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ABSTRACT A floating-point fully homomorphic encryption (FPFHE) is proposed, which is based on
torus fully homomorphic encryption equipped with programmable bootstrapping. Specifically, FPFHE for
32-bit and 64-bit floating-point messages are implemented, the latter showing the state-of-the-art precision
among FHEs. Also, a ciphertext is constructed for checking if an overflow has occurred or not while
evaluating arithmetic circuits with the proposed FPFHE, which is useful when the message space or
arithmetic circuit is too complex to estimate a bound of outputs such as some deep learning applications.
Also, homomorphic algorithms, which are crucial components of overflow detectable (OD)-FPFHE, are
constructed. First, a state-of-the-art bootstrapping method of TFHE is extended to bootstrap larger messages
by using NTT-friendly integer modulus. Second, a subgaussian analysis method is proposed without
assuming independent heuristic on AP/GINX-bootstrapping even if the deterministic gadget decomposition
is used. Third, the blind rotation algorithm of TFHE is modified such that any secret key having finite
non-zero values can be used while keeping the number of NTT operations the same as when the binary
key is used. Fourth, various homomorphic algorithms are proposed such as evaluating min and max, lifting
a constant message to the monomial exponent, counting the number of consecutive zeros from the most
significant in the fraction, and performing carryover after homomorphic operation of floating-point numbers.
Finally, 32-bit and 64-bit OD-FPFHEs are implemented and simulation results are provided to confirm that
they work well even for extreme cases. Also, it is verified that homomorphic overflow detection is well-
operated.

INDEX TERMS Fully homomorphic encryption, homomorphic floating-point arithmetic, homomorphic
overflow detection, subgaussian error analysis.

I. INTRODUCTION
Since Gentry’s seminal work on fully homomorphic encryp-
tion (FHE) [2], various FHEs such as BGV/FV [3],
FHEW/TFHE [4], [5], and CKKS [6] have been proposed
and intensively studied. FHE is a powerful methodology for
evaluating arithmetic circuits while keeping the privacy of
data. As applications of FHE with boolean circuits, private
information retrieval (PIR) [7], [8] and private set intersec-
tion (PSI) [9] have been studied. Also, homomorphically
evaluating deep learning models [10] have been mostly
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studied by using CKKS. Since CKKS deals with a ciphertext
packed with a large number of messages, CKKS is the
most suitable for evaluating circuits with extensive parallel
data.

A. MOTIVATION OF FLOATING-POINT FHE AND
OVERFLOW-DETECTABLE FHE
However, when floating-point numbers are encoded into the
message space of CKKS (Minkowski space [11]), encoding
errors cannot be avoided. Therefore, encoding in CKKS
inevitably degrades the accuracy of floating-point arithmetic.
Without solving such encoding error problems, CKKS may
not guarantee acceptable results for the applications requiring
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complex and accurate operations such as calculating satellite
collision probabilities [12]. Therefore, an accurate floating-
point FHE (FPFHE) is required, which can achieve almost
similar results to the corresponding plaintext operations.

Furthermore, the efficiency of the floating-point and fixed-
point number systems varies for each application. The
Minkowski message space is a fixed-point number system
which is an effective number system for computations when
the range of input data is limited (e.g. when data are aligned
between 0 and 1). However, in cases where the size of
a user’s input data is unknown, the floating-point number
system is the efficient choice since it offers a broader range of
represented numbers and relative error in the results. In other
words, for achieving a general-purpose FHE system, research
in floating-point FHE is essential.

Moreover, overflow occurrences are another problem For
example, demands of verification and testing validation of
streaming data have been increased [13]. Apparently, if the
server homomorphically manipulates ciphertexts of data
having an unbounded size, the results may contain overflows.
As another example, evaluating a deep arithmetic circuit may
return irrelevant results when any of the intermediate results
take a value out of the message space.

However, in contrast to the evaluation with plaintexts,
such overflow cannot be detected by a user in the ciphertext
domain. If a range of circuit output is not bounded or an
input dimension is too large, overflow frequently occurs
and thus any input cannot be ensured whether it causes an
overflow or not. Also, when the past data is used to update
the circuit, e.g. privacy-preserving federated learning [8],
inaccurate updating usingmeaningless values due to overflow
ruins the circuit performance. However, to the best of our
knowledge, an overflow detection method for FHE has not
been proposed.

