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ABSTRACT Aimed at the high-impedance fault detection problem, this paper proposes a fault-feature
enhancementmethod for actively detecting high-impedance faults. The essential characteristic of thismethod
is that the fault features are actively enhanced without affecting the normal terminal voltage. The method
consists of two stages, i.e., the feature-enhancement stage and the fault-detection stage. The terminal voltage
difference between the fault and normal state is analyzed in the first stage. Then, the feasibility of enhancing
terminal voltage difference by the auxiliary signal is proved, and the selection criteria of the auxiliary signal
is determined based on IEEE standards. In the second stage, the local-scale energy entropy ratios are applied
to reconstruct the measurements. Then, high-impedance faults are detected by discriminating reconstructed
data statistical characteristics differences before and during the fault. The simulation results show that
the proposed method can accurately identify high-impedance faults with 75 k� transition impedance in
an environment with a signal-to-noise ratio of 15 dB and reliably detect the faults with 75 k� transition
impedance on buses and feeders at different positions. The method is robust to noise, transition impedance,
and switching events.

INDEX TERMS Active detection, feature enhancement, high-impedance faults, fault detection, distribution.

ABBREVIATIONS
RG Resonance Grounding.
HIF High-Impedance Fault.
SNR Signal-To-Noise Ratio.
DC Direct Current.
AC Alternating Current.
ST Stockwell Transform.
CGAN Conditional Generative Adversar-

ial Network.
CNN Convolutional Neural Network.
TVKF Time-Varying Kalman Filter.
ITD Intrinsic Time Decomposition.
WT Wavelet Transform.
ZSC Zero-Sequence Current.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sarasij Das .

MCEEMD Modified Complete Ensemble Empirical
Mode Decomposition.

ALO Ant Lion Optimizer.
ANN Artificial Neural Network.
LSTM Long Short-Term Memory.
DRL Deep Reinforcement Learning.
MSVM Multiclass Support Vector Machine.
TL Transfer Learning.
KLD Kullback-Leibler Divergence.
JSD Jensen-Shannon Divergence.
PCA Principal Component Analysis.
WD Wasserstein Divergence.
SI Signal Injection.
VMD Variational Mode Decomposition.
IMF Intrinsic Mode Function.
LLS Linear Load Switching.
NLS Nonlinear Load Switching.
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CS Capacitor Switching.
TE Transformer Energizing.
PVS Photovoltaic Switching.
AFFE Active Fault Feature Enhancement.
MM Mathematical Morphology.
DT Decision Tree.
SR Stochastic Resonance.
SWT Stationary Wavelet Transform.
DFT Discrete Fourier Transform.
KF Kalman Filter.

NOMENCLATURE
l The length of the k−th feeder line.
ω Power grid frequency.
Zk The line impedance of the k−th

feeder line.
Yk The line ground admittance of the

k−th feeder line.
Rk, Lk The resistance and the inductance

of the k−th feeder line.
Gk,Ck The ground conductivity and

ground capacitance of the k−th
feeder line.

Lz The inductance of the resonant.
Uq
k (s) The terminal voltage of the k−th

feeder.
U(s) The power supply voltage.
Ipk (s) The terminal current of the k−th

feeder.
f , d The fault point and the distance

from the beginning of the line to the
fault point.

Rf The transition impedance.
Ẑk(s) The equivalent impedance of k−th

feeder.
Ŷp
k (s),Ŷ

q
k (s) The equivalent admittance and the

equivalent admittance of the begin-
ning and end of k−th feeder.

Req, Leq The equivalent resistance and the
equivalent inductance of the line of
the k-th feeder.

Gp
eq, C

p
eq The equivalent conductivity at

the beginning and the equivalent
capacitance at the beginning of the
line of the k-th feeder.

Gq
eq, C

q
eq The equivalent conductivity at the

end and the equivalent capacitance
at the end of the line of the k−th
feeder,.

1U(s) The terminal voltage difference
before and during the fault.

ψ The adjusting parameter.
ϒ And the auxiliary voltage signal.
Ũq
kf (s) The terminal voltage with auxiliary

signals.

uk The k−th IMF.
δ(t) The decimated dyadic filter bank kernel

function.
ω k The central frequency corresponding to the

k−th IMF.
ũ The voltage data set decomposed.
Ek (n) The energy sequence of the k−th IMF.
ℜk (i) The energy entropy.
κk (n) The ratios of the k−th IMF energy to the

total energy.
φ The window length.
δik The weight.
ℜk (i),ℜ̂k (i) The energy entropy of the k−th imfs for

the historical and measured data in the i−th
window.

