefore, the average framerate is determined as follows:

Rn,τ = r · Pn,τ (3)

Also, since only transitions that are equal to or greater than the
threshold are processed, the number of speculative processing
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FIGURE 5. The overview of LSTM-based pattern prediction (LBPP).

per frame is determined as follows:

Fn,τ =
∣∣{i|0 ≤ i ≤ 2nα, pi,n ≥ τ

}∣∣ (4)

2) LSTM-BASED PATTERN PREDICTION METHOD
Fig. 5 shows the overview of the LBPP method. The LBPP
uses LSTM neural networks to model short and long-term
temporal patterns in the input logs. It then predicts input
probabilities to estimate likely future inputs for speculative
execution. In the proposed system, we consider generating
the most reliable pattern and multiple patterns based on the
confidence level of each bit. For example, when building a
prediction model for n frames ahead, N−n+1 sequences are
generated from the log of periodN based on a sliding window
of period n. Input the generated sequence into the LSTM layer
of the neural network. The LSTM layer analyzes the time
dependence of the sequence data and inputs the results as fea-
tures to theDense layer. Finally, for each bit {i|0 ≤ i ≤ α}, the
model outputs the confidence ci,n that the bit will be 0 after n
frames.More specifically, bits with confidence greater than or
equal to the threshold τ are considered definite, and bits with
confidence less than the threshold τ are considered unde-
termined. This approach improves the prediction n frames
ahead and increases the success probability of speculative
processing.

The algorithm 1 shows the algorithm of LBPP. LBPP
processes the following steps:

1) Initialize data: An empty list named ‘data’ is initialized
to hold the dataset.

2) Read data from files: Data is read from each file
and added to the ‘data’ list after undergoing a

Algorithm 1 The Algorithm of the LBPP
1: Initialize empty list ‘data’
2: for each file do
3: Append transformed data from file to ‘data’
4: end for
5: Prepare training data and labels
6: Train the LSTM model
7:
8: Function sliding_window(arr , window_size, start)
9: return arr[start : start + window_size]
10:
11: Function evaluate_prediction(model, input_seq, steps)
12: for each step do
13: window = sliding_window(data, seq_length, current)
14: Predict the next data point using model and window
15: Compute metrics (average probabilities, time taken, etc.)
16: Record the metrics
17: Update current
18: end for
19: return predictions
20:
21: Function realtime_prediction(model, data_stream, N )
22: while new data is available from data_stream do
23: input_seq = Receive new data point at time t from data_stream
24: Initialize empty list for predictions predictions
25: for n = 0 to N − 1 do
26: window = sliding_window(input_seq, seq_length, t + n)
27: prediction = model.predict(window)
28: Append prediction to predictions
29: Update input_seq with prediction for next step
30: end for
31: Execute speculative processings based on predictions
32: end while

transformation process to format it for the LSTM
model.

3) Data preprocessing: Input sequences and correspond-
ing labels are prepared from the ‘data’ list, which is
then used to train the LSTM model.
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FIGURE 6. The number of game frames rendered and transmitted in the existing and proposed methods. The
number of possible input patterns in each frame is N , and speculative execution is used for two future frames.

4) Training LSTM model: The LSTM model is trained
using the preprocessed data, learning to predict the
output labels from the input sequences.

5) Prediction of steps: Two procedures are introduced for
evaluation and real-time prediction.

• Evaluate prediction: This function uses the trained
model to predict future data points in a sequence
for a given number of steps intended for perfor-
mance evaluation.

• Real-time prediction: This function applies the
trained model to make real-time predictions for a
specified number of future steps.

The confidence that all bits are 0 is represented by the
following equation:

α∏
i=0

ci,n (5)

Given a bit number setU , the sum of confidences equals one:∑
U⊆S

α∏
i=0

(c[i∈U ]
i,n (1 − ci,n)[i/∈U ]) = 1 (6)

Here, S = {i|0 ≤ i ≤ α}. For a bit where x t+ni = 0 and
its confidence is greater than x t+ni = 1, the set of bit
numbersS0n is determined as follows:

S0n =
{
i|0 ≤ i ≤ α, ci,n ≥ (1 − ci,n)

}
(7)

Furthermore, the set of bits for which x t+ni = 0 and the
confidence is greater than or equal to ρ is:

S0n,ρ =

{
i|i ∈ S0n , ci,n ≥ ρ

}
(8)

Additionally, the set of bits where x t+ni = 1 and the
confidence is greater than or equal to ρ is:

S1n,ρ =

{
i|i /∈ S0n ,

(
1 − ci,n

)
≥ ρ

}
(9)

