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ABSTRACT There is a rapid increase in the utilization of renewable sources such as solar and wind to
provide power and electricity. The reason for this trend is to reduce costs and preserve the environment.
However, the challenge is to efficiently use and store the energy from these sources. One approach is to
optimize the decisionwhen to charge or discharge a battery. The objective is to generate the greatest monetary
gain. More charge/discharge cycles will reduce the life of a battery, thereby increasing the cost. A strategy
to reduce the number of charge cycles while maintaining the effectiveness of electricity distribution from
battery storage will improve battery life. With the inevitable proliferation of electric vehicles (EVs) in the
market, strategies specific to electric vehicle battery profitability will be explored. An additional concern
which threatens the financial feasibility of battery energy storage systems (BESSs) is the requirement of
secure operation. There is currently little research study on strategies to detect cyberattacks on such systems.
In this paper, we have presented a novel taxonomy for battery optimization, survey representative BESS
utilization strategies, and classify these schemes within the taxonomy. Within our classification, we outline
the battery optimization methods that have been discussed, analyze their ability to address issues that arise
when implementing a BESS, and describe alternative research that could be explored. Future research could
refer to this information to create unique battery optimization schemes to providemore efficiency and optimal
revenue for a BESS when compared to current strategies.

INDEX TERMS Energy storage, battery management systems, renewable energy sources, microgrids,
electric vehicles, machine learning.

I. INTRODUCTION
Distributed microgrids based on renewable energy sources
provide a promising solution for rural areas and underde-
veloped countries where electricity is not available [1], [2],
[3], [4], [5], [6], [7], [8], [9]. Compared to fossil fuels, the
cost is reduced making electricity more affordable. How-
ever, there are challenges inherent to the use of renewable
energy sources such as the reduction in the quality of power,
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unstable frequency, and voltage instability, as well as issues
related to security and reliability [1], [3], [4]. To stabilize
the power source, reserved electricity can be acquired using
a local power utility or an energy storage system. Power
companies normally use fossil fuels that are hazardous to the
environment. An advantageous alternative is a battery energy
storage system (BESS), as shown in Fig. 1. A BESS can be
installed quickly, is inexpensive to operate, responds quicker
to disturbances and requires less space than other energy
storage options such as pumped hydro or thermal energy [1].
With the decreasing cost of batteries [4], battery energy
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storage is also developing rapidly in commercial applications.
Renewable energy microgrids can incorporate BESS in many
applications to support utility companies such as peak shav-
ing, load leveling, reserve energy, and voltage and frequency
regulation [7]. Some disadvantages of BESS include a short
lifespan and costly installation costs. Therefore, it takes a few
years to break even financially, and hence its limited use in
the power industry [10].
The number of charge/discharge events reduce the lifecycle

and performance of batteries as well as the high temperatures,
overcharges, and deep discharging. To stabilize themicrogrid,
coordination must exist between the BESS and the renewable
energy sources. There has also been research related to energy
management systems that use distributed BESS which can
be effective in large commercial buildings. Other research
has shown that the use of state of health (SOH) and state of
charge (SOC) information can make BESS less expensive by
deploying efficient battery management systems (BMS) [1],
[2], [4].

FIGURE 1. Solar-battery energy storage system topology.

One approach [1] discussed a strategy to control a micro-
grid that utilizes renewable energy with a distributed BESS to
operate batteries that use SOH, SOC, and battery capacity to
make decisions. The proposed method uses the battery SOH
and loss of capacity in the control algorithm as well as the
battery depth of discharge (DoD). Therefore, capacity loss is
regulated by the decision to charge or discharge batteries.

The automobile industry is undergoing a paradigm shift
from traditional exclusively gas-powered vehicles to electric
cars which have improved reliability, efficiency, and environ-
mental friendliness [6]. Research has shown that batteries in
Electric Vehicles (EV) that are idle and grid-connected can
provide electricity back to the grid. By combining EV battery
power, electricity can be sent to the grid to provide demand
services such as Volt-Amps Reactive (Volt-VAR) control,
frequency regulation, and renewable energy integration using
a distributed vehicle to grid (V2G) system [6]. V2G allows
EVs to interact with the power grid and uses algorithms to
decide whether to charge a battery to provide grid services.
V2G applications include algorithms that can be incorporated
into charging stations, control systems, EVs, and grid centers,
as well as distribution and grid generation systems. V2G can
also provide financial rewards by selling demand response
services and renewable energy to the grid.

The use of renewable energy within the electric grid has
increased dramatically over the last several years, but this

trend has been undermined by its unpredictability [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24].
Because of the inherent nature of solar and wind energy,
fluctuations cause the generated power to be inconsistent.
This can lead to issues in the electric grid such as power
quality, reliability, generation dispatch and ramp rates (speed
of generator to change the amount of electricity production).
Generation dispatch refers to power grid operators pro-
gramming electricity sources based on the market demand.
To confront these issues, an energy storage system can be
added to a renewable energy system to smooth the power
output. The Energy Storage System (ESS) has been found to
provide an effective solution for the challenge of the fluctua-
tion of the output of renewable power as it can provide energy
when the renewable energy is low and can store power when
it is high.

The BESS is the most common ESS and utilizes electro-
chemical cells. In power system applications, several cells are
combined to satisfy the target voltage of the system. BESS
has some advantages such as quick response time, energy
efficiency, little maintenance, practical size, and simplicity
of installation. Therefore, BESS is a prevalent application
of ESS to balance renewable energy output power. Fig. 2a
illustrates that the amount of electricity demand in the United
States is projected to over 5000 terawatts by the year 2050.
Fig. 2b shows that the forecasted battery storage capacity in
2050 will be over 150 gigawatts for the low-cost renewables
case, which assumes a 40% reduction in the cost of renew-
ables and energy storage compared with the reference case in
the graph.

