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ABSTRACT A novel idea called bipolar complex fuzzy set makes it simple to represent difficult and
ambiguous information in practical issues. Confidence levels, bipolar fuzzy set, and complex fuzzy set
are three distinct theories that were combined to form the basic theory of the Confidence levels bipolar
complex fuzzy set. Confidence levels bipolar complex fuzzy set (CLBCFS)is used as a method for resolving
perplexing and suspect circumstances that occur in daily life. In this article, we define idea of bipolar
complicated fuzzy collection of confidence levels. To do this, we developed a number of operational laws.
Further, utilizing bipolar complex fuzzy operational laws, we diagnose the theories of confidence level
bipolar complex fuzzy averaging and geometric operators. We reviewed some significant findings and some
features of the developed operators in order to reduce the impact of this study. In addition, we computed a
multiple-attribute decision-making rule while the initiated approaches were present and attempted to support
it with specific examples. Finally, we contrasted our defined work with numerous prevalent methodologies
and also detailed their geometrical representations in order to assess the influence and supremacy of the
defined work.

INDEX TERMS Complex fuzzy set, bipolar fuzzy set, confidence levels, confidence levels bipolar complex
aggregation operators.

I. INTRODUCTION
The expansion of information in culture has led to scientific
and technical approach that has reduced the complexity of
our daily lives. Nevertheless, despite advances in science
that have made life simpler, some issues, such as decision
making (DM), continue to be challenging. Multiple-criteria
group decision making (MCGDM), in particular, has been
enthusiastically embraced in a number of industries, where
conventional techniques have recently fallen short. Informa-
tion is frequently ambiguous, much like in real life, and
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approving it for publication was M. Venkateshkumar .

information comes more complicated, more solutions are
needed. Zadeh [34] developed the idea of a fuzzy set (FS)
in 1965. A surprising performance with many applications is
fuzzy set. A fuzzy set’s membership degree (MD), which can
take on any value between 0 and 1, defines it. In [1] Atanassov
defined as the intuitionistic fuzzy set (IFS) and enlarged the
fuzzy set.

Complex fuzzy sets (CFSs) ware defined in cites [26],
[27], respectively. An improved version of traditional FS are
used to handle fuzzy information in CFS. Since, a complex
fuzzy value has two terms (phase term and an amplitude
term), it may handle information in two different ways.
Enhanced data storage is made possible by this CFS
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feature. The fundamental functions of CFS are described
by Ramot et al. [27]. For instance, Merigo et al. [20]
provide a challenging fuzzy generalised aggregate operator
(AO) and show how it might be used in decision-making.
Dai et al. extend CFSs with approximations of parallel and
orthogonality relations [12], [13]. The idea of CFS equality is
introduced by Zhang et al. [36]. Hu et al. in [8], and Alkouri
and Salleh [3] have specified CFS distance measurements.
New entropy measure types were provided in CFSs by
Bi et al. [6]. Calculating the separation in CFSs, cross-
entropy, and significance in diabetes is done by Liu et al. [18].

Rotational in-variance was extended to CFS operations by
Dai [9]. Ma et al. [19] created the concept of CFS for issues
with numerous periodic variables. A power aggregation
operation for complex fuzzy information was proposed by
Hu et al. For different intellectuals, including neighborhood
operators, a number of CFS applications have been looked
upon. See [4], [5], and [31] for more information about
CFSs.

We are aware that the complex fuzzy set theory only
discussed positive supporting grades and ignored negative
supporting grades, which has led to a number of problems
in many instances. Mahmood and Rehman [22] developed
the theory of CFS to account for this and identified the
mathematical form known as a bipolar complex fuzzy set
(BCFS) using concept of positive degree and negative degree
in the complex numbers form, have a real part and an
imaginary part falling within unit intervals [0, 1] and [−1,0].
Following their examination, a small group of researchers
created a large number of applications, including the BCFS-
built Hamacher aggregate data that Mahmood et al. [23]
evaluated. Furthermore,Mahmood and Rehman [24] offer the
BCFS-based fundamental theory of Dombi operators.

Other than these surprise successes in a bipolar complex
fuzzy environment, no other known initiatives make use of
the degree of familiarity with the information fusion step.

In a multi-criteria decision making (MCDM) situation,
experts assess alternatives exclusively in the light of the
predetermined criteria; their familiarity (referred to as
confidence levels) with the assessment objects is not taken
into account. As a result, it is essential to include the
observer’s familiarity with the original information in a
bipolar complicated fuzzy environment. By adding experts’
confidence levels of their familiarity and experience with
the analyzed alternatives in the bipolar complex fuzzy
information fusion stage, this work aims to address this type
of defect.

The structure of this theory as follows: Sec. II includes
some current ideas such as bipolar complex fuzzy set,
AOs, and some operation laws. In Sec. III, we used the
theory of confidence levels bipolar complex fuzzy aver-
aging/geometric AOs to diagnose the well-known theories
such as CLBCFWA, CLBCFOWA, CLBCFHA, CLBCFWG,
CLBCFOWG, and CLBCFHG operators, as well as evaluate
their strategic properties and related findings. In Sec. IV,
we suggest an approach using the mentioned operators when

making decisions based on numerous criteria. The choice of
a site for a waste disposal plant is then examined using a
numerical example. To show the sustainability and capability
of the suggested method, we compared the stated operators
to existing methodologies in Section V of the paper. Sec. VI
concludes by summarizing the results of the study.

II. PRELIMINARIES
The goal of this section is to convey the pre-existing basic
definitions for CFS, BFS, and BCFS in a clear manner.
Definition 1 [26]:A complex fuzzy set C onQ (universal

set) describes as;

C =
{〈
ń, µC (ń)

〉
|ń ∈ Q

}
, (1)

where µC : U → {z : z ∈ C, |z| ≤ 1} and µC (ń) =

a + ib = χC (ń).e2π i2C (ń). As, χC (ń) =
√
a2 + b2 ∈ R and

χC (ń), 2C(ń) ∈ [0, 1] , where i =
√

−1.
Definition 2 [35]: A bipolar fuzzy set ϒ on Q (universal

set) described as;

ϒ =
{〈
ń, µ+

ϒ (ń), µ
−

ϒ (ń)
〉
|ń ∈ Q

}
, (2)

where, µ+

ϒ : Q → [0, 1] and µ−

ϒ : Q → [−1, 0].