ûk The reconstructed k−th IMF.
uik The k−th IMF of the measured data in the

i−th window.
N The total number of samples.
u The data reconstructed.
u, û The reconstructed normal data and mea-

sured data.
P, P̂ The probability distributions of u and û.
ξ The detection threshold.
µ, σ , τ The mean value of Wasserstein divergence,

the standard deviation of Wasserstein’s
divergence, and the constant.

W2 The Wasserstein divergence.
td, tw The duration of exceeding the limit and the

determination time limit.

I. INTRODUCTION
RG distribution networks are adopted in China and most
European countries [1], [2]. Because the fault current is very
weak when a single-phase-to-ground fault occurs in the RG
distribution networks, most of the overcurrent relays do not
trip. When the high-impedance fault occurs, this situation
is particularly serious due to the large grounding resistance,
it is difficult to detect HIF in the system on time. Therefore,
high-impedance fault detection has attracted more and more
research interest.

Most HIF detection methods use signal processing tech-
nologies to extract time-domain, frequency-domain, and
time-frequency domain features for voltage and current pro-
files. For example, in time-domain methods, [3] used the
time-domain reflection method to detect high impedance
faults. In the frequency domain method, [4] used the cumu-
lative error indicator to monitor the phase angle of the third
harmonic and extract it through the Stockwell transform for
fault detection and classification. Reference [5] used the third
harmonic angle of the current as a practical feature for fault
detection. Reference [6] used the harmonic components of
voltage and current for each phase and then calculated the
reactive power of each phase using the harmonic components
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TABLE 1. Comparison of this method with other relevant methods in the literature.

for fault detection. In the time-frequency domain method.
Reference [7] proposed a HIF detection method based on
intrinsic time decomposition and the Teager Kaiser energy
operator. Reference [8] used discrete wavelet transform to
extract detailed energy content features of coefficients from
the extracted current signal for fault detection. Reference [9]
used a wavelet pack algorithm to analyze the character-
istics of zero sequences’ current variation in feeder lines.
Then, fault detection criteria are constructed using spectral
energy and zero sequence current direction. Reference [10]
analyzed and evaluated arc faults’ transient and steady-state
dynamic states through time-frequency domain analysis. Ref-
erence [11] used an improved adaptive noise fully integrated
empirical mode decomposition method to extract the sec-
ond intrinsic mode function and calculate its Teager Kaiser
energy operator to achieve HIF detection. Besides, machine
learning-based methods, [12] used a combination of ant
lion optimizer and artificial neural network to accurately
separate HIF. Reference [13] classified the energy character-
istics of current using a short-term and short-term memory
network of a recurrent neural network for fault detection.
Reference [14] utilized a hybrid model of convolutional
neural networks and deep reinforcement learning to iden-
tify and locate faults in transmission lines. In multivariate
statistical methods, [15] used multiple algorithms such as
principal component analysis, Fisher discriminant analysis,

and binary and multi-class support vector machines to detect
and identify high-impedance faults. Reference [16] integrated
all features from different distribution networks to form a
basic cloud convolutional neural network model for HIF
detection. Reference [17] used dual-channel convolutional
neural networks for high-impedance fault detection. In the
statistical divergence method, [18] used the Kullback Leibler
divergence similarity measure to quantify the nonlinear and
asymmetric features of the subsequent two half cycles of
the current waveform into HIF detection criteria for HIF
detection. Reference [19] detected HIF through multivariate
Jensen-Shannon divergence similarity measurement. Refer-
ence [20] adopts an intelligent fault diagnosis method based
on Wasserstein gradient penalty generation adversarial net-
works using deep autoencoders. Reference [21] used sparse
principal component analysis to extract joint features from
measurement data and Wasserstein divergence to detect HIF.
The above method is applied to detect HIF in medium voltage
networks. Despite good detection performance, most meth-
ods implicitly assume that faults may be known to occur,
which means that such methods are passive in detecting
faults, active fault detection can better highlight fault char-
acteristics and further improve the reliability and safety of
passive fault detection. Therefore, how to actively detect
high-impedance faults without knowing whether the fault
occurs has become a challenging problem.
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The method of actively detecting faults by injecting auxil-
iary signals into the line to enhance fault characteristics has
received continuous attention, Song et al. [22] proposed the
fault localization and isolation method based on the current
distribution characteristics of the injected signals based on
the preliminary discrimination of the fault. Reference [23]
made a preliminary judgment on whether a fault occurs and
then applied a controllable modular multilevel converter to
inject sinusoidal signals for fault detection, similar to [22].
Similarly, [24] proposed a fault localization method based on
an active pulse modular multilevel converter. This method
generates traveling wave pulses propagating to the line by
controlling sub-modules in a modular multilevel converter.
Reference [25] was based on the collected active pulses after
fault occurrence as features and employed support vector
machines to detect faults. However, most active detection
methods inject auxiliary signals online to determine whether
a fault has occurred, which is based on the preliminary
judgment on whether the fault has occurred. Furthermore,
these methods are all aimed at DC distribution networks.
The large-scale access to DGs makes it possible to inject
auxiliary signals online into the AC distribution grid. There-
fore, how to actively detect high-resistance faults by injecting
auxiliary signals online into the lines without affecting the
regular operation of the AC distribution network has become
a challenging and fascinating problem.