The projected growth and evolution of distributed energy
resource deployment through solar, storage systems, and
other environmentally friendly technologies could introduce
cybersecurity threats to the public power grid infrastructure.
Because the electrical grid and BESS sensing devices are
connected to the Internet, BESS is vulnerable to cyberattacks.
A false data injection attack (FDIA) can corrupt the values
detected by sensors along with SOC measurements. Such
attacks can lead to financial losses [25].

A. MOTIVATION
Currently, energy is mainly supplied by traditional resources.
However, there is a limited quantity and constant increase in
costs. Currently, there is a paradigm shift towards renewable
energy sources. The most viable options are solar and wind
energy, which are established technologies. At a lower cost
to generate electricity, photovoltaic (PV) solar energy con-
version systems are utilized in microgrid applications [21].
However, solar energy is inherently intermittent. To guarantee
a steady power supply, battery storage technology is used as
a component of the system.

In a microgrid environment, BESSs are widely used to
balance the power generation supply and load demand.
BESSs also address issues such as energy management,
peak shaving, power quality, load leveling, supply stability,
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FIGURE 2. a. Forecasted U.S. electricity consumption. b. Predicted U.S.
BESS capacity.

voltage regulation, and uninterrupted power supply. Along
with microgrids, BESSs are also used in electric vehicles
(EV). BESSs help address fluctuations in renewable energy
sources.

The objective was to reduce the battery cost by extend-
ing its lifetime, enhancing the efficiency of the BESS,
and minimizing the overall electricity cost for the con-
sumer. This can be accomplished by providing an optimized
strategy for charging and discharging the batteries. Excess
charge/discharge cycles and maintaining a state of charge
above or below a given threshold shorten the lifespan of the
battery.

The BESS comprises two components: optimal battery
utilization and revenue maximization. This is a critical issue
for future research.

In this study, we address both topics. We also integrated
renewable energy sources with the BESS. This is an area for
further investigation. Many strategies should be explored in
future research. Table 1 lists the cited publications related

to battery charge optimization and opportunities for further
research.

B. CONTRIBUTIONS
Our contributions are specifically:

1) A taxonomy that focuses on the highlighted sur-
veyed approaches can be classified and categorized by the
approaches and strategies for battery optimization.

2) A comparison of the various battery optimization algo-
rithms that have been applied to BESSs.

3) Identification of current strategies and future trends
that can be positively leveraged and applied to BESSs when
deploying applications to provide power to the grid to maxi-
mize profit.

4) An overview of the problems and challenges faced and
novel ideas to address these issues.

C. ORGANIZATION
The remainder of this paper is organized as follows. Section II
provides a review of the related survey papers. Section III
identified existing BESS publications relevant to our investi-
gation. Finally, Section IV concludes the study and identifies
potential directions for future research.

II. RELATED SURVEYS
Three representative studies were surveyed. A survey of
related literature is presented in [14]. This paper pro-
vides a compilation of control strategies that utilize BESSs
in conjunction with the power output from wind, which
can be incorporated in solar power and other applications.
The review concluded that many approaches use fuzzy,
proportional-integral (PI), and MPC control strategies. How-
ever, there is a gap where little research has been performed
on deep learning which is being used more frequently as a
control technology with regards to wind energy.

Table 2 provides a summary of related surveys and their
research topics.

Numerous strategies have been proposed to regulate
the charging and discharging of the BESS, such as PI,
PID, H-infinity, Model Predictive Control, Fuzzy logic, and
non-linear prediction control, as shown in Table 3 along with
the characteristics of each approach.

NLPC (non-linear prediction control) minimizes a cost
function by finding the optimal control inputs and forecasting
the behavior of nonlinear systems. H-infinity determines the
highest increase from system output disturbances to create
controllers that calculate the optimal performance of the
system. MPC resolves an optimization issue for given time
intervals to produce control input values.

Fuzzy logic uses heuristics, fuzzy rules, and linguis-
tic parameters to formulate decisions. Proportional integral
derivative (PID) performs system regulation by utilizing
derivative, integral, and proportional terms. A subset is pro-
portional integral (PI) that ignores the derivative term.

The advantages of NLPC are that is robust enough to
enhance the performance of systems that are complicated and
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TABLE 1. Comparison of related work and suggested enhancements.

TABLE 2. Summary of related surveys.

nonlinear. However, it has issues with tuning and modeling.
H-infinity is also robust and works best with time invariant
and linear systems. But it is burdensome to apply to systems

with a high degree of computations, tuning, and design. MPC
is a powerful approach that addresses assumptions and limits
while producing performance optimization. Its weakness is
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TABLE 3. Comparison of major BESS charge and discharge regulation
control strategies.

handling modeling and computations. Fuzzy Logic is flexible
and simple but should not be selected for systems where
preciseness is necessary. PI / PID can be used on many types
of systems since it produces good results and is easy to
implement. Another option may be better when it comes to
nonlinear or very complicated systems.

Related surveys have contributed important work; how-
ever, we believe our survey is the first to present a detailed
description of machine learning in BESS and study the rel-
evance of the different approaches described. Our focus on
machine learning has highlighted methods that address spe-
cific optimization issues related to BESS.

Other strategies are used to minimize the cost of hybrid
Electrical Energy Storage systems [18]. Particle Swarm Opti-
mization (PSO) and genetic algorithms (GA) were utilized
to select the battery charge and discharge decisions in a PV-
wind-BES system. A Harmony Search algorithm was used
to calculate the charge schedule of the battery storage unit
in the PV-BES system. Further research can include different
strategies to make decisions regarding charging/discharging
batteries using various weights to result in multiple criteria
optimizations to develop a robust design. Also, [30] more
analysis of optimization methods should be performed to
determine the best application of each algorithm used to attain
more accurate solutions for PV-EES systems.

The next survey [28] presents a review of BESS regarding
optimal size goals, system limitations, models for optimal
usage, and various strategies. This review also discusses
BESS applications. The objective is to provide an effective,
robust, and optimal BESS that utilizes renewable energy
sources for environmental sustainability.