III. BIPOLAR COMPLEX FUZZY SET
Definition 3 [24]: A bipolar complex fuzzy set ϒ on Q

(universal set) described as,

ϒ =
{〈
ń,
(
µ+

ϒ (ń), µ
−

ϒ (ń)
)〉

|ń ∈ Q
}
, (3)

where, µ+

ϒ : Q → [0, 1] + i[0, 1], µ−

ϒ : Q →

[−1, 0] + i[−1, 0] and υ−

ϒ : Q → [−1, 0] + i[−1, 0]
is membership degree. µ+

ϒ (ń) = a+

ϒ (ń) + ib+

ϒ (ń), and
µ−

ϒ (ń) = a−

ϒ (ń) + ib−

ϒ (ń) as a+

ϒ (ń), ib
+

ϒ (ń) ∈ [0, 1] and
a−

ϒ (ń), ib
−

ϒ (ń) ∈ [−1, 0]. BCF number is denoted as, ϒ =(〈(
a+

ϒ + ib+

ϒ

)
,
(
a−

ϒ + ib−

ϒ

)〉)
.

Definition 4 [24]: For any two bipolar complex fuzzy
numbers ϒ1 =

(〈
a+

ϒ1
+ ib+

ϒ1
, a−

ϒ1
+ ib−

ϒ1

〉)
and ϒ2 =(〈

a+

ϒ2
+ ib+

ϒ2
, a−

ϒ2
+ ib−

ϒ2

〉)
, and for any λ > 0. The

subsequent operations are described as;

1) ϒ1 ⊕ ϒ2

=


〈 a+

ϒ1
+ a+

ϒ2
− a+

ϒ1
a+

ϒ2
+

i
(
b+

ϒ1
+ b+

ϒ2
− b+

ϒ1
b+

ϒ2

)
, −

(
a−

ϒ1
a−

ϒ2

)
+i
(
−

(
b−

ϒ1
b−

ϒ2

))
〉 ;

2) ϒ1 ⊗ ϒ2

=


〈 (

a+

ϒ1
a+

ϒ2

)
+ i

(
b+

ϒ1
b+

ϒ2

)
, a−

ϒ1
+ a−

ϒ2

−a−

ϒ1
a−

ϒ2
+ i

(
b−

ϒ1
+ b−

ϒ2
− b−

ϒ1
b−

ϒ2

) 〉 ;

3) λϒ1

=


〈 1 −

(
1 − a+

ϒ1

)λ

+ i
(
1 −

(
1 − b+

ϒ1

)λ
)

,

−

(
a−

ϒ1

)λ

+ i
(

−

(
b−

ϒ1

)λ
) 〉 ;
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4) ϒλ
1

=


〈(

a+

ϒ1

)λ

+ i
(
b+

ϒ1

)λ

, −1 +

(
1 + a+

ϒ1

)λ

+

i
(

−1 +

(
1 + b+

ϒ1

)λ
) 〉 ;

Definition 5 [24]: Let ϒ =
(〈
a+

ϒ + ib+

ϒ , a−

ϒ + ib−

ϒ

〉)
be

the bipolar complex fuzzy number. Then, the definition of the
score function is;

S(ϒ) =
1
4

(
2 + a+

ϒ + ib+

ϒ + a−

ϒ + ib−

ϒ

)
(4)

IV. CONFIDENCE LEVELS BIPOLAR COMPLEX FUZZY
AVERAGING OPERATOR
All current efforts do not take into consideration experts’
trust in themselves Acquaintance and grasp of the evaluated
alternatives in the merging of BCFNs. A collection of
geometric and confidence levels bipolar complex fuzzy
averaging aggregation operators is produced by combining
expert confidence levels with computed alternatives.

A. CONFIDENCE LEVELS BIPOLAR COMPLEX FUZZY
WEIGHTED AVERAGING OPERATOR
Definition 6 : Let ϒ♭ =

(〈
a+

ϒ♭
+ ib+

ϒ♭
, a−

ϒ♭
+ ib−

ϒ♭

〉)
(♭ = 1, . . . , n) be a family of BCFNs and l♭ be the confidence
levels of ϒ♭, weights are ϱ = (ϱ1, . . . , ϱn)

T , such that∑n
♭=1 ϱ♭ = 1 and 0 ≤ ϱ♭ ≤ 1. Then, the CLBCFWAoperator

as;

CLBCFWA (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩) =

n⊕
♭=1

ϱ♭

(
l♭ϒ♭

)
, (5)

based on definition (4), the aggregated value of CLBCFWA
operator is presented in Theorem (1).
Theorem 1 Let ϒi =

(
a+

ϒ♭
+ ib+

ϒ♭
, a−

ϒ♭
+ ib−

ϒ♭

)
(♭ = 1, . . . , n) be the family of bipolar complex fuzzy
numbers and l♭ be the confidence levels of ϒ♭, with 0 ≤

l♭ ≤ 1 and weights ϱ = (ϱ1, . . . , ϱn)
T , such that

∑n
♭=1 ϱ♭ =

1 and 0 ≤ ϱ♭ ≤ 1. Then, CLBCFWA operator as;

CLBCFWA (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩)

=

n⊕
♭=1

ϱ♭

(
l♭ϒ♭

)

=





1 −

n∏
i=1

(
1 − a+

ϒ♭

)l♭ϱ♭

+i

(
1 −

n∏
♭=1

(
1 − b+

ϒ♭

)l♭ϱ♭

)
,

−

n∏
♭=1

(
a−

ϒ♭

)l♭ϱ♭

+ i

(
−

n∏
♭=1

(
b−

ϒ♭

)l♭ϱ♭

)




. (6)

Proof: We applied the mathematical induction concept
to this theorem’s proof. As we are know

ϒ1 ⊕ ϒ2 =

n⊕
♭=2

ϱ♭

(
l♭ϒ♭

)

And

ϱ1ϒ1

=


 1 −

(
1 − a+

ϒ1

)l1ϱ1
+ i

(
1 −

(
1 − b+

ϒ1

)l1ϱ1)
,

−

(
a−

ϒ1

)l1ϱ1
+ i

(
−

(
b−

ϒ1

)l1ϱ1)



Let Equ. (6) is true for n = 2. Then,

CLBCFWA (⟨ϒ1, l1⟩ , ⟨ϒ2, l2⟩) =

2⊕
♭=1

ϱ♭

(
l♭ϒ♭

)

=





1 −

2∏
♭=1

(
1 − a+

ϒ♭

)l♭ϱ♭

+

i

(
1 −

2∏
♭=1

(
1 − b+

ϒ♭

)l♭ϱ♭

)
,

−

2∏
♭=1

(
a−

ϒ♭

)l♭ϱ♭

+ i

(
−

2∏
♭=1

(
b−

ϒ♭

)l♭ϱ♭

)




The result true for n = 2.