Therefore, this paper proposes an active high-impedance
fault detection method using injected auxiliary signals in
the AC distribution grid. Based on the difference in volt-
age signals between pre-fault and post-fault terminals, the
method reconstructs the power frequency voltage signal using
the local-scale energy entropy ratio. The statistical feature
differences in voltage before and during the fault process
are utilized to achieve high-impedance fault detection and
identification. To test the effectiveness, simulations and tests
are carried out under various scenarios. The literature review
comparison is as follows.

The contributions of this paper is summarized as follows.

1) This paper proposed AFFE, which can eliminate the
impact of auxiliary signals on the system under normal
operating conditions. The actively injected auxiliary
signals only enhance the fault characteristics during the
fault period. AFFE can make fault detection methods
more sensitive.

2) Use the local energy entropy method to reconstruct
data to highlight fault features, and use Wasserstein
divergence for fault detection. This method improves
the tolerance for uncertain factors such as fault envi-
ronment and fault medium conditions.

3) Distinguishing transient events between HIF and distri-
bution networks, and ensuring that protection does not
malfunction.

The remainder of the paper is organized as follows.
Section II mainly analyzes the principle of fault fea-
ture enhancement in RG distribution networks and the

FIGURE 1. Normal equivalent circuit.

FIGURE 2. Fault equivalent circuit.

reconstruction of enhanced voltage signals. In Section III
mainly discusses the basis for selecting the amplitude and
frequency of auxiliary signals. In Section IV, PSCAD was
used to conduct a series of studies on different fault scenarios
and switching events to verify the feasibility and effectiveness
of the proposed active enhancement method. The Section V
uses on-site experimental data to further validate the proposed
method. Finally, draw a conclusion in Section VI.

II. ACTIVE HIF DETECTION METHOD
A. ACTIVE FAULT-FEATURE ENHANCEMENT
Consider the normal operation of the power system, the
equivalent circuit of the system with resonant grounding is
shown in Figure 1.

As shown in Figure 1, the system grounded through res-
onant has n feeders. According to the Laplace transform
principle, the terminal voltage of the k−th feeder is

Uq
k (s) = ABU(s) − DIpk (s) (1)

whereA = 1/Gk+(Rk+sLk )[1+sCk/Gk+1/(sLzGk )], B =

Gk , D = Rk + sLk .
If a single-phase grounding high-impedance fault occurs

on the k−th feeder, the equivalent circuit of the line fault is
shown in Figure 2.
Furthermore, the circuit of the k-th feeder, as shown in

Figure 2, can be transformed to the following form, as illus-
trated in Figure 3.

According to the Laplace transform, the parameters,
as shown in Figure 3, are obtained as follows

Ẑk (s) = Req + sLeq
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FIGURE 3. Equivalent π type circuit.

Ŷp
k (s) = Gp

eq + sCp
eq +

1
sLz

Ŷq
k (s) = Gq

eq + sCq
eq (2)

the equivalent parameters are obtained as the following form

Req = d (l − d)
(
Rk2 − ω2Lk2

)
/
(
l2Rf

)
+ Rk

Leq = 2d (l − d)RkLk/
(
l2Rf

)
+ Lk

Gp
eq = (l − d)

[
(l − d) dRk/l2+Rf

]
/
(
lM2

+ lN2
)
+Gk

Cp
eq = − (l − d)2dLk/

(
l2M2

+ l2N2
)