III. SURVEY OF BESS OPTIMIZATION SCHEMES
In this section we classify the existing BESS strategies into
11 classes. Relevant papers were added to each topic to
classify the existing work into different subclasses.

FIGURE 3. Flowchart of algorithm for decision to charge/discharge EV
battery.

A. OPTIMIZATION SCHEMES UTILIZING DEMAND SIDE
MANAGEMENT OF BATTERY ENERGY STORAGE TO
REDUCE ELECTRICITY COST
In this class we surveyed 11 papers. In [15], an algorithm
was proposed to distribute an increased amount of traffic into
data centers with a reduced electricity price and charging
the battery when the electricity price is low and discharging
when the electricity price is high. The authors demonstrated
that the larger the battery, the more cost-saving the proposed
algorithm obtained. The algorithm was oversimplified and
did not address the issue of increasing the battery life. They
only commented that it was predicted that the battery cost
would be reduced significantly in the next decade.

The authors of [13] created a hybrid optimization
algorithm in which forecasting of the PV power and EV
charging load is not needed. The algorithm calculates
the optimum values using real-time data; therefore, the
optimization procedure is less complex. The use of forecast
data with machine learning algorithms can be compared to
their results.
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A method to control electric storage [20] was proposed
based on predicting electricity prices to calculate the time
required to charge the battery. An accurate forecast of elec-
tricity prices and demand would result in a charging schedule
as follows: discharge during the highest price intervals and
charge in the lowest price periods; reduce the use of energy
during discharging periods until the battery runs out and
increase energy consumption while the battery is charging.

Reference [4] describes the benefits of the proposed
methodology to minimize the total cost of electricity with
more efficient use of the BESS using constraints. The sim-
ulation results show that the power demand in a particular
region can be met using BESS. However, the conservation of
battery life is not considered to be a cost factor.

In [32] data from over 4000 homes with PV/BESS
were modeled, trained, and tested using a machine learning
algorithm. The results showed that smaller batteries generate
better profits. It is interesting to note that the work in [15] pro-
duced directly conflicting results where larger batteries were
found to provide better financial outcomes. The complexity
of the model was reduced by simplifying the operation of the
PVmodules, inverters, and batteries. In addition, assumptions
were made regarding the data sources that were input into the
model.

The research in [33] produced effective strategies for pri-
vate home battery storage by utilizing peak load shaving. The
performance of the microgrid system was evaluated using a
simulated PV energy source.

The authors in [34] presented a cost analysis of PV-BESSs
using an improved Hybrid Optimization by Genetic Algo-
rithms (iHOGA), but there was no discussion of the method-
ology used to implement the algorithms.

A mathematical model was proposed in [35] to deter-
mine the amount of energy consumed in which residential
PV-BESSs become profitable: Several assumptions were
applied to the model including the life span of the PV system
to be 20 years and the ESS’s lifetime to be 6 or 8 years.

In [36], the economic advantage of utilizing second-use
batteries from electric vehicles was studied. As the use of EVs
increases, the conservation of electricity demand from the
grid becomes critical. One strategy for relieving the electricity
grid is to charge the battery when the PV system gener-
ates power at its peak. Accurate forecasts are necessary for
battery charge/discharge strategies to optimize grid use and
maximize profitability. The authors developed a simulation
model but did not specify amethod for predicting solar energy
production.

The research in [37] concluded that the technological
advances in BESS and renewable energy sources affect the
strategies for demand side management. In addition, govern-
ments provide a variety of financial incentives to encourage
different aspects of demand side management. The authors
studied and categorized the programs of several countries to
promote the use of renewable energy and the corresponding
ways that demand side management is utilized in those envi-
ronments.

Our research shows that the economic implications of
using solar or wind power sources significantly enhance prof-
itability for EV users [38]. In addition, financial incentives are
currently being offered by the U.S. government, for example
federal tax credits of $7500 to purchase electric vehicles [39].
A new model was proposed in [40] for a shared battery

station (SBS) to maximize the profitability of the SBS owner
and replace the established battery swapping station (BSS)
and battery charging station (BCS). Batteries deployed at
the SBS can be charged, discharged, swapped, or run in
sleep mode. The authors developed an objective function
to optimize the number of active batteries at the SBS to
maximize revenue. Simulations were conducted to validate
the effectiveness of the model. The scalability of SBS can
become an issue if peak shaving and valley filling are used to
increase revenue. Machine learning can be utilized to predict
demand and determine the optimum number of batteries used
in the SBS at a particular time.

B. OPTIMIZATION SCHEMES BASED ON MAXIMIZATION
OF SUPPLY SIDE REVENUE WITH A RENEWABLE
ENERGY/BESS CONFIGURATION
In this class, we surveyed seven papers. Fluctuations in the
generation of PV powerwere addressed using an optimization
strategy to determine the most effective battery size. A ran-
domized algorithm was used to increase the revenue of the
PV/BESS [41]. There is no universal solution because of
differing environmental conditions and electricity prices in
different regions. The impact based on data from 415 house-
holds with EVs on hybrid PV/BESS showed that higher profit
was realized for the self-consumption system [42]. However,
the model results changed dramatically, based on assump-
tions regarding the prices of electricity and technology.

The study in [43] showed that standalone PV/BESSs that
are not connected to the grid are economical for some house-
holds. Even with a grid, the connection electricity costs may
be reduced. The authors utilized an oversimplified battery
charge and discharge model that only included the degrada-
tion of the battery by artificially increasing the initial system
size. Currently, the PV/battery system cost is high; however,
the current trend shows a decrease in these costs [44]. There-
fore, in the authors’ opinion, PV/BESS will supplement the
grid rather than replace it.