Let Eq. (6) true for n = τ . We have,

CLBCFWA (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩) =

n⊕
♭=1

ϱ♭

(
l♭ϒ♭

)

=





1 −

τ∏
♭=1

(
1 − a+

ϒ♭

)l♭ϱ♭

+

i

(
1 −

τ∏
♭=1

(
1 − b+

ϒ♭

)l♭ϱ♭

)
,

−

τ∏
♭=1

(
a−

ϒ♭

)l♭ϱ♭

+ i

(
−

τ∏
♭=1

(
b−

ϒ♭

)l♭ϱ♭

)




Next, let Equ. (6) hold for n = τ + 1,

CLBCFWA (⟨ϒ1, l1⟩ , . . . , ⟨ϒτ , lτ ⟩ ⊕ ⟨ϒτ+1, lτ+1⟩)

=

 τ⊕
♭=1

ϱ♭

(
l♭ϒ♭

)⊕ ϱτ+1 (lτ+1ϒτ+1)

=





1 −

τ∏
♭=1

(
1 − a+

ϒ♭

)l♭ϱ♭

+

i

(
1 −

τ∏
♭=1

(
1 − b+

ϒ♭

)l♭ϱ♭

)
,

−

τ∏
♭=1

(
a−

ϒ♭

)l♭ϱ♭

+ i

(
−

τ∏
♭=1

(
b−

ϒ♭

)l♭ϱ♭

)




⊕




1 −

(
1 − a+

ϒτ+1

)ϱτ+1
+

i
(
1 −

(
1 − b+

ϒτ+1

)ϱτ+1
)

,

−

(
a−

ϒτ+1

)ϱτ+1
+ i

(
−

(
b−

ϒτ+1

)ϱτ+1
)


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=





1 −

τ+1∏
♭=1

(
1 − a+

ϒ♭

)l♭ϱ♭

+

i

(
1 −

τ+1∏
♭=1

(
1 − b+

ϒ♭

)l♭ϱ♭

)
,

−

τ+1∏
♭=1

(
a−

ϒ♭

)l♭ϱ♭

+ i

(
−

τ+1∏
♭=1

(
b−

ϒ♭

)l♭ϱ♭

)




Which proof Eq. (6) hold for n = τ + 1, and hold for n ≥ 1.
The CLBCFWA operator fulfilled the properties listed

below.
Theorem 2 (Idempotency): Let ϒ♭ =

(
a+

ϒ♭
+ ib+

ϒ♭
,

a−

ϒ♭
+ ib−

ϒ♭

)
(♭ = 1, . . . , n) be the family of bipolar complex

fuzzy numbers and l♭ be the confidence levels of ϒ♭, with
weights ϱ = (ϱ1, . . . , ϱn)

T , such that
∑n

♭=1 ϱ♭ = 1 and
0 ≤ ϱ♭ ≤ 1. Then,

CLBCFWA (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩) = ⟨ϒ, l⟩ . (7)

Proof: As we know that;

CLBCFWA (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩) =

n⊕
♭=1

ϱ♭

(
l♭ϒ♭

)

=





1 −

n∏
♭=1

(
1 − a+

ϒ♭

)l♭ϱ♭

+

i

(
1 −

n∏
♭=1

(
1 − b+

ϒ♭

)l♭ϱ♭

)
,

−

n∏
♭=1

(
a−

ϒ♭

)l♭ϱ♭

+ i

(
−

n∏
♭=1

(
b−

ϒ♭

)l♭ϱ♭

)






1 −
(
1 − a+

ϒ

)∑n
♭=1 l♭ϱ♭

+

i
(
1 −

(
1 − b+

ϒ

)∑n
♭=1 l♭ϱ♭

)
,

−
(
a−

ϒ

)∑n
♭=1 l♭ϱ♭

+ i
(
−
(
b−

ϒ

)∑n
♭=1 l♭ϱ♭

)



=
(〈
a+

ϒ + ib+

ϒ , a−

ϒ + ib−

ϒ

〉)
= ⟨ϒ1, l1⟩

Theorem 3 (Monotonicity): Let ϒ♭ =

(〈
a+

ϒ♭
+ ib+

ϒ♭
,

a−

ϒ♭
+ ib−

ϒ♭

〉)
and ϒ

/
i =

(〈
a/+
ϒ♭

+ ib/+
ϒ♭

, a/−
ϒ♭

+ ib/−
ϒ♭

〉)
(♭ = 1, . . . , n) be the family of BCFNs and l♭ be the
confidence levels of ϒ♭ with weights ϱ = (ϱ1, . . . , ϱn)

T ,

such that
∑n

♭=1 ϱ♭ = 1 and 0 ≤ ϱ♭ ≤ 1, if a+

ϒ♭
≥ a/+

ϒ♭
, ib+

ϒ♭
≥

ib/+
ϒ♭

, ib−

ϒ♭
≤ ib/−

ϒ♭
, and a−

ϒ♭
≤ a/−

ϒ♭
. Then,

CLBCFWA (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩)

≥ CLBCFWA
(〈

ϒ
/

1 , l1
〉
, . . . ,

〈
ϒ/
n , ln

〉)
. (8)

Proof: As a+

ϒ♭
≥ a/+

ϒ♭
, ib+

ϒ♭
≥ ib/+

ϒ♭
, ib−

ϒ♭
≤ ib/−

ϒ♭
, and

a−

ϒ♭
≤ a/−

ϒ♭
. Then,

1 − a+

ϒ♭
≤ 1 − a/+

ϒ♭

H⇒ 1 −

n∏
♭=1

(
1 − a+

ϒ♭

)l♭ϱ♭

≥ 1−

n∏
♭=1

(
1−a/+

ϒ♭

)l♭ϱ♭

.

and

n∏
♭=1

(
a−

ϒ♭

)l♭ϱ♭

≤

n∏
♭=1

(
a−

ϒ♭

)l♭ϱ♭

.

For imaginary part1 −

n∏
♭=1

(
1 − ib+

ϒ♭

)l♭ϱ♭

 ≥

1 −

n∏
♭=1

(
1 − ib+

ϒ♭

)l♭ϱ♭

 .

And

n∏
♭=1

(
ib−

ϒ♭

)l♭ϱ♭

≤

n∏
♭=1

(
ib−

ϒ♭

)l♭ϱ♭

.