B. CONTRIBUTIONS
Our main contributions are divided into two parts. First,
we propose FPFHE with homomorphic normalization for
the first time, which effectively resolves the error problem
from encoding floating-point numbers and makes every
operation on ciphertexts with FPFHE synchronized to the
corresponding operation on plaintexts from floating-point
message space. Moreover, we implement FPFHE with single
(32-bit) and double (64-bit) precision, which shows a much
wider range of numbers (up to 2127 and 21023, respectively)
and exact significant digits. Note that the message space and
operations of CKKS only guarantee fixed-point precision.

Second, an effective overflow-detection (OD) method with
the proposed FPFHE is constructed, which can checkwhether
an overflow occurs or not during homomorphic operations.
By properly combining these two schemes, we construct OD-
FPFHE.

Also, we propose homomorphic algorithms to handle the
following technical issues, which are important components
of OD-FPFHE and can also be used for other FHEs.

• Sequential bootstrapping on shared primes:
FHE requires bootstrapping for reducing the
amplified error from homomorphic operations.
We extend the bootstrapping method in [1] to
bootstrap a large number of message bits by
using integers modulo shared primes Q which
is number theoretic transform(NTT)-friendly.
This algorithm enables the proposed FPFHE
to bootstrap more message bits by using NTT,
which is a solution for removing errors generated
from fast Fourier transform (FFT), listed as an
open problem in [1].

• Modified blind rotation for GINX-boots-
trapping:
This algorithm keeps the number of NTT oper-
ations the same for any secret key having finite
non-zero values and hence improves running
time compared to the state-of-the-art GINX-
bootstrapping [5].

• Error analysis without independent heuristic:
This analysis is applicable even when determin-
istic gadget decomposition is used and makes it
possible to choose small lattice parameters for
enhancing running time.

• Various non-linear homomorphic algorithms:
We propose various homomorphic algorithms
such as evaluatingmin andmax, lifting a constant
message to the monomial exponent, counting the
number of consecutive zeros from the most sig-
nificant in the fraction of floating-point message
until non-zero value occurs, and performing car-
ryover after homomorphic operations. Note that
they are run by using sequential bootstrapping.

C. RELATED WORKS
To the best of our knowledge, [14] suggests homomorphic
operations on an approximated rational number, however, it is
not the exact implementation of the floating-point number
system. Reference [15] also implements a floating-point
FHE. However, since they do not normalize the results after
homomorphic operations (See Section II-F), the operation
error may grow rapidly after consecutive homomorphic
operations. Moreover, they suffer from slow operation time
because they only directly add floating-point operations to the
existing FHE schemes using gate operations such as TFHE
and BGV/FV.

II. PRELIMINARIES
This section introduces mathematical backgrounds and some
fully homomorphic encryption schemes. The main reference
and notation of algebraic and statistical backgrounds are
followed from [11], [16], and [17].

A. NOTATION
LetN,Z,Q, andC denote the sets of natural, integer, rational,
and complex numbers, respectively. Let Zq ∼= Z/qZ be an
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integer ring Z modulo qZ for some q ∈ N, and let Zq[X ] be
a polynomial ring Z[X ] modulo qZ[X ]. We use [n] to denote
an index set of 0, 1, . . . , n− 1 for n ∈ N. More generally,
[n1, n2, . . . , nm] =

∏m
i=1[ni] is used as a product index set

for n1, . . . , nm ∈ N.
We use boldface a= (ai)i∈[n] to denote row vector where

ai is the i-th element of a. Analogously for any polynomial
a(X ) ∈ Z[X ], we use ai to denote the coefficient of X i in
a(X ). For a polynomial vector a(X ), ai(X ) denotes the i-th
polynomial of a(X ) and ai,j is the j-th coefficient of ai(X ).
As a magnitude of an element, we always use l1 metric | · |

for x ∈ R. For a vector x∈ Rn, |x| is the maximum value of
|xi| for all i ∈ [n]. If x ∈ Zq is given, |x| is defined as |x̄|
where x̄ = x mod q with −q/2 ≤ x̄ < q/2. Analogously,
if a(X ) ∈ Zq[X ], |a(X )| is defined as the maximum among
|ai| for all i.
We use the following index function θ for mapping 2-D