+ Ck

Gq
eq = d

[
(l − d) dRk/l2 + Rf

]
/
(
lM2

+ lN2
)

+ Gk

Cq
eq = − (l − d) d2Lk/

(
l2M2

+ l2N2
)

+ Ck (3)

whereM = d (l−d)Rk/l2 + Rf and N = ωd (l−d)Lk/l2.
Therefore, the terminal voltage of the line during the fault

is

Uq
kf (s) = Af BfU(s) − Df I

p
k (s) (4)

where Af , Bf , and Df are obtained as Af = 1/Gp
eq + (Req +

sLeq)[1 + sCp
eq/G

p
eq + 1/(sLzG

p
eq)], Bf = Gp

eq, Df = Req +

sLeq.
According to (1) and (3), the terminal voltage difference

before and during the fault is

1U(s) = Af1BU(s) +1ABU −1DI
p
k (s) (5)

where 1A = Af − A, 1B = Bf − B; 1D = Df − D.
Set the tuning parameters ψ and the auxiliary voltage

signal ϒ , the terminal voltage with auxiliary signals is

Ũq
kf (s) = 1U(s) + Uq

k (s) + Af (Bf − B)ψϒ (6)

The terminal voltage during the fault is

Ũq
kf (s) = Af

[
Bf B

] [U(s) + ψϒ

− ψϒ

]
− Df I

p
k (s) (7)

Obviously, the fault scaling factor d = 0 and Rf is infinite
when the system is normal states, then equation (7) is

Ũq
kf (s) = Af

[
Bf B

] [U(s) + ψϒ

− ψϒ

]
− Df I

p
k (s)

= ABU(s) − DIpk (s) = Uq
k (s) (8)

In other words, the injected auxiliary voltage signal has no
impact on the terminal voltage of the line when the system is
operating normally.

B. FAULT DETECTION METHOD
1) DATA RECONSTRUCTION
Due to the inconsistency of fault manifestations at different
scales [26], measured data are reconstructed by scale-level
signal energy entropy ratio for highlighting the fault feature.

Compared with wavelet transform, VMD has adaptive
decomposition ability, high decomposition stability, and can
reflect signal transient characteristics well [27]. Therefore,
VMD decomposes the measured voltage data into K IMFs
in this section.

lim
{uk },{ωk }

{
K∑
k=1

∥ ∂t

[(
δ(t) +

j
π t

)
∗ uk (t)

]
e−jω k t ∥

2
2

}

s.t.
K∑
k=1

uk = ũ

(9)

Then, the energy sequence of the k−th IMF is obtained by
the teager energy operator [28]

Ek (n) = u2k (n) − uk (n+ 1)uk (n− 1) (10)

Furthermore, the energy entropy of the k−th IMF is

ℜk (i) = −

iφ∑
n=(i−1)φ+1

κk (n) log2 κk (n) (11)

The weight of the k−th mode in the i−th window is

δik =
ℜ̂k (i)

ℜk (i)
(12)

Then, the reconstructed k−th IMF ûk is

ûk =

(
uikδ

i
k

)
1×N

(13)

Thereby, the data reconstructed u is

u =

K∑
k=1

ûk (14)

2) FAULT DETECTION METHOD
Due to the significant differences in the probability distribu-
tion of voltage signals before and during the fault [19], this
paper uses statistical divergence for fault detection.

Let u and û be the reconstructed normal data and measured
data, respectively. Suppose u and û satisfy the probability dis-
tributionsP and P̂, that is, u ∼ P and û ∼ P̂. TheWasserstein
divergence [29] between P and P̂ can be expressed as:

W2
(
P, P̂

)
=

(
inf

π∈
∏(

P,P̂
)
∫
D(u, û)2dπ (P, P̂)

) 1
2

(15)

where 5
(
P, P̂

)
represents the set of all joint probability

distributions with edges P and P̂. D(u, û) is the distance of
the sample. The detection threshold is

ξ = µ + τσ (16)
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FIGURE 4. Total harmonic content.

Because of the high-impedance fault often lasts more than
8 cycles [30], the criteria for determination are:{

W2 > ξ

td > tw
(17)

When the power frequency of the system is 50 Hz, set tw to
160 ms.

III. AUXILIARY SIGNAL SELECTION PRINCIPLE
A. AMPLITUDE SELECTION PRINCIPLE
In the distribution network, the accuracy of voltage trans-
formers is generally not less than 3% of the rated value [31].
Therefore, in order to ensure accuracy, the amplitude of
the auxiliary signal should not be less than the maximum
detection accuracy of the transformer. Moreover, in order
to avoid injecting auxiliary signals and distorting the volt-
age amplitude too high [18], the auxiliary signal should be
below 15%.