When real and imaginary components are combined,
we get

=





1 −

n∏
♭=1

(
1 − a+

ϒ♭

)l♭ϱ♭

+i

(
1 −

n∏
♭=1

(
1 − b+

ϒ♭

)l♭ϱ♭

)
,

−

n∏
♭=1

(
a−

ϒ♭

)l♭ϱ♭

+ i

(
−

n∏
♭=1

(
b−

ϒ♭

)l♭ϱ♭

)





≥





1 −

n∏
♭=1

(
1 − a/+

ϒ♭

)l♭ϱ♭

+

i

(
1 −

n∏
♭=1

(
1 − b/+

ϒ♭

)l♭ϱ♭

)
,

−

n∏
♭=1

(
a/−
ϒ♭

)l♭ϱ♭

+ i

(
−

n∏
♭=1

(
b/−
ϒ♭

)l♭ϱ♭

)




Let, CLBCFWA (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩) = ϒ1 and
CLBCFWA

(〈
ϒ

/

1 , l1
〉
, . . . ,

〈
ϒ

/
n , ln

〉)
= ϒ

/

1 . So, utilizing Eq.
(4), we get

S(ϒ1, l1) ≥ S(ϒ/

1 , l1)

Next, there are two possibilities:
1). When, S(ϒ1, l1) ≥ S(ϒ/

1 , l1), then by Equ. (4), we get

CLBCFWA (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩)

≥ CLBCFWA
(〈

ϒ
/

1 , l1
〉
, . . . ,

〈
ϒ/
n , ln

〉)
2). When, S(ϒ1, l1) = S(ϒ/

1 , l1), we get

=





1 −

n∏
♭=1

(
1 − a+

ϒ♭

)l♭ϱ♭

+

i

(
1 −

n∏
♭=1

(
1 − b+

ϒ♭

)l♭ϱ♭

)
,

−

n∏
♭=1

(
a−

ϒ♭

)l♭ϱ♭

+ i

(
−

n∏
♭=1

(
b−

ϒ♭

)l♭ϱ♭

)




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≥





1 −

n∏
♭=1

(
1 − a/+

ϒ♭

)l♭ϱ♭

+

i
(
1 −

n∏
i=1

(
1 − b/+

ϒ♭

)l♭ϱ♭
)

,

−

n∏
♭=1

(
a/−
ϒ♭

)l♭ϱ♭

+ i

(
−

n∏
♭=1

(
b/−
ϒ♭

)l♭ϱ♭

)




Because the score functions are equivalent, we used the
accuracy function.

=





1 −

n∏
♭=1

(
1 − a+

ϒ♭

)l♭ϱ♭

+

i

(
1 −

n∏
♭=1

(
1 − b+

ϒ♭

)l♭ϱ♭

)
,

−

n∏
♭=1

(
a−

ϒ♭

)l♭ϱ♭

+ i

(
−

n∏
♭=1

(
b−

ϒ♭

)l♭ϱ♭

)





≥





1 −

n∏
i=1

(
1 − a/+

ϒ♭

)l♭ϱ♭

+

i

(
1 −

n∏
♭=1

(
1 − b/+

ϒ♭

)l♭ϱ♭

)
,

−

n∏
i=1

(
a/−
ϒ♭

)l♭ϱ♭

+ i

(
−

n∏
♭=1

(
b/−
ϒ♭

)l♭ϱ♭

)





=
1
4





1 −

n∏
♭=1

(
1 − a+

ϒ♭

)l♭ϱ♭

+

i

(
1 −

n∏
♭=1

(
1 − b+

ϒ♭

)l♭ϱ♭

)
,

−

n∏
♭=1

(
a−

ϒ♭

)l♭ϱ♭

+

i

(
−

n∏
♭=1

(
b−

ϒ♭

)l♭ϱ♭

)




S(ϒ1, l1) = S(ϒ/

1 , l1)

From case (1) and case (2), we det the proof.
Theorem 4 (Boundedness): Let ϒ♭ =

(〈
a+

ϒ♭
+ ib+

ϒ♭
,

a−

ϒ♭
+ ib−

ϒ♭

〉)
(♭ = 1, . . . , n) be a family of BCFNs and l♭

be the confidence levels of ϒ♭ with the weights ϱ =

(ϱ1, . . . , ϱn)
T , such that

∑n
♭=1 ϱi = 1 and 0 ≤ ϱ♭ ≤ 1,

if ϒ+

♭ , ϒ−

♭ are the maximum and minimum BCFNs. Then,

ϒ+

♭ ≤ CLBCFWA (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩) ≤ ϒ−

♭ . (9)

Proof: For membership degree, we looked at two
scenarios (for the real and imagined components) separately.

For membership degree, we have1 −

n∏
♭=1

(
1 − min

1≤♭≤n
a+

ϒ♭

)l♭ϱ♭


≤

1 −

n∏
♭=1

(
1 − a+

ϒ♭

)l♭ϱ♭



≤

1 −

n∏
♭=1

(
1 − max

1≤♭≤n
a+

ϒ♭

)l♭ϱ♭


H⇒

(
1 −

(
1 − min

1≤♭≤n
a+

ϒ♭

)∑n
♭=1 l♭ϱ♭

)

≤

1 −

n∏
♭=1

(
1 − a+

ϒ♭

)l♭ϱ♭


≤

(
1 −

(
1 − max

1≤♭≤n
a+

ϒ♭

)∑n
♭=1 l♭ϱ♭

)
As
∑n

♭=1 l♭ϱ♭ = 1, so

H⇒ min
1≤♭≤n

a+

ϒ♭
≤

1 −

n∏
♭=1

(
1 − a+

ϒ♭

)l♭ϱ♭

 ≤ max
1≤♭≤n

a+

ϒ♭

Also, for ib+

ϒ♭
,

and
n∏

♭=1

min
1≤♭≤n

(
a−

ϒ♭

)l♭ϱ♭

≤

n∏
i=1

(
a−

ϒ♭

)l♭ϱ♭

≤

n∏
♭=1

max
1≤♭≤n

(
a−

ϒ♭

)l♭ϱ♭

H⇒ min
1≤♭≤n

(
a−

ϒ♭

)∑n
♭=1 l♭ϱ♭

≤

n∏
♭=1

(
a−

ϒ♭

)l♭ϱ♭

≤ max
1≤♭≤n

(
a−

ϒ♭

)∑n
♭=1 l♭ϱ♭

As
∑n

♭=1 l♭ϱ♭ = 1. Then,

min
1≤♭≤n

a−

ϒ♭
≤

n∏
♭=1

(
a−

ϒ♭

)l♭ϱ♭

≤ max
1≤♭≤n

a−

ϒ♭

We can also prove for ib−

ϒi
.

Then, based on score function, we get

Sc(ϒ+

♭ ) ≤ Sc(ϒ♭) ≤ Sc(ϒ−

♭ ).

In light of the aforementioned outcome and the score
function’s definition, we thus arrive at

ϒ+
≤ CLBCFWA (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩) ≤ ϒ−.