Not only are there economic benefits, but the environmen-
tal impact of PV/BESSs is also being scrutinized in current
research. For example, in [45], simulations were performed
to measure the lifetime and perform financial analysis of the
PV/BESS in all 50 states. However, only the effects of the PV
size and battery capacity on the performance and cost were
analyzed. It was found that the cost of a PV/BESS system is
like that of a standalone PV system.

The authors in [22] described a deregulated power net-
work in which entities other than utility companies generate
electricity. They mentioned that, in this scenario, the renew-
able energy source must submit its bid for electricity to be
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generated one day in advance. However, there has been no
discussion on the methodology used to predict this value.
We propose utilizing machine learning to accurately predict
the solar irradiance produced by collocated solar panels.

In [23] a data-driven distributional robust optimization
(DDRO) strategy was used, which was tested and verified
using real data to predict day-ahead electricity demand. Upon
reviewing the dataset, only the output variable solar irradi-
ance was used. We present the use of supervised learning to
predict the solar output based on atmospheric input variables.
In addition, a weakness of their methodology is the need for
more computational power which consumes both resources
and time. This could cause a delay in real-time calculations,
which could affect the accuracy of BESS operation.

C. OPTIMIZATION SCHEMES BASED ON PEAK LOAD
LEVELING AND FREQUENCY REGULATION
For this class we surveyed 1 representative paper. Elec-
tric Vehicle (EV) batteries can be used to support several
power grid services and to form a V2G system. In [6], the
authors developed an objective function for an EV model
to optimize charge and discharge decisions by utilizing the
frequency regulation and electricity prices from both real
and forecasted models. They presented a case study for
the charge/discharge scheduling problem utilizing real and
predicted frequency regulation and hourly electricity pric-
ing for one month of data. They developed an optimization
model and integrated the battery degradation cost into the
charge/discharge scheduling of EVs. The input variables
used during the simulation were SOC, end-of-charge voltage,
cycle number, charge and discharge rates, operational temper-
ature, and depth of discharge. Only simulated data were used
in this study as well, and there is an opportunity to incorporate
machine learning algorithms into real data to compare the
results of battery charge/discharge strategies.

To accurately predict the battery cycle life, predictive data
would be required for several years to cover the actual battery
life. We can utilize machine learning algorithms on real data
and compare the accuracy of the predictions with actual
values.

D. OPTIMIZATION SCHEMES BASED ON DEMAND
RESPONSE WITH FREQUENCY REGULATION
In this class we surveyed five papers. In [5], Fig. 3 was
presented to predict the EV battery cycle life based on the use
of static and dynamic electricity and regulation prices. The
depth of discharge of the cycle loss can be compared to the
value set by the EVowner to ensure that the life cycle is within
an acceptable range of operation. The loop continues for the
following charge/discharge cycles, while the set depth of the
discharge limit has not been attained. Once the battery life
cycle falls below the operational level, the loop is exited, and
the EV is not allowed access to the vehicle-to-grid service.

The charge/discharge process considers day-ahead pricing,
frequency regulation signals, and the predicted battery life.

A case study was created for the charge- scheduling problem
using hourly electricity pricing and actual frequency regula-
tion. Overall, cost/revenue optimization was not addressed.
Simulations were used in which machine-learning algorithms
could be incorporated to compare the results.

In [46], the battery SOC and incoming current were used as
parameters to control charge. The controller utilizes the PI for
reference during the charging and discharging of the battery.

The authors of [47] presented an approach related to
demand side resource bidding by using an aggregator to
enter the market for frequency regulation. This addresses the
uncertainty in markets for electricity and take advantage of
the potential to earn revenue for demand response.

Another strategy was used to charge or discharge the bat-
tery using an H-infinity controller for high-frequency power
fluctuation smoothing [48]. In [49], the approach to improve
frequency regulation in a renewable energy microgrid is to
incorporate a rule-based plan using the state of charge of the
BESS and the frequency response of the energy system.

E. OPTIMIZATION SCHEMES BASED ON ENERGY
EFFICIENCY OF ELECTRIC VEHICLES
We surveyed three representative papers in this class. The
next paper [9] explained that there can be a major degradation
of electric vehicles when the state of charge of the battery
reaches its limits. The characteristics of the road can affect
the EV battery charge/discharge sequences; therefore, energy
management can benefit from a preview of road quality.
During actual driving, the gradient of the road ahead can be
assumed to be a random variable because the HEV controller
does not always have information about the future route.
A stochastic model approach was proposed using the loca-
tion, direction, and road grade information of the EV area.
Energy management is controlled using stochastic dynamic
programming and Markov decision processes. The simula-
tion was used for testing and comparing with the dynamic
programming results and consumptionminimization strategy.
The results showed that the developed method can help main-
tain the state of charge within its limits and exhibit good
performance in terms of energy consumption.

Reference [50] presented a view of optimizing the bat-
tery charge and discharge management for EVs in charging
stations, power systems, and energy systems. By incorpo-
rating efficient methods, improved network operations and
economic and environmental goals can be realized. The study
also examined the major obstacles faced by EVs when using
V2G applications.

The authors of [51] simulated three scenarios: base load,
EV charging and both charging and discharging. An approach
that uses optimal scheduling in a collaborative environment
of EVs and renewable energy sources was found to reduce
the charging costs for EV users, power generation, operating
costs, and pollution costs. The model incorporates EV battery
charging costs, pollution, air volume, generator costs, and
EV V2G characteristics. The proposed strategy addresses
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the optimization of both the generation and load sides of
renewable energy sources.

F. OPTIMIZATION SCHEMES USING A POWER DISPATCH
REGULATION APPROACH TO IMPROVE THE UTILIZATION
RATE OF A RENEWABLE ENERGY/BESS SOURCE
INTEGRATED MICROGRID
For this class, we surveyed 10 representative papers. Owing
to the variability in the price of energy and renewable power
generation, a strategy using a model derived from stochastic
programming to schedule the charge/discharge of the battery
was presented in [12]. A BESS dispatch control algorithm
based on rank was presented to produce the necessary power
output for the dispatch. The simulation results show that the
implementation of the strategy increases the reliability of the
power supply and the net revenue. This strategy was used in
a wind farm environment for power generation, which can
easily migrate to a solar PV source. Real wind speed data
from South Wales, Australia were used.