B. FREQUENCY SELECTION PRINCIPLE
According to IEEE standards [32], the single harmonic con-
tent and total harmonic content for 1 kV - 69 kV common
connection points cannot exceed 3% and 5%, respectively.
Because 50 Hz, 150 Hz, 250 Hz, 350 Hz, and 1000 Hz have
been used in relevant research results [33], [34], [35], this
paper analyzes the harmonic distortion rate of these frequen-
cies in the 10kV power grid. The result is shown in Figure 4.
However, the 7th harmonic content of the 1000 Hz signal

is 4.28%, exceeding the limit, only the 50 Hz signals meet the
IEEE standard.

IV. SIMULATION VERIFICATION
In this paper, PSCAD/EMTDC is used to build an improved
IEEE 34 node system, as shown in Figure 5. The auxiliary
signal is injected at the 806th node.

The high-impedance fault model used was proposed by
Emanue et al [36] used is shown in Figure 6.

FIGURE 5. Improved IEEE 34 node system.

FIGURE 6. Structure diagram of high-impedance fault model.

TABLE 2. High-impedance fault model parameters.

The high-impedance fault parameters used in this study are
presented in Table 2.

Fault detection performance is evaluated for transition
impedances of 15 k�− 75 k� for an A-phase earthing fault.
The measurement noise is considered to follow a Gaussian
distribution. The high impedance fault occurs at 0.5 s for a
duration of 0.5 s. The VMD penalty factor is set to 4000, and
the number of decomposed modes is 4 in all scenarios. In this
paper, four scenarios are set to test the proposed method
performance as follows:

S1: The fault happened at Line 806-808 with 1796.559 m
away from the 806th node.

S2: The fault happened at Line 850-816 with 28.799 m
away from the 850th node.

S3: The fault happened at Line 830-854 with 24.154 m
away from the 830th node.

S4: The fault happened at Line 858-864 with 37.625 m
away from the 858th node.

All photovoltaic power sources are put into operation for
four scenarios. A phase-locked loop and a limiting device are
applied to obtain an auxiliary signal, the same frequency and
phase as the power frequency voltage, and the amplitude of
the auxiliary signal is 5% of the peak value of the normal
voltage.

A. THE INFLUENCE OF AUXILIARY SIGNAL INJECTED
To verify the impact of auxiliary signal injection on the
measured signal during the fault period. A HIF happened
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FIGURE 7. Voltage spectrum diagram.

FIGURE 8. Voltage decomposition results.

in scenario S1 with transient resistance 35 k�. For volt-
age with/without AFFE, Figure 7 shows the frequency
spectrum.

As shown in Figure 7, the spectrum characteristics with and
without AFFE are mainly concentrated around 50 Hz, and
there is a change at 500 ms, indicating that the fault occurred
at 500 ms. Compared to the case without AFFE,the energy
in each frequency band significantly increases in the case of
AFFE after a fault occurs. Specifically, after a fault occurs,
the energy above 100Hz significantly increases, especially
around 150Hz where the energy increases the most. In addi-
tion, the energy of odd harmonics is higher than that of even
harmonics. On the other hand, voltage signals without AFFE
only show slight energy changes in the first 80ms after a fault
occurs, there is no significant change in energy compared to
normal in the following time period. Figure 8 shows the IMFs
obtained by VMD.

As shown in Figure 8, it can be observed that the waveform
of IMF1 is similar with and without AFFE. However, for
IMF2-IMF4, in the presence of auxiliary signals, there is an
apparent step-like phenomenon at the time of fault occur-
rence. On the contrary, no significant changes were observed
in IMF2-IMF4 without AFFE.

B. FAULT DETECTION PERFORMANCE
This section validates the proposedmethod for fault scenarios
with and without AFFE, considering aspects such as transient
impedance, noise, fault location, and switching events.

1) DIFFERENT TRANSITION IMPEDANCES
To test the impact of transition impedance on detection
results. When a fault occurs in scenario S1, the impedance
parameters of Table 2 are 15 k�, 35 k�, 55 k�, and 75 k�,
respectively, the detection results with and without AFFE are
shown in Figure 9.

FIGURE 9. Detection results under different transition impedances.