B. CONFIDENCE LEVELS BIPOLAR COMPLEX FUZZY
ORDERED WEIGHTED AVERAGING OPERATOR
Definition 7: Let ϒ♭ =

(〈
a+

ϒ♭
+ ib+

ϒ♭
, a−

ϒ♭
+ ib−

ϒ♭

〉)
(♭ = 1, . . . , n) be the family of BCFNs and l♭ be the
confidence levels of ϒ♭ with 0 ≤ li ≤ 1 and weights are
ϱ = (ϱ1, . . . , ϱn)

T , such that
∑n

♭=1 ϱ♭ = 1 and 0 ≤ ϱ♭ ≤ 1.
Then, the CLBCFOWA operator as;

CLBCFOWA (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩)

=

n⊕
♭=1

ϱ♭

(
lσ(♭)ϒσ(♭)

)
, (10)
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and for ϒσ (♭−1) ≥ ϒσ(♭) the permutation is σ (1), . . . , σ (n)
for all ♭ = 1, . . . , n.Based on definition (7), aggregated value
for CLBCFOWA operator is given in Theorem (5).
Theorem 5: Let ϒ♭ =

(〈
a+

ϒ♭
+ ib+

ϒ♭
, a−

ϒ♭
+ ib−

ϒ♭

〉)
(♭ = 1, . . . , n) be the family of BCFNs and l♭ be the
confidence levels of ϒ♭ with 0 ≤ li ≤ 1 and weights
ϱ = (ϱ1, . . . , ϱn)

T , such that
∑n

♭=1 ϱ♭ = 1 and 0 ≤ ϱ♭ ≤ 1.
Then, CLBCFOWA operator is obtained as;

CLBCFOWA (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩)

=

n⊕
♭=1

ϱ♭

(
lσ(♭)ϒσ(♭)

)

=





1 −

n∏
♭=1

(
1 − a+

ϒσ(♭)

)l♭ϱ♭

+i

(
1 −

n∏
♭=1

(
1 − b+

ϒσ(♭)

)l♭ϱ♭

)
,

−

n∏
♭=1

(
a−

ϒσ(♭)

)l♭ϱ♭

+

i

(
−

n∏
♭=1

(
b−

ϒσ(♭)

)l♭ϱ♭

)




, (11)

where σ (1), . . . , σ (n) is the permutation of (♭ = 1, . . . , n),
for each ϒσ (♭−1) ≥ ϒσ (♭) for all (♭ = 1, . . . , n) .

Proof: Proof is same as Theorem (1).
The CLBCFOWA operator fulfilled the properties listed

below.
Theorem 6 (Idempotency): Let ϒ♭ =

(〈
a+

ϒ♭
+ ib+

ϒ♭
,

a−

ϒ♭
+ ib−

ϒ♭

〉)
(♭ = 1, . . . , n) be the family of BCFNs and

l♭ be the confidence levels of ϒ♭ with weights ϱ =

(ϱ1, . . . , ϱn)
T , such that

∑n
♭=1 ϱ♭ = 1 and 0 ≤ ϱ♭ ≤ 1.

Then,

CLBCFOWA (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩) = ϒ (12)

Proof: Proof is same as Theorem (2).
Theorem 7 (Monotonicity): Let ϒ♭ =

(〈
a+

ϒ♭
+ ib+

ϒ♭
,

a−

ϒ♭
+ ib−

ϒ♭

〉)
and ϒ

/
♭ =

(〈
a/+
ϒ♭

+ ib/+
ϒ♭

, a/−
ϒ♭

+ ib/−
ϒ♭

〉)
(♭ = 1, . . . , n) be the family of BCFNs and l♭ be the
confidence levels of ϒ♭ with weights ϱ = (ϱ1, . . . , ϱn)

T ,

such that
∑n

♭=1 ϱ♭ = 1 and 0 ≤ ϱ♭ ≤ 1, if a+

ϒ♭
≥ a/+

ϒ♭
, ib+

ϒ♭
≥

ib/+
ϒ♭

, ib−

ϒ♭
≤ ib/−

ϒ♭
, and a−

ϒ♭
≤ a/−

ϒ♭
. Then,

CLBCFOWA (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩)

≥ CLBCFOWA
(〈

ϒ
/

1 , l1
〉
, . . . ,

〈
ϒ/
n , ln

〉)
. (13)

Proof: Proof is same as Theorem (3).
Theorem 8 (Boundedness): Let ϒ♭ =

(〈
a+

ϒ♭
+ ib+

ϒ♭
,

a−

ϒ♭
+ ib−

ϒ♭

〉)
(♭ = 1, . . . , n) be the family of BCFNs and

l♭ be the confidence levels of ϒ♭ with weight are ϱ =

(ϱ1, . . . , ϱn)
T , such as

∑n
♭=1 ϱ♭ = 1 and 0 ≤ ϱ♭ ≤ 1, if

ϒ+

♭ , ϒ−

♭ are the maximum and minimum BCFNs. Then,

ϒ+

♭ ≤ CLBCFOWA(⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩) ≤ ϒ−

♭ (14)

Proof: Proof is same as Theorem (4).

C. CONFIDENCE LEVELS BIPOLAR COMPLEX FUZZY
HYBRID AVERAGING OPERATOR
Definition 8: Let ϒ♭ =

(〈
a+

ϒ♭
+ ib+

ϒ♭
, a−

ϒ♭
+ ib−

ϒ♭

〉)
(♭ = 1, . . . , n) be the family of BCFNs and l♭ be the
confidence levels of ϒ♭ with l♭ ∈ [0, 1] and weights ϱ =

(ϱ1, . . . , ϱn)
T , such as

∑n
♭=1 ϱ♭ = 1 and 0 ≤ ϱ♭ ≤ 1,

and 𭟋 = (𭟋1, . . . , 𭟋n)
T , such that

∑n
♭=1 𭟋♭ = 1 and

0 ≤ 𭟋♭ ≤ 1 are associated weights of BCFNs. Then, the
CLBCFHA operator as;

CLBCFHA (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩)

=

n⊕
♭=1

ϱ♭

(
lσ(♭)ϒ

∗

σ(♭)

)
, (15)

for ϒσ (♭−1) ≥ ϒσ(♭) is the permutation is σ (1), . . . , σ (n) for
all (♭ = 1, . . . , n) . Based on definition (8), aggregated value
for CLBCFHA operator is given in Theorem (9).
Theorem 9: Let ϒ♭ =

(〈
a+

ϒ♭
+ ib+

ϒ♭
, a−

ϒ♭
+ ib−

ϒ♭

〉)
(♭ = 1, . . . , n) be the family of BCFNs and l♭ be the
confidence levels of ϒ♭ with weights ϱ = (ϱ1, . . . , ϱn)

T ,

such as
∑n

♭=1 ϱ♭ = 1 and 0 ≤ ϱ♭ ≤ 1, and 𭟋 =

(𭟋1, . . . , 𭟋n)
T , such as

∑n
♭=1 𭟋♭ = 1 and 0 ≤ 𭟋♭ ≤ 1 are

associated weights of BCFNs. The, CLBCFHA operator as;

CLBCFHA (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩)

=

n⊕
♭=1

ϱ♭

(
lσ(♭)ϒ

∗

σ(♭)

)

=





1 −

n∏
♭=1

(
1 − a∗+

ϒσ(♭)

)l♭ϱ♭

+

i

(
1 −

n∏
♭=1

(
1 − b∗+

ϒσ(♭)

)l♭ϱ♭

)
,

−

n∏
♭=1

(
a∗−

ϒσ(♭)

)l♭ϱ♭

+

i

(
−

n∏
♭=1

(
b∗−

ϒσ(♭)

)l♭ϱ♭

)




. (16)

where σ (1), . . . , σ (n) are permutation of (♭ = 1, . . . , n),
for each ϒσ (♭−1) ≥ ϒσ (♭) for all (♭ = 1, . . . , n) . Biggest
permutation value of BCFNs is given by ϒ∗

σ(♭) = n𭟋♭ϒ♭,
and n is balancing coefficient.