The next paper [2] proposed an integrated system of a
BESS, an electric vehicle charging station (EVCS), and a PV
system. An optimization model is presented for an electric
vehicle/photovoltaic/battery energy storage charging station
connected to the grid to size BESS and PV and to determine
the charging/discharging pattern of BESS. The multi-agent
particle swarm optimization (MAPSO) algorithm combines
particle swarm optimization (PSO) and a multi-agent system
(MAS). To simulate the EV charging patterns and calculate
the EV charging demand at each time interval, a load simula-
tion model is presented.

The PV data parameters are the rated power, investment
cost, maintenance cost, Lifetime, Reduction factor of the
panels, cell temperature, and PV temperature. The battery
storage data parameters are the rated capacity, replacement
cost, depth of discharge, investment cost, maintenance cost,
self-discharge, and lifetime.

Most research can be categorized into three classifications
using the following methods: software programming tools,
artificial intelligence, and a programming solver. It is rela-
tively simple to incorporate simulations using a software tool;
however, the hardware specifications are generally fixed.
Linear programming models are typically used to address
optimization issues, and artificial intelligence algorithms can
be used for linear and non-linear models.

In [52], a charge controller for a battery storage system that
uses turbine tracking of the battery state of charge and the
maximum power point was proposed to manage the decision
to charge or discharge the battery. The control strategy was
validated via simulation using MATLAB and SIMULINK.

The most common control strategies are PI and PID. A PI
controller uses control-loop feedback, which calculates an
error signal by subtracting the power discharged from the
battery and the set point. Mathematical models of the control
system are used. Research has been conducted regarding
charging and discharging BESS with PI while remaining

within the limits of the SOC. The authors in [52] proposed a
battery charge/discharge control with maximum power track-
ing and battery SOC with PI. When the state of charge falls
under the CCmode limit, the PI controller charges the battery.
Otherwise, the battery charge remained the same.

The authors in [53] proposed a control strategy for battery
power using the battery SOC and PI regulators to regulate
the BESS discharge and charge decision. The state of charge
is measured and when it is more than 50%, the battery can
discharge to provide the power demand as necessary. When
the battery’s state of charge is less than 90%, the battery can
charge. A MATLAB/Simulink platform was used to verify
the results. Awind power source was used; however, the same
strategy can be applied to a solar energy source.

In [17] a strategy was proposed for battery energy storage
with double-stage variable rate limit control. The goal was
to determine the optimum amount, rate, and time interval
for the energy charged and discharged from the battery. Two
different rate limits are used to charge or discharge the battery
based on the load demand. The scheme also maintains the
battery charge within an interval to increase battery life.
The strategy was tested using real-time control hardware
with dSPACE and an OPAL-RT. Because the authors utilized
a simulation package, a different approach using machine
learning to make predictions based on real data can be
deployed and compared with their results. They also utilized
a hybrid energy storage system composed of a supercapacitor
and a battery. The price of a supercapacitor is very high
making it impractical for the residential environment and an
extraneous component of an energy storage system.

In [54] a dual BESS (DBESS) was proposed. The deploy-
ment of a DBESS causes the first BESS to charge, whereas
the other is discharging. The SOC of both BESSs is main-
tained within the maximum and minimum bounds, whereas a
control algorithm determines each BESS objective.

An approach to discharging and charging the BESS using
a rule-based controller with a converter was described in [55]
and [56]. The SOC and depth of the discharge limits were
used as inputs for the converter.

In [57], the authors claimed that there is no way to effec-
tively control the charge and discharge of the BESS without
using data to predict the input from a renewable energy source
a few hours in advance. To resolve this issue, their approach
used a sliding time window and predicted the states of the
variables, their limitations, and fluctuations.

In [58], the delayed battery response of a PV-BESS was
studied, and simulation methods were utilized. The results
showed that a faster response time from the battery resulted
in greater savings for owners.

The BESS response time should also be measured from
the perspective of the grid operator. There is also a demand
for standard test procedures to determine the performance of
grid-connected PV-BESSs. For a customer to compare vari-
ous products, response-time measurements should be made
available.
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G. OPTIMIZATION SCHEMES USING A CONTROL
STRATEGY TO HELP INCREASE THE LIFE OF BATTERIES
In this class, we surveyed four papers. Reference [1] pre-
sented a control strategy for distributed BESSs in a microgrid
utilizing centralized control to increase the battery life. The
strategy presented incorporates the SOC, SOH, and maxi-
mum capacity to regulate the discharging and charging of the
batteries.

By incorporating the battery state of health and
loss of capacity into the control strategy, the charg-
ing and discharging operation of batteries can con-
trol the depth of discharge and, therefore, the capacity
degradation.

The control algorithm is validated using a MATLAB
Simulink, which models a microgrid with a dynamic load,
a backup diesel generator, a solar PV plant, and three battery
energy storage systems.

When there is extra available solar power, batteries are
charged, and to cover the power deficit during off-peak sun
hours, the batteries are discharged.

The control variables that were fixed and contained
assumed values were depth of discharge, upper and lower
SOC limits, supplying capacity, power generation and load,
state of charge, and state of health.

The results of the system simulation reflected a total
improvement of 57% in the lifecycle of the BESS by utilizing
the proposed algorithm as opposed to simple load sharing of
the three BESSs.

A simulation was used to obtain measurable results.
Actual data from the live sites were not used. Machine
learning algorithms can be applied to real data to pro-
duce actual results for analysis. The option of selling
excess electricity to utility companies has not yet been
addressed.