The total confidence Cn,ρ is the sum of the confidences that
are greater than or equal to ρ from the sets described by
Eq. (8), (9):

Cn,ρ =

α∑
i=0

(
c
[i∈S0n,ρ ]
i,n (1 − ci,n)

[i∈S1n,ρ ]
)

(10)

In the proposed system, the average framerate Rn,ρ is
calculated by multiplying the framerate r of the game
executed on the server side by the total confidence Cn,ρ :

Rn,ρ = r · Cn,ρ (11)

Furthermore, the number of undetermined bits, represented
as S ′

n,ρ , is the set of bits numbers that are not in either S0n,ρ
or S1n,ρ . Thus, the number of patterns per frame, Fn,α is
determined as follows:

Fn,ρ = 2|S ′
n,ρ | (12)

C. SPECULATIVE RENDERING
Fig. 6(a) shows an example of the existing speculative
execution for two future frames. Here, the number of input
patterns at each frame is considered N , and f ti represents the
game frame at time t corresponding to input i. In this case, the
existing method must render and transmit N 2 game frames
for speculative execution. Fig. 6(b) illustrates speculative
execution using the proposed bit-field-based temporal pattern

VOLUME 12, 2024 8907



T. Ishioka et al.: Pattern Reduction for Low-Traffic Speculative Video Transmission in Cloud Gaming System

TABLE 2. PC specifications.

analysis. In this scenario, the cloud gaming server does not
find input i1 and transitions of i0 → i0 → i1, i0 → i2 → i0,
i0 → i2 → i1 in the logs of past users. Consequently,
the cloud game server will not render the game frames
corresponding to the input and transitions.

IV. EVALUATION
A. EXPERIMENTAL MEASUREMENTS
We performed experimental measurements on users’ input
logs to empirically evaluate the effect of the proposed
method. Ten male subjects between the ages of 20 and
30 participated in the experiment. Each subject played the
following games using an Xbox One, Microsoft Corp.,
Redmond, WA, US, controller on a PC for approximately
11 min after a 5-minute tutorial, and the PC collected all
inputs. Table 2 shows the PC specifications. Each subject
played the following three games sequentially to discuss
the effect of game category on performance: Street Fighter
V (SFV), Capcom Co. and Dimps Corp., Osaka, Japan,
a fighting game; Grand Theft Auto V (GTAV), Rockstar
Games, New York, NY, US, an action game; and Overwatch
2 (OW2), Blizzard Entertainment, Irvine, CA, US, a first-
person shooter game. Specifically, we used the training
modes in SFV, the early stages of the story mode in GTAV,
and the training mode in OW2 to collect input logs for each
subject. In this evaluation, all games ran at 1080p resolution
and 60 frames per second. The user’s input logs are collected
60 times per second according to the game’s framerate.

We implemented the proposed bit-field-based temporal
pattern analysis using Python 3.8. We used each subject’s
10-minute input log to construct the tree structures. The
remaining 1-minute input logs of each subject were used for
evaluation.

B. EFFECT ON THE NUMBER OF GAME FRAMES
We first verify the baseline performance of the proposed
method. We compared the CloudHide-based (CHB) method
and the two proposed methods. Here, the CHB renders and
sends game frames for every possible input pattern in game
processing. In other words, this is where steps up to step (2)
in Fig. 4 have been completed.

Fig. 7(a) shows the number of patterns relative to the
number of speculative frames in OW2. The average framerate
is over 57 fps for all methods. As a result, it was confirmed
that both proposed methods suppressed the exponential
increase in the number of speculative processes for multiple
frames. In particular, LBPP remains almost constant even if
the number of frames increases.

FIGURE 7. The number of rendered game frames for the number of
speculative frames. The average framerate is set to over 57 fps for all
methods in this graph. (a) shows a comparison of the effects of CHB and
the proposed method on OW2. (b) shows a comparison of the effects of
the proposed method for all games.

Fig. 7(b) shows the number of patterns relative to the
number of speculatively processed frames when using the
proposed methods in the three games used for evaluation.
Both methods maintain an average framerate of over 57 fps
in all games. As a result, we found this tendency to be
consistent across all games. The number of patterns itself
differs depending on the game title. For example, as an FPS
game, OW2 may require numerous potential input patterns
and transitions due to the need for rapid 3D movement and
action. Although the number of input patterns per frame
varies depending on the game, input logs can be treated as
simple time-series data for any game genre. It was confirmed
that the analysis method does not depend on game titles.

The main results can be summarized as follows:

• The proposed methods (TPA and LBPP) reduced
speculative execution patterns versus the CHB.

• The number of patterns remained almost constant as the
frames increased in the LBPP.