Proof: Proof is same as Theorem (1).

V. CONFIDENCE LEVELS BIPOLAR COMPLEX FUZZY
GEOMETRIC OPERATOR
Here, we defined some AOs such as, CLBCFWG, CLBC-
FOWG, and CLBCFHG operators.

A. CONFIDENCE LEVELS BIPOLAR COMPLEX FUZZY
WEIGHTED GEOMETRIC OPERATOR
Definition 9: Let ϒ♭ =

(〈
a+

ϒ♭
+ ib+

ϒ♭
, a−

ϒ♭
+ ib−

ϒ♭

〉)
(♭ = 1, . . . , n) be a family of BCFNs and l♭ be the confidence
levels ofϒ♭ with l♭ ∈ [0, 1] with weights ϱ = (ϱ1, . . . , ϱn)

T ,
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such that
∑n

♭=1 ϱ♭ = 1 and 0 ≤ ϱ♭ ≤ 1. Then, the
CLBCFWG operator as;

CLBCFWG (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩)

=

n⊗
♭=1

(
ϒ
l♭
♭

)ϱ♭

, (17)

Based on definition (9), aggregated value for CLBCFWG
operator is shown in Theorem (10).
Theorem 10: Let ϒ♭ =

(
a+

ϒ♭
+ ib+

ϒ♭
, a−

ϒ♭
+ ib−

ϒ♭

)
(♭ = 1, . . . , n) be the family of BCFNs and l♭ be the
confidence levels of ϒ♭ with l♭ with weights ϱ =

(ϱ1, . . . , ϱn)
T , such that

∑n
♭=1 ϱ♭ = 1 and 0 ≤ ϱ♭ ≤ 1.

Then, CLBCFWG operator as;
CLBCFWG (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩)

=

n⊗
♭=1

(
ϒ
l♭
♭

)ϱ♭

,

=





n∏
♭=1

(
a+

ϒ♭

)l♭ϱ♭

+ i

(
n∏

♭=1

(
b+

ϒ♭

)l♭ϱ♭

)
,

−1 +

n∏
♭=1

(
1 + a−

ϒ♭

)l♭ϱ♭

+

i

(
−1 +

n∏
♭=1

(
1 + b−

ϒ♭

)l♭ϱ♭

)




. (18)

Proof: Proof is same as Theorem (1)
The following properties were fulfilled by the CLBCFWG

operator.
Theorem 11 (Idempotency): Let ϒ♭ =

(〈
a+

ϒ♭
+ ib+

ϒ♭
,

a−

ϒ♭
+ ib−

ϒ♭

〉)
(♭ = 1, . . . , n) be the family of BCFNs and

l♭ be the confidence levels of ϒ♭ with l♭ with weights ϱ =

(ϱ1, . . . , ϱn)
T , such that

∑n
♭=1 ϱ♭ = 1 and 0 ≤ ϱ♭ ≤ 1.

Then,
CLBCFWG (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩) = ϒ. (19)

Proof: Proof is same as (2).
Theorem 12 (Monotonicity): Let ϒ♭ =

(〈
a+

ϒ♭
+ ib+

ϒ♭
,

a−

ϒ♭
+ ib−

ϒ♭

〉)
and ϒ

/
♭ =

(〈
a/+
ϒ♭

+ ib/+
ϒ♭

, a/−
ϒ♭

+ ib/−
ϒ♭

〉)
(♭ = 1, . . . , n) be the family of BCFNs and l♭ be the
confidence levels of ϒ♭ with weights ϱ = (ϱ1, . . . , ϱn)

T ,

such that
∑n

♭=1 ϱ♭ = 1 and 0 ≤ ϱ♭ ≤ 1, if a+

ϒ♭
≥ a/+

ϒ♭
, ib+

ϒ♭
≥

ib/+
ϒ♭

, ib−

ϒ♭
≤ ib/−

ϒ♭
, and a−

ϒ♭
≤ a/−

ϒ♭
. Then,

CLBCFWG (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩)

≥ CLBCFWG (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩) . (20)

Proof: Proof is same as (3).
Theorem 13 (Boundedness): Let ϒ♭ =

(〈
a+

ϒ♭
+ ib+

ϒ♭
,

a−

ϒ♭
+ ib−

ϒ♭

〉)
(♭ = 1, . . . , n) be the family of BCFNs and

l♭ be the confidence levels of ϒ♭ with weights ϱ =

(ϱ1, . . . , ϱn)
T , such that

∑n
♭=1 ϱ♭ = 1 and 0 ≤ ϱ♭ ≤ 1,

if ϒ+

♭ , ϒ−

♭ are the maximum and minimum BCFNs. Then,

ϒ+

♭ ≤ CLBCFWG (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩) ≤ ϒ−

♭ . (21)

Proof: Proof is same as (4).

B. CONFIDENCE LEVELS BIPOLAR COMPLEX FUZZY
ORDERED WEIGHTED GEOMETRIC OPERATOR
Definition 10: Let ϒ♭ =

(〈
a+

ϒ♭
+ ib+

ϒ♭
, a−

ϒ♭
+ ib−

ϒ♭

〉)
(♭ = 1, . . . , n) be the family of BCFNs with weight are ϱ =

(ϱ1, . . . , ϱn)
T , such as

∑n
♭=1 ϱ♭ = 1 and 0 ≤ ϱ♭ ≤ 1. Then,

the CLBCFOWG operator as;

CLBCFOWG (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩)

=

n⊗
♭=1

(
ϒ
lσ(♭)

σ(♭)

)ϱ♭

, (22)

and for ϒσ (♭−1) ≥ ϒσ(♭) the permutation is σ (1), . . . , σ (n)
for all (♭ = 1, . . . , n) . Based on definition (10), aggregated
value for CLBCFOWG operator is presented in Theo-
rem (14).
Theorem 14: Let ϒ♭ =

(〈
a+

ϒ♭
+ ib+

ϒ♭
, a−

ϒ♭
+ ib−

ϒ♭

〉)
(♭ = 1, . . . , n) be the family of BCFNs and l♭ be the
confidence levels of ϒ♭ with l♭ ∈ [0, 1] with weights ϱ =

(ϱ1, . . . , ϱn)
T , such that

∑n
♭=1 ϱ♭ = 1 and 0 ≤ ϱ♭ ≤ 1.