An approach tominimizing the price of charging an electric
vehicle is described in [16]. A model representing the battery
lifecycle was developed which provides an estimate of the
loss of both energy capacity and power fade based on the tem-
perature, state of charge, and depth of discharge. The results
were validated by comparing them with experimental data.
The model was run using a MATLAB script to minimize the
cost of charging. The results of a detailed model developed at
the National Renewable Energy Laboratory were compared
with those of the battery life model. When models of battery
lifetimes are improved, the results of the details of the charge
optimization will be different. No real data was used in the
experiments.

The primary factors in extending the life of a battery are
the charge and discharge depth. In [59] a two-layer neural
network called the ADALINE (Adaptive Linear Neuron) was
used to control the charge and discharge decisions of the bat-
tery. The characteristics of ADALINE include its accuracy,
speed, and fast tracking.

An algorithm to control the battery power flow for a
PV/BESS was presented in [60] to increase battery life and
smooth the voltage.

H. OPTIMIZATION SCHEMES BASED ON MAXIMIZING
OUTPUT FROM RENEWABLE GENERATION USING
APPROPRIATE CHARGE/DISCHARGE CONTROL STRATEGY
FOR BESSs
We surveyed two representative papers in this class. A strat-
egy for BESS control is proposed in [61]. The predictive
control of the model and layered optimization was combined
to address energy fluctuations by optimally scheduling the
BESS charge and discharge.

Regarding the system operation modes, two effective
charging strategies for a hybrid PV-BESS were presented to
improve the overall efficiency by modeling the PV panel and
battery unit dynamically [62]. A simulation is performed to
verify the methodology.

I. OPTIMIZATION SCHEMES BASED ON IMPROVING THE
SMOOTHING PROBLEM OF WIND/PV/BESS HYBRID
POWER GENERATION FLUCTUATIONS
In this class, we surveyed eight papers. In [63], a STATCOM
was used to charge and discharge the BESS while sustaining
the SOC of the battery within an interval of 30% to 100%. The
authors analyzed a hybrid wind/solar power system using a
simulation with PSCAD. The goal was to smooth the fluc-
tuations in solar, wind, and BESS power sources. PSCAD
(power systems computer-aided design) is software that is
used to design and simulate electrical power systems. The
results were obtained from the simulations and a simplified
BESS model.

References [64] and [65] proposed a charge or discharge
control strategy using the state-of-charge limitations of the
BESS. A state of charge-based regulation approach for
power fluctuation smoothing and adaptively controlling and
updating the battery SOC in real time used adjustments
based on the feedback and updated target outputs that were
smoothed [66] to incorporate adjustments in real time for the
battery state of charge.

In [67], a grid-connected doubly fed induction generator
integrated with a wind energy conversion system was used
to implement an optimization control strategy to smooth and
maximize the power from wind and solar sources and stabi-
lize the voltage from the DC link. Another strategy was used
to charge or discharge the battery using an H-infinity con-
troller to smooth the high frequency fluctuation of power [68].
Another approach was described in [69], which incorpo-

rated a BESS charge/discharge dual control strategy to supply
power to the grid within a set maximum and minimum range.
The primary control monitors the BESS so that it does not
remain at full capacity. The output of the primary control is
sent to the secondary control to determine how much power
is sent from the BESS to the grid which is constrained by
the combined power output from the renewable energy source
and BESS.

NLPC uses an objective function to optimize BESS con-
trol. In [70] a system to control the voltage to charge the
battery used NLPC, which ensured zero steady-state error.
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A predictive control strategy using a model was presented
for a PV-BESS for voltage stabilization and power bal-
ance [71].

J. OPTIMIZATION SCHEMES BASED ON CYBERSECURITY
OF BATTERY ENERGY STORAGE SYSTEMS
In this class, we surveyed four papers. In [25], an approach
using smart contracts with a battery charge/discharge control
strategy within a distributed BESS network was presented to
secure the systems. Simulated data were used to demonstrate
that when the smart contract was deployed, it was more
robust to cyberattacks. Blockchain technology is integrated
into smart contracts. A blockchain is a peer-to-peer network
model in which all nodes agree on the state of a shared digital
entity. Every node only appends encrypted information, and
all events are agreed upon per Distributed Ledger. These
characteristics render it nearly impossible to alter the data.
However, scalability issues exist in Blockchain networks.
Therefore, more efficient peer-to-peer protocols must be uti-
lized. An additional threat to BESS is ensuring that the sensor
and actuator devices are physically secured. False data can
be entered and transmitted across Blockchain networks. This
causes the smart contracts to exhibit incorrect states. One
solution is to utilize machine learning techniques to detect
data anomalies.

The authors in [26] noted that because of smart power
grids and a larger number of access points in these networks,
there is a greater risk of intrusion. The resiliency of the
electricity network was evaluated in relation to the cyberat-
tacks. Both false data injection andDoS attacksweremodeled
using simulation methods. The test results demonstrated that
charging the battery during low peak hours and discharging
during peak times improved the resiliency against cyberat-
tacks.Machine learningmodels utilizing actual data from real
attacks can be used to test the robustness of the BESS. Fur-
ther, more research can be performed using strategies related
to the electricity market and other financial issues rather than
focusing only on the technical aspects of cybersecurity.

To identify cyberattacks on smart meters, an intrusion
detection system (IDS) was discussed in [27] which measures
the strength of the signal received to categorize its source.
An IEEE test system was used to validate the IDS perfor-
mance.

In [72], the authors presented approaches for mitigating the
effect of cyberattacks on smart grids owing to the presence of
EVs. Both communication and physical threats can affect grid
networks. Further research could include the implementation
of a smart, adaptive defense mechanism to defend against
such attacks.

K. STRATEGIES USING MACHINE LEARNING
In this class we surveyed seven papers. Artificial Neural Net-
works (ANNs) [19] have often been used in energy systems.
ANNs allow for optimization, generalization, adaptability,

data analytics, tolerance to failure, and minimal power con-
sumption.