As shown in Figure 9, corresponding to the transition
impedances of 15 k�, 35 k�, 55 k�, and 75 k�, the
detection curves with AFFE exceeded the limit at 3.6 ms,
3.66 ms, 3.82 ms, and 4.51 ms after the fault occurred, and
remained above the threshold continuously. All detection
results met the judgment conditions. The detection curves
without AFFE exceeded the threshold at 9.98 ms, 10 ms,
10.13 ms, and 17.82 ms, respectively. Figure 8 shows that the
detection curves with and without AFFE gradually decrease
with the increase of transition impedance, and the ampli-
tude of the detection curve exceeds the limit. However, from
the detection results, it can meet the judgment conditions,
but the detection curve without AFFE shows significant
fluctuations.

2) DIFFERENT NOISE LEVELS
Due to the impact of noise on the detection results of high-
impedance faults, in noise environments with signal to noise
ratio of 30 dB, 25 dB, 20 dB, and 15 dB, when a fault occurs
in scenario S1, the impedance parameters of Table 2 is 75 k�,
the detection results with and without AFFE are shown in
Figure 10.
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FIGURE 10. Detection results under different noises.

As shown in Figure 10, it can be seen that at 15.5 ms,
16.43 ms, 18.21 ms, and 19.28 ms after the fault occurred,
the detection curves with AFFE corresponding to signal-to-
noise ratios of 30 dB, 25 dB, 20 dB, and 15 dB, respectively
exceeded the threshold and remained above the threshold,
meeting the judgment criteria. The detection curve without
AFFE will frequently exceed the threshold before and after
the fault, and the continuous exceeding time does not meet
the judgment conditions.

3) DIFFERENT FAULT LOCATIONS
In order to study the impact of different fault locations, when
a fault occurs in scenarios S1−S4, the impedance parameters
of Table 2 is 35 k�, the detection results with and without
AFFE are shown in Figure 11.

As shown in Figure 11, corresponding to scenarios S1, S2,
S3, and S4, the detection curves with AFFE exceeded the
threshold at 3.66 ms, 7.08 ms, 7.2 ms, and 23.33 ms after the
fault occurred, respectively, and remained above the thresh-
old, meeting the fault determination conditions. The detection
curves of scenarios S1, S3, and S4 without AFFE exceeded the
threshold at 9.24 ms, 16.75 ms, and 17.65 ms, respectively,

FIGURE 11. Detection results of different fault locations.

and remained consistently above the threshold. The detection
curve of scenario S2 does not exceed the threshold, and the
duration does not meet the judgment criteria.

4) SWITCHING EVENT
Switching events can generate transient characteristics sim-
ilar to high-impedance faults. Therefore, this paper investi-
gates the impact of different switching events on the proposed
enhanced detection algorithm. The following five types
of switching events are considered: LLS [37], NLS [38],
CS [38], TE, and PVS [39]. The models for these five switch-
ing events are illustrated in Figure 12.

The locations of the switching events are shown in
Figure 4. The parameters for switching scenarios are shown
in Table 3.

a: LOAD SWITCHING EVENT
The detection results of switching scenarios 1 and 2 with and
without AFFE are shown in Figures 13 and 14.

As shown in Figure 13, during LLS, the detection curves
with AFFE exceeded the threshold twice at 0.4126 s and
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FIGURE 12. Switching model.

TABLE 3. Switching scenarios.

FIGURE 13. LLS detection results.

0.7072 s, respectively, and were below the threshold at
0.4432 s and 0.7383 s, respectively. Continuously exceed-
ing the threshold time does not meet the judgment criteria.
The detection curve without AFFE exceeds the threshold in
0.38615s, until it drops below the threshold in 0.69415 s,
and continues to exceed the threshold for 308 ms, meeting
the judgment criteria. Figure 13 show that during LLS, the
detection curve without AFFE may be misjudged as a fault.

As shown in Figure 14, during the NLS process, the detec-
tion curve with AFFE exceeded the threshold at 0.64252 s
and dropped below the threshold at 0.7259 s. The process
lasted for 83.38 ms, which did not meet the judgment criteria.
The detection curves without AFFE exceeded the threshold at
0.4289 s and 0.51593 s, respectively, with a maximum dura-
tion of 185.87 ms, meeting the judgment criteria. Figure 14
show that duringNLS, the detection curvewithout AFFEmay
be misjudged as a fault.

FIGURE 14. NLS detection results.

FIGURE 15. CS detection results.