Then, CLBCFOWG operator as;

CLBCFOWG (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩)

=

n⊗
♭=1

(
ϒ
lσ(♭)

σ(♭)

)ϱ♭

=





n∏
♭=1

(
a−

ϒσ(♭)

)l♭ϱ♭

+ i

(
n∏

♭=1

(
b−

ϒσ(♭)

)l♭ϱ♭

)
,

−1 +

n∏
♭=1

(
1 + a+

ϒσ(♭)

)l♭ϱ♭

+

i

(
−1 +

n∏
♭=1

(
1 + b+

ϒσ(♭)

)l♭ϱ♭

)




. (23)

where σ (1), . . . , σ (n) be the permutation of the (♭ =

1, . . . , n), for each ϒσ (♭−1) ≥ ϒσ (♭) for all (♭ = 1, . . . , n) .

Proof: Proof is same from Theorem (1).
The CLBCFOWG operator met the subsequent properties.
Theorem 15 (Idempotency): Let ϒ♭ =

(〈
a+

ϒ♭
+ ib+

ϒ♭
,

a−

ϒ♭
+ ib−

ϒ♭

〉)
(♭ = 1, . . . , n) be the family of BCFNs and

l♭ be the confidence levels of ϒ♭ with weights ϱ =

(ϱ1, . . . , ϱn)
T , such that

∑n
♭=1 ϱ♭ = 1 and 0 ≤ ϱ♭ ≤ 1.

Then,

CLBCFOWG (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩) = ϒ (24)

Proof: Proof is same as Theorem (2).
Theorem 16 (Monotonicity): Let ϒ♭ =

(〈
a+

ϒ♭
+ ib+

ϒ♭
,

a−

ϒ♭
+ ib−

ϒ♭

〉)
and ϒ

/
♭ =

(〈
a/+
ϒ♭

+ ib/+
ϒ♭

, a/−
ϒ♭

+ ib/−
ϒ♭

〉)
(♭ = 1, . . . , n) be the family of BCFNs and l♭ be the
confidence levels of ϒ♭ with the weight vector ϱ =

(ϱ1, . . . , ϱn)
T , such that

∑n
♭=1 ϱ♭ = 1 and 0 ≤ ϱ♭ ≤ 1,

if a+

ϒ♭
≥ a/+

ϒ♭
, ib+

ϒ♭
≥ ib/+

ϒ♭
, ib−

ϒ♭
≤ ib/−

ϒ♭
, and a−

ϒ♭
≤ a/−

ϒ♭
.
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Then,

CLBCFOWG (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩)

≥ CLBCFOWG
(〈

ϒ
/

1 , l1
〉
, . . . ,

〈
ϒ/
n , ln

〉)
. (25)

Proof: Proof is same as Theorem (3).
Theorem 17 (Boundedness): Let ϒ♭ =

(〈
a+

ϒ♭
+ ib+

ϒ♭
,

a−

ϒ♭
+ ib−

ϒ♭

〉)
(♭ = 1, . . . , n) be the set of BCFNs and l♭

be the confidence levels of ϒ♭ with weight are ϱ =

(ϱ1, . . . , ϱn)
T , such that

∑n
♭=1 ϱ♭ = 1 and 0 ≤ ϱ♭ ≤ 1,

if ϒ+

♭ , ϒ−

♭ are the maximum and minimum BCFNs. Then,

ϒ+

♭ ≤ CLBCFOWG (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩) ≤ ϒ−

♭ (26)

Proof: Proof is same as Theorem (4).

C. CONFIDENCE LEVELS BIPOLAR COMPLEX FUZZY
HYBRID GEOMETRIC OPERATOR
Definition 11: Let ϒ♭ =

(〈
a+

ϒ♭
+ ib+

ϒ♭
, a−

ϒ♭
+ ib−

ϒ♭

〉)
(♭ = 1, . . . , n) be the family of BCFNs and l♭ be the
confidence levels of ϒ♭ with l♭ ∈ [0, 1] with weights ϱ =

(ϱ1, . . . , ϱn)
T , such that

∑n
♭=1 ϱ♭ = 1 and 0 ≤ ϱ♭ ≤ 1,

and 𭟋 = (𭟋1, . . . , 𭟋n)
T , such as

∑n
♭=1 𭟋♭ = 1 and

0 ≤ 𭟋♭ ≤ 1 be the associated weights of BCFNs. Then,
the CLBCFHG operator as;

CLBCFHG (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩)

=

n⊗
♭=1

(
ϒ

∗lσ(♭)

σ(♭)

)ϱ♭

, (27)

for ϒσ (♭−1) ≥ ϒσ(♭) permutation is σ (1), . . . , σ (n) for all
(♭ = 1, . . . , n) . Based on definition (11), aggregated value
for CLBCFHG operator is given in Theorem (18).
Theorem 18: Let ϒ♭ =

(〈
a+

ϒ♭
+ ib+

ϒ♭
, a−

ϒ♭
+ ib−

ϒ♭

〉)
(♭ = 1, . . . , n) be the family of BCFNs and l♭ be the
confidence levels of ϒ♭ with l♭ ∈ [0, 1] with weights ϱ =

(ϱ1, . . . , ϱn)
T , such that

∑n
♭=1 ϱ♭ = 1 and 0 ≤ ϱ♭ ≤ 1, and

𭟋 = (𭟋1, . . . , 𭟋n)
T , such that

∑n
♭=1 𭟋♭ = 1 and 0 ≤ 𭟋♭ ≤

1 are associated weights of BCFNs. The CLBCFHG operator
as;

CLBCFHG (⟨ϒ1, l1⟩ , . . . , ⟨ϒn, ln⟩)

=

n⊗
♭=1

(
ϒ

∗lσ(♭)

σ(♭)

)ϱ♭

=





n∏
♭=1

(
a∗−

ϒσ(♭)

)l♭ϱ♭

+

i

(
n∏

♭=1

(
b∗−

ϒσ(♭)

)l♭ϱ♭

)
,

−1 +

n∏
♭=1

(
1 + a∗+

ϒσ(♭)

)l♭ϱ♭

+

i

(
−1 +

n∏
♭=1

(
1 + b∗+

ϒσ(♭)

)l♭ϱ♭

)




. (28)

where σ (1), . . . , σ (n) are permutation of (♭ = 1, . . . , n), for
each ϒσ (♭−1) ≥ ϒσ (♭) for all (♭ = 1, . . . , n) . Permutation
value of BCFNs is denoted by ϒ∗

σ(♭) =
(
ϒ♭

)n𭟋♭ , and
balancing coefficient is n.

Proof: Proof is same from Theorem (1).