The next paper [3] proposed a strategy to control the
management of demand for homes using smart grids that
incorporate solar PV generation and energy storage. A system
for decision making is proposed to reduce the electricity cost
by managing the battery. The battery was assumed to be
completely discharged as an initial condition for optimiza-
tion. Fig. 4 shows a flowchart of the optimization process.
A neural network that can be utilized at any home is imple-
mented. Several combinations of consumption profiles and
solar generation were used for validation. It was shown that
the neural network system used to make decisions operates
the battery effectively, resulting in a minimum electricity bill.
The input data parameters used were the household power
demand, maximum battery energy stored, PV power genera-
tion, electricity tariff, maximum power of the converter, and
optimum battery power.

The cost of electricity to the customer is calculated. The
minimum cost objective function is:

Cost =

k=M∑
k=1

Tenergy (k)Pgrid (k)dt (1)

The variable k represents an interval of time, and the
number of time intervals is M. Tenergy is the value of the tariff
for electricity.Pgrid is the power supplied to or from the public
utility. The time is dt.

The constraints are:

0 < Estorage (k) < Emaxstorage

− Pmaxconv < Pstorage (k) < Pmaxconv

Estorage (1) = Estorage (M )

Estorage(k) is the energy storage of the battery at time k.
Pstorage(k) is the battery power at time k.
In [8], the authors usedmachine learning to estimate charg-

ing and photovoltaic generation from data. The demo site
has solar panels, batteries, and thermal storage. The focus
was on EV and battery charging optimization and import-
ing electricity from the network. The data from the demo
site were processed using machine learning to identify EV
charging events and overproduction, generate profits from
PV energy production, time windows, energy requirements
for EV charging and building energy demand. One year of
data was used to implement supervised machine learning to
predict the PV production and total electricity load to stop
PV production after meeting the load and storage demand.
Machine learning data were used as input to the optimiza-
tion algorithm to minimize electricity cost. The gradient tree
boosting ensemble method was used with the data obtained
from a weather station. The variables used to train the model
were brightness, temperature, wind speed, and precipitation
with brightness having the greatest effect on predicting pho-
tovoltaic production.

Reference [7] proposed a BESS for peak-shaving and fre-
quency regulation. Peak shaving occurs when the battery is
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FIGURE 4. Flowchart of the optimization process.

charged when the electricity rates are at their lowest, which
occurs during off-peak hours or when solar energy is free.
These batteries were then discharged to avoid paying high
prices during peak cost times of the day. The battery can
discharge when demand is high.

This strategy uses uncertainties in customer load and
regulation signals, battery degradation, and operational con-
straints. A simple threshold real-time algorithm was pro-
posed. The peak demand charge is calculated for each month
with 15-minute averages. Frequency regulation requires a
decision of between 2 and 4 s. A formula was presented to
calculate the total electricity bill.

They focused on lithium-ion batteries (LIBs). The degra-
dation model for the battery proposed in this study is
in a simplified linear form, applied to a specific battery
operation constraint. For optimization, a more precise and
general model of battery degradation can be used, such as a
cycle-based degradation model.

Battery operation was limited to a depth of discharge range
of 70% and a constant marginal cost was assigned for battery
energy charging and discharging. The total electricity cost
for the next day, including the energy cost, peak demand
charge, and battery degradation cost, was minimized through
the objective function.

They used a multiple linear regression model to predict
the load one day in advance and used the 10-fold cross val-
idation method to evaluate the MLR load prediction model.
A real-time battery control algorithm for optimization was
introduced. It only requires the measurement of the real-time
state of the battery.

They performed a case study using half a year of power
consumption data from the Microsoft data center and one
year of data from the University of Washington EE and CSE
building. The battery optimization horizon was assumed to be

one day, and the time interval was 4 s. The electricity price,
battery power capacity, battery power rating, energy capacity,
and battery cell price are fixed. The annual bill and battery
life expectancies were used for comparison with multiple
scenarios.

Simulations were used to compare the results of the joint
optimization to other scenarios. Real data could be used to
verify these results. A scenario-based method was imple-
mented using historical data to predict future frequency
regulation signals where machine learning could be imple-
mented using the same data.

The test sites were commercial buildings, which have the
characteristics of a high load demand and large batteries.
Batteries are also primarily used as backup resources. The
inclusion of residential test sites with less demand and lower
capacity batteries can be considered.

The BESS is vulnerable to security threats and can result
in both physical and financial damage [73]. Little research
has been conducted on methods for detecting cyberattacks
in BESSs. The use of blockchain during the system design
stage is suggested to secure the communication channels.
In addition, the implementation of artificial intelligence and
machine learning methods is explored to detect false data
injection attacks (FDIA) while the BESS is operating. The
analysis of the authors led to the use of data to forecast attacks
utilizing methods such as clustering and state estimation
using artificial neutral networks.

For owners of energy production facilities who want to
add the option of renewable energy sources, calculations to
maximize revenue from their BESS are of great importance.
Reference [74] explored a deep learning methodology for the
revenue prediction of a hybrid generation plant. By utilizing
machine learning, more accurate revenue predictions were
obtained on the order of a 4% average absolute error. In addi-
tion, the machine learning method reduced the computation
time by more than 99%.

In [75], reinforcement learning was proposed to opti-
mize the electric management system (EMS) and size of a
PV/BESS microgrid. The Q-learning algorithm is used to
determine the next actions for the EMS. The results showed
higher utilization of PV energy, improved efficiency of the
system, and lower cost of electricity.

L. OPTIMIZATION SCHEMES BASED ON META-HEURISTIC
ALGORITHMS FOR BESS
Reference [78] uses metaheuristic algorithms to optimize a
system consisting of a BESS, a renewable energy source,
and an EV fast charging station (EVFCS). The goal is to
calculate the optimal size of each component of the system
and maximize the profitability of the EVFCS. There were
3 metaheuristic algorithms applied: the arithmetic optimiza-
tion algorithm (AOA), salp swarm algorithm (SSA), and
particle swarm optimization (PSO).