FIGURE 16. TE detection results.

b: CAPACITOR SWITCHING AND TRANSFORMER
ENERGIZATION EVENTS
The detection results with and without AFFE in switching
scenarios 3 and 4 are shown in Figure 15 and Figure 16.

As shown in Figure 15, it can be seen that the detec-
tion curves with AFFE exceeded the threshold twice within
0.42501 s and 0.66980 s, respectively, and again fell
below the threshold within 0.44017 s and 0.72674 s,
with durations of 15.16 ms and 56.94 ms, respectively.
In comparison, the detection curves without AFFE decreased
at 0.38505 s and 0.72005 s, respectively, and exceeded
the threshold twice at 0.40355 s and 0.68361 s, and
dropped below the threshold at 0.42366s and 0.70131 s,
respectively, with durations of 20.11 ms and 17.7 ms,
respectively.

As shown in Figure 16, it can be seen that the detection
curves with AFFE decrease at 0.37505 s and 0.69504 s,
respectively. Afterward, they exceeded the threshold twice at
0.39016 s and 0.66344 s and again fell below the threshold
at 0.40928 s and 0.68528 s, with durations of 19.12 ms
and 21.84 ms, respectively. The detection curves with-
out AFFE exceeded the threshold twice at 0.4004 s and
0.67013 s and then decreased to the threshold at 0.41485 s
and 0.6858 s, with durations of 14.45 ms and 15.75 ms,
respectively.
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TABLE 4. Performance comparison.

FIGURE 17. PVS detection results.

FIGURE 18. Fault phase identification results.

c: PHOTOVOLTAIC SWITCH EVENT
The detection results of with and without AFFE in switching
scenarios 5 are shown in Figure 17.
As shown in Figure 17, it can be seen that the detection

curve with AFFE exceeded the threshold twice at 0.3906 s
and 0.7121 s, respectively, and fell below the threshold again
at 0.42729 s and 0.7331 s, with durations of 36.69 ms and
21 ms, respectively. The duration did not meet the judg-
ment criteria. The detection curve without AFFE exceeds the
threshold within 0.39248 s. However, the curve drops below
the threshold at 0.69852 s and lasts 306.04 ms. The event may
be misjudged as a fault occurrence.

C. FAULT PHASE IDENTIFICATION
When scenario S1 experiences a phase a fault with an
impedance parameter of 75 k� from Table2 in a 15 dB noise
environment, the three-phase voltage detection results with
and without AFFE are shown in Figure 18.

As shown in Figure 18, it can be seen that in the presence
of AFFE, compared with the detection curve of phase A, the
detection results of phase A, phase B, and phase C signifi-
cantly increase after the fault occurs. 16.4 ms after the fault
occurred, the A-phase detection result exceeded the threshold
and remained above it, meeting the discrimination criteria.
However, the measurement results of phase B and phase C
never exceeded the threshold; In the absence of it can be seen
that in the presence of AFFE, the measurement results of
phase A, phase B, and phase C have been fluctuating within
the upper and lower range of the threshold, and the maximum
duration exceeding the threshold does not meet the judgment
criteria.

D. PERFORMANCE COMPARISON
In order to validate the real-time capability, enhanced detec-
tion capability under higher transition impedance, and the
impact on switching events, the proposed fault feature
enhancement method is compared with existing fault detec-
tion methods from references [40], [41], [42], [43] The
comparison results are presented in Table 4.

According to Table 4, the proposed fault feature enhance-
ment method in this paper achieves an average fault detection
time of 5.34 ms and can tolerate a maximum transition
impedance of 75 k� under an SNR of 15 dB. Compared to the
non-enhanced methods, MM-DT, MM, SWT, and DFT-KF
detection algorithms, the proposed fault feature enhancement
method exhibits significant superiority in terms of detection
time and impedance to transition impedance, and can reliably
detect faults under 15 dB noise.

V. EXPERIMENTAL TEST
A. CASE 1
A fault experiment was conducted on the A-phase cement
surface in an actual 10kV distribution network. The fault
occurred 500 meters away from the busbar, and the protec-
tion did not operate during the duration of the fault. The
single-line diagram is shown in Figure 19, and the on-site
grounding experimental device is shown in Figure 20.
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FIGURE 19. Actual 10kV distribution network single line diagram.

FIGURE 20. On site grounding experimental device.

FIGURE 21. Field voltage waveform.