VI. APPROACH FOR MCDM BASED ON CONFIDENCE
LEVELS BIPOLAR COMPLEX FUZZY INFORMATION
In this portion, we formulate an algorithm to solve MCDM
problem using dveloped AOs. Let É =

{
É1, . . . , Én

}
are

a set of n criteria and ℘ = {℘1, . . . , ℘m} are set of m
alternatives for aN MCDM problem. Weights of the criterion
É♭ as ϱ = (ϱ1, . . . , ϱn)T , such that

∑n
♭=1 ϱ♭ and 0 ≤ ϱ♭. The

experts also indicate their familiaritywith the analysis options
and provide confidence levels lij

(
0 ≤ lij ≤ 1

)
to include the

the concept of confidence levels. The following are the key
algorithmic steps:
Step 1: Define a decision matrix utilizing the evaluation

information gathered with criteria for competent experts for
each alternative;

M =


ϒ11 ϒ12 . . ϒ1n
ϒ21 ϒ22 . . ϒ2n
ϒ31 ϒ32 . . ϒ3n
. . . . .
ϒm1 ϒm2 . . ϒmn


Step 2: Evaluate the aggregated information with the help

of CLBCFWA operator.
Step 3: Analyze the score value of alternatives.
Step 4: Give ranking to alternatives based on score value.

VII. EXAMPLE
Dealing with the risk of large accidents and disasters,
involving government and other public organizations in
the emergency response, prevention, disposal, and recovery
process, and building an efficient response plan to take a
variety of necessary procedures is all part of emergency
management. Research, technology, planning, and manage-
ment are all employed to ensure the security of public
safety, health, and property related emergency operations,
as well as to promote the society’s harmonious and long term
progress. Natural disasters have caused significant injury
and damage to human lives and the global economy in
recent years. To successfully limit the losses caused by
major accidents and disasters, the Emergency Management
Center (EMC) will build a variety of emergency choices
based on the sorts of incidents and will ask experts from
various disciplines to evaluate alternative emergency plans.
Emergency preparedness includes alternative emergency
assessment. The conventional decision making problem is
at the heart of the subject, and it has received a great deal
of attention. Therefore, in order to locate the finest EMC
emergency solution, we’ll apply the outlined technique to the
stated situation.

Five better possibilities would be studied further after a
series of screenings. There are four different sets, such as;
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Expert take four needs for proper modeling of alternative
qualities, which are given below; É1: preparation ability; É2:
rescuing ability; É3: restore ability; É4: reaction capacity, and
weights of the criteria are ϱ = (0.16, 0.28, 0.36, 0.20)T . The
information given by experts in Table 1.
Step 1: The entire information provided by experts for each

alternative is given in Table 1.

TABLE 1. BCF information given by experts.

Step 2: The outcomes of aggregating value utilizing expert
information and the CLBCFWA operator are shown in
Table 2.
Step 3: Examine the alternatives’ score values.
Step 4: To decide which option is the best, use the score

values listed in Table 3.

A. COMPARATIVE STUDY
The comparative study of determined techniques was dis-
cussed in this section, along with certain common operators
based on accepted concept like as, BCFSs.

For this, we choose a few famous theories that are,
Mahmood et al. [22], BCFSs and their applications in gener-
alized similarity measures; Mahmood et al. [23] BCFS-based
Hamacher aggregation information; Mahmood et al. [24],
Dombi AOs under bipolar complex fuzzy information;
Hayat et al. [16] group generalized q-rung orthopair fuzzy
soft sets; Hayat et al. [17] New group-based generalized
interval-valued q-rung orthopair fuzzy soft aggregation oper-
ators and their applications in sports decision-making prob-
lems; Yang et al. [33] aggregation and interaction aggregation
soft operators on interval-valued q-rung orthopair fuzzy
soft environment and application in automation company
evaluation.

TABLE 2. Obtained values using CLBCFWA.

TABLE 3. Score values of the alternatives.

TABLE 4. Alternative ranking.

The method described in [16], [17], [22], [23], [24],
and [33] contains bipolar fuzzy set details, but the given
model cannot be solved using this method. Reviewing
Table 5 reveals that the methods now in use lack basic
information and are unable to solve or rank the case that
has been provided. Compared to other methods already in
use, the strategy suggested in this study is more capable and
dependable. The main analysis of the identified and proposed
hypotheses is presented in Table 5.

The results show that the BCFS and DM approaches’
existing theories [16], [17], [22], [23], [24], [33] handle the
data and yield the conclusion that É4 is the best option, but
anyone can argue that this choice was unfairly made due
to the lack of confidence levels that the experts gave to
each attribute in his own decision. This demonstrates that
the new AOs are more fair and effective than the previous
ones. The outcomes further demonstrate that the DM process
and the newly presented operators are suitable instruments
for dealing with ambiguous and uncertain information in the
context of the bipolar complex fuzzy set.

A BCFS is the result of combining BFS, which an
expert needs to describe an item’s positive and negative
qualities, with CFS, which an expert needs to deal with
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TABLE 5. Ranking of the existing methods.

two-dimensional data. One of the most sophisticated and
extensively utilized structures is the BCFS structure, and
these operators have not yet been specified within the
BCFS environment. Biploar complex fuzzy set is extremely
important in real-life DM, since it deals with two-dimensional
information on an object as well as all of its properties and
counter-properties, or positive and negative aspects. Take
into consideration the BCFS’s effective ability to handle
ambiguity and inconsistent circumstances as well as to check
the unclear and confusing information that arises in real-life
situations.

VIII. CONCLUSION
The bipolar complex fuzzy set (BCFS) theory is a bet-
ter tool for expressing information in an unpredictable
environment in multi-criteria decision making situations.
However, Mahmood et al. [23] shows that the BCFS is
more general than the bipolar fuzzy set. Several writers
proposed aggregation operators for adding bipolar complex
fuzzy numbers. However, existing confidence level bipolar
complex fuzzy AOs is based on the assumption that experts
are completely familiar with the evaluated items, i.e., all
experts offered their assessment of the distinct alternatives
with the same level of confidence. This type of situation
is partially satisfied in real-world problem modeling. The
current study provides a series of confidence levels averaging
and confidence levels geometric AOs for this purpose by
adding expert confidence levels throughout the evaluation
step in a bipolar complex fuzzy environment. Some of its
key features are well established. These defined operators
can more perceptibly explain real-life circumstances with
the help of experts’ confidence levels during evaluation
and will resemble much more real-life situations in a
bipolar complicated fuzzy environment. Lastly, a thorough
debate was conducted to demonstrate the applicability and
superiority of the presented strategy over the current ones.

Based on the larger acceptance of a bipolar complex
fuzzy set, we will make efforts in the future to apply
the concept of confidence levels bipolar complex fuzzy
set to real-world challenges such as fuzzy cluster analysis,
uncertain programming, and pattern recognition, among
others. In addition, we will concentrate on the development
of novel AOs for bipolar complex fuzzy numbers.
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