In [79], the objective is to determine the optimal allo-
cation of the BESS. The metaheuristic algorithm Teaching

8256 VOLUME 12, 2024



R. Colucci et al.: Survey of Strategies to Optimize Battery Operation

TABLE 4. Summary of surveyed strategies and suggested improvements.

Learning-Based Optimization (TLBO) is used during the
simulation. The electricity cost and loss of energy are the
input variables for the objective function. The hourly power
level of the BESS is the variable to be optimized. The
results using TLBO were compared with several metaheuris-
tic algorithms: The Cuckoo Search Algorithm (CSA), PSO,
Gradient-Based Optimizer (GBO), SSA, and Barnacles Mat-
ing Optimizer (BMO).

Reference [80] presents a BESS control strategy which
utilizes a metaheuristic algorithm, namely harmony search
to determine the optimal smoothed BESS and solar energy
limits by calculating the optimum filtering time constant
to smooth PV intermittency by BESS. This metaheuristic
optimization method uses stochastic random searches which
result in fewer calculations and does not require the decision
variables to be initialized.

M. OPTIMIZATION SCHEMES BASED ON SOH
ENHANCEMENT FOR BESS
Reference [28] explains that the battery charge/discharge
cycle can affect its lifecycle. The battery lifetime may be
included in a cost analysis of the microgrid system. The cur-
rent SOH of the battery can determine its power and capacity.
BESS parameters may include SOH, cycle count, corrosion,
and the degradation rate.

In [81], the authors stated that the lifetime of a bat-
tery is reduced if there is no consideration for factors
leading to its degradation. The goal of the paper is to
increase battery life and minimize the cost of electricity for
a microgrid. A model of the battery representing its physi-
cal aging process is embedded into the algorithm. Dynamic
programming is utilized for optimization with simulated
data.
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The next paper [82] states that the factors affecting the
age of a battery are SOC, charge/discharge rate, depth of
discharge, and SOH. One approach incorporated a strategy
using Q learning with an aging model based on GA. Another
method adopted adaptive droop control. The power variables
related to the BESS in different scenarios determined the
energy released by the Droop controller.

N. SUMMARY OF SURVEYED STRATEGIES AND
SUGGESTED IMPROVEMENTS
Table 4 summarizes the strategies that we surveyed with
their corresponding classifications included in our taxonomy.
The table describes several battery optimization approaches
with the suggested improvements. The testing methods and
data used to validate the approaches for each study are also
included in the table.

The table shows the classification of each strategy based on
the topic, testing method, and test data. Improvements have
also been suggested for each strategy. The new approaches
include: utilizing machine learning, optimizing revenue/cost,
analyzing real data, increasing battery life, using real data,
charging strategy model, control optimization, increasing
revenue of PV/BESS, more profit for a self-consumption sys-
tem, integrating BESS with PV system, predicting electricity
demand one day in advance, using smart contracts, charg-
ing the battery during low peak hours and discharge during
peak, intrusion detection system, distributed control system,
decision making system, predict electricity load and PV pro-
duction, day ahead electricity load prediction, blockchain to
secure communication channels, revenue prediction strategy,
and optimize energy management strategy, revenue predic-
tion strategy, and optimize energy management strategy.

For the 3 surveys cited in this paper, there are proposed
enhancements to the research gaps described in each pub-
lication. For the survey in [18], the authors proposed that
additional research can be performed related to integrating
the control strategies for all elements of the BESS to achieve
the optimal efficiency of the system. Machine learning algo-
rithms can be applied to determine the strategy with the best
results. The authors in [28] emphasized the need for further
exploration of enhancing cybersecurity features to address
the security vulnerabilities and weaknesses of both smart
grid and microgrid systems for applications that run in real
time. The review in [14] discovered that there has been no
utilization of deep learningmethods for BESSs deployedwith
wind power as an energy source. In the authors opinion, there
is great future potential in the use of deep learning strategies
to optimize the control mechanism of a BESS.

IV. CONCLUSION AND FUTURE DIRECTIONS
A. CONCLUSION
An optimized battery control system is critical in a renew-
able energy source/BESS system because of the potential for
monetary gain from the BESS. A variety of control strategies
for providing an optimum BESS are presented in this paper.

Many studies have focused on regulating battery discharge
and charge decisions. The major approaches described are
PID, PI, H-infinity, MPC, and NLPC. The battery state of
charge, life cycle, and other constraints are also presented.
Other goals include environmental concerns, frequency regu-
lation, consistent voltage levels, better quality of energy, and
reducing microgrid costs.

The objective to incorporate a better and more adap-
tive strategy to maintain a cost effective, dependable, and
high-performance BESS infrastructure is required. Several
current studies have presented techniques to optimize the
BESS by utilizing prediction schemes to enhance the results
of the system. Currently, the most common approach is MPC.

This survey paper provides a summary of state-of-the-
art strategies for smoothing renewable power output using
a BESS. It also includes goals for optimization, limitations,
different types of algorithms, and research gaps with sugges-
tions.

It explains the various strategies and proposes ideas for
further research to help researchers select an optimal control
strategy for their respective systems [76].

B. FUTURE DIRECTIONS
The current state of research focuses on utilizing simulated
data, stochastic methods, and algorithms for experiments to
test different strategies. For future research, it is anticipated
that more work will be done on machine learning.

A topic of great interest is the integration of revenue
prediction with real data for cost and performance. This
would allow for more accurate recommendations for BESSs
to achieve optimal financial gains. In addition, the accuracy of
the machine learning model can be improved by including a
mixed-integer linear programming (MILP) model to create a
hybrid strategy. TheMILPmodel can adjust machine learning
predictions that are not realistic owing to scenarios that are
out of the sample. In addition, reinforcement learning can be
implemented in conjunction with existing strategies to reduce
costs and maximize the use of PV sources [77].
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