• The effect of analysis methods generalizes and does not
depend on the game title.
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FIGURE 8. The traffic for achieving the system’s required framerate. (a)–(c) show a comparison between CHB and the two proposed methods,
and (d)–(f) show a comparison of the two proposed methods. In CBH, we change the operating framerate on the server side. In the proposed
method, we set a threshold that minimizes the amount of traffic while achieving the system’s required framerate.

FIGURE 9. A comparison of the proposed methods with 1, 3, and
5 frames speculatively executed in OW2.

C. EFFECT OF PATTERN REDUCTION METHODS
Fig. 8(a)–(f) shows the traffic as a function of the system’s
required framerate of 1 frame speculative execution. The
game on the server runs at up to 60 fps. The CHB generates
all possible frames, so adjusting the operating framerate
on the server side achieves the required framerate of the
system. On the other hand, in the proposed method, the
operating framerate on the server side is fixed at 60 fps. In this
evaluation, we set a threshold that minimizes the amount of
traffic while achieving the system’s required framerate.

Fig. 8(a)–(c) shows a comparison between the cloud
hide-based method and the two proposed methods. Note that
CHB assumes all frames that can be displayed are sent,
so the amount of traffic changes linearly with the required
framerate. As a result, we found that in any game, when the
required framerate is around 57 fps, the proposed method can
achieve a very high traffic reduction effect. On the other hand,
when the proposed method increases the required framerate
above 58 fps and approaches the game operation framerate on
the server side, the traffic of the proposed method increases
rapidly. Especially for LBPP, the traffic was larger than CHB
for all games. LBPP uses a recurrent neural network, and
the reliability of each bit is never 100 %. In order to achieve
the operating framerate of a server-side game in speculative
execution, it is necessary to send all frames that have even the
slightest possibility of being displayed. Since it is necessary
to consider the bit length of the input signal in LBPP, it is
necessary to assume a tremendous amount of traffic.

Fig. 8(d)-(f) shows the results in the range of 500 Mbps
or less of the proposed method in Fig. 8(a)-(c), respectively.
In Fig. 8(e), the TPA is approximately 300 Mbps, and the
game’s framerate on the server side is 60 fps. Depending on
the genre of the game, if the number of input patterns that
can occur is limited, it is possible to achieve a high framerate
with a small amount of traffic by using TPA. On the other
hand, in Fig. 8(d), (f), the traffic amount at the same framerate
was always smaller with LBPP than with TPA. LBPP can
achieve stable framerates and traffic reduction regardless of
game genre.
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Fig. 9 shows a comparison of the proposed methods with 1,
3, and 5 frames speculatively executed in OW2, respectively.
As a result, it was confirmed that LBPP is relatively
unaffected by an increase in the number of speculatively
processed frames. It was confirmed that a certain level of
prediction accuracy was maintained with almost no pattern
increase, as shown in Fig. 7. On the other hand, TPA
increased the amount of traffic to achieve the system’s
required framerate. TPA performs speculative execution on
detected pattern transitions, so sudden actions between each
frame damage the framerate, especially in FPS games like
OW2.

The main results can be summarized as follows:

• Proposedmethods achieved high traffic reduction versus
CHB when the target framerate was around 57 fps.

• LBPP is one of the machine learning methods based on
RNN, so reliability per bit is never 100 %, requiring
more frames to be sent as the target rate approaches
60 fps server rate.

• TPA performed well for some genres, but LBPP
achieved stable framerates and traffic reduction across
game genres. Moreover, LBPP was relatively unaffected
by the increased number of speculative frames.

V. CONCLUSION
This paper proposed pattern reduction methods using bit
field representations to enable efficient speculative execution
in cloud gaming systems. Temporal pattern analysis and
LSTM-based prediction were introduced to analyze input
logs and generate likely input patterns for speculative
rendering. Experimental results using gaming data from
multiple users and genres showed the proposed methods sub-
stantially reduced rendered frames and network traffic com-
pared to prior speculative execution methods. Key findings
include:

1) The proposed pattern reduction methods suppressed
exponential growth in speculative patterns over
multiple frames.

2) LBPP performed stable framerates and traffic reduction
across game genres.

3) TPA performed well in specific genres and can achieve
the system’s framerates equivalent to the server-side
framerate to a limited extent.

The method demonstrated scalability across diverse games
without dependence on specific titles or input devices.
Future work includes optimizing the prediction methods
and evaluating perceived latency improvements for players.
In order to optimize prediction methods, we plan to improve
prediction performance and propose a dynamic selection
mechanism for multiple prediction methods that take into
account performance and execution time. The pattern reduc-
tion approach enables the practical deployment of speculative
execution to hide network delays and improve the cloud
gaming experience.
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