In the actual 10 kV distribution network, under the con-
dition of resonant grounding of the neutral point, conduct
fault experiments on the A-phase connected cement surface.
The A-phase voltage waveforms with and without auxiliary
signals based on experimental data are shown in Figure 21.
Based on this work, further research will be conducted on the
optimization selection of auxiliary signals, design of genera-
tion devices, injection methods, and other aspects.

As shown in Figure 21, the with AFFE leads to a decrease
in voltage magnitude by approximately 4.7% compared to the
without AFFE after the fault occurrence. The detection results
of the three-phase voltages are shown in Figure 22.

FIGURE 22. Detection results.

FIGURE 23. On site experiments with different media.

As shown in Figure 22, regardless of whether there is
AFFE, only the A-phase detection curve exceeds the thresh-
old, while the detection curves of both B-phase and C-phase
are below the threshold. The detection curve with AFFE
exceeded the threshold at 14.35 ms after the fault and remains
above the threshold. The detection curve without AFFE
exceeded the threshold at 28.504 ms after the fault occurred
but decreased at 0.38 s but did not fall below the threshold.

B. CASE 2
In the actual 10 kV distribution network, HIF experiments
were conducted on the grounding medium of phase A, which
was wet grassland, wet cement ground, wet soil, and bricks.
The fault occurred at a distance of 4 km from the bus, during
which the protection did not operate. The on-site experi-
mental images and voltage waveforms of different grounding
media are shown in Figure 23- Figure 24.
The detection results of A-phase voltage for damp grass-

land, cement ground with damp surface, moist soil, and brick
grounding are shown in Figure 25- Figure 27.

As shown in Figure 25 - Figure 27, the detection curves
with AFFE exceeded the threshold at 12.4 ms, 18.6 ms,
11.7 ms, and 14.6 ms after the fault with damp grass,
damp cement, damp soil, and bricks, respectively. Although
the detection curve of moist soil as the grounding medium
showed a decrease, it remained above the threshold. However,
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FIGURE 24. Fault voltage recording of different grounding media.

FIGURE 25. Grounding test results for damp grassland.

FIGURE 26. Grounding test results of cement ground with damp surface.

FIGURE 27. Grounding test results for moist soil.

detection curves without AFFE exceeded the threshold at
11.4 ms, 17.5 ms, 14.6 ms, and 12.8 ms after the fault, respec-
tively. Then, the detection curves dropped at the thresholds
of 0.2283 s, 0.1869 s, 0.2058 s, and 0.1638 s, respec-
tively. That is, the detection curves without AFFE sustain
15.9 ms, 66.6 ms, 40.7 ms, and 89.7 ms above the threshold,

FIGURE 28. Grounding test results for brick.

respectively. The detection results without AFFE lead to false
discriminations (no faults happened) according to the criteria.

VI. CONCLUSION
In this paper, an active high-impedance fault detection
method is proposed in resonant grounding distribution net-
works. Firstly, analyze the voltage difference at the end of the
line before and after the fault, and inject auxiliary signals of
appropriate frequency and amplitude into the starting point
of the line. Enhance the terminal voltage of the line during
faults without affecting normal operation. Then, by utilizing
the energy difference at the local scale before and after the
fault, the signal is reconstructed to further highlight the fault
characteristics. Finally, use Wasserstein divergence to detect
HIF.

The proposed method was validated and compared using
simulation and experimental data. Different fault scenarios
and switching events, such as transition impedances, fault
locations, noise, and LLS, NLS, CS, TE, and PVS, were
simulated. The simulation results indicate that AFFE does
not affect the voltage at the end of the line during normal
operation. When a fault occurs, it enhances the fault charac-
teristics. In addition, the proposed detection method is robust
to transition impedance, fault localization, and noise. This
method can detect HIF of 75 k� in a noisy environment
with a signal-to-noise ratio of 15 dB, and the switching
event does not affect the detection performance. Under the
same detection method, compared to the detection results
without AFFE, the detection results with AFFE increased
the transition impedance by 40 k�, improved reliability and
safety by 37.66% and 20%, respectively, and advanced the
average detection time by 8.19ms. It indicates that AFFE
can significantly improve the algorithm’s sensitivity to HIF
with large grounding impedances and improve the reliability
and safety of the detection method. Compared with other
detection methods, the method proposed in this paper has
good robustness to transition impedance and noise.

Based on this work, further research will be conducted on
the following aspects: Auxiliary signal optimization selec-
tion. Utilize existing modular multilevel converters, new
energy equipment, or self-designed equipment in the distri-
bution network to generate the designed auxiliary signal.
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