indices of the lower triangle part of a matrix into integers such
as

θ : {(i, j) ∈ N2
|i ≥ j} → N, (i, j) 7→ i(i+ 1)/2+ j, (1)

which is used for indexing tensor product keys. Note that θ−1

denotes its inverse function, and θ−11 and θ−12 are the coordi-
nate functions of θ−1 such that θ−1(x) = (θ−11 (x), θ−12 (x)).
We represent a non-negative rational number x by (xn.xn−1 . . .
x0)(β) for a given β ≥ 2 if

x = xn + xn−1β−1 + . . .+ x0β−n,

where 0 ≤ x0, . . . , xn < β are non-negative integers and β
is called a radix. We use Big Oh and Omega notation as O(·)
and �(·), respectively.

B. ALGEBRAIC BACKGROUND
Let 82N (X ) ∈ Q[X ] be the cyclotomic polynomial of order
2N ∈ N. If N is a power of two, then 82N (X ) is XN + 1.
Let RN ≜ Z[X ]/(XN + 1) be the quotient polynomial ring
with ideal (XN + 1) and let RN ,q ≜ Z[X ]/(XN + 1, q) ∼=
Zq[X ]/(XN + 1) be the quotient polynomial ring with ideal
(XN + 1, q) for a positive integer q ∈ Z. It is clear that the
product of a(X ), b(X ) ∈ RN ,q is

a(X )b(X ) =
∑
j∈[N ]

[ j∑
i=0

aibj−i −
N−1∑
i=j+1

aibN+j−i

]
X j (2)

having the property that ai and bi for all i ∈ [N ] appear only
once in the expression of each coefficient of a(X )b(X ).
For the above algebraic structure, there are two types of

Chinese remainder theorem(CRT). First, if Q is a prime
number satisfying 2N |(Q−1), then ZQ has a primitive 2N -th
root of unity ζ ∈ ZQ such that there is an isomorphism by the
CRT as follows:

ψ : RN ,Q→ ZN
Q , a(X ) 7→

(
a(ζ 1), a(ζ 3), . . . , a(ζ 2N−1)

)
.

We call Q as NTT-friendly if 2N |(Q− 1).

Second, if Q = Q0Q1 . . .Qn−1 ∈ N with relatively prime
integers Qi, there exist the following canonical isomorphism:

φ :ZQ→
∏
i∈[n]

ZQi , a 7→
(
a mod Qi

)
i∈[n]. (3)

In this paper, a particular pair of primes are used. Let two
NTT-friendly primes Q0 and Q1 be called shared primes if
they share the same scaling factor ν ∈ N such that Q0 =

ν2η0 +1 and Q1 = ν2η1 +1. Note that, the product of shared
primes is used as an integer modulus Q as in Section III-B.

C. STATISTICAL BACKGROUND
Let (Ω,F ,P) be an ambient probability space and X :

Ω → R be a random variable. When the co-domain of
X is defined over ZQ, we always define X as a function
Ω→ {-⌊Q/2⌋, . . . , ⌊Q/2⌋}. A randomvariableX is calledB-
bounded if |X | ≤ B almost surely. Next, we briefly introduce
subgaussian random variable and its properties.

Definition 1 (Subgaussian [16]). A random variable X
is called a subgaussian random variable with a standard
parameter σ ≥ 0, denoted as X ∼ subG(σ ), if E[X ] = 0 and
the moment generating function MX (t) is bounded as follows:

MX (t) ≜ E[exp(tX )] ≤ exp(σ 2t2/2).

Proposition 1 (Error bound [16]). For any random variable
X ∼ subG(σ ) and v > 0, X is O(σ

√
v)-bounded except with

2−�(v) probability.

It is also known that the space of subgaussians forms an R-
vector space with properties: (i) If X ∼ subG(σX ) and Y ∼
subG(σY ), then X +Y ∼ subG(σX +σY ); (ii) For any scaling
c ∈ R, cX ∼ subG(|c|σX ); (iii) Moreover, if X and Y are
independent, X + Y ∼ subG((σ 2

X + σ
2
Y )

1/2).
Since (iii) is the best analytical result for the sum of

two subgaussian random variables in terms of minimizing
variance, we will focus on the conditions for X + Y ∼
subG((σ 2

X + σ
2
Y )

1/2) without assuming independence. Ran-
dom variables Xi ∼ subG(σi) for i ∈ [n] are called to have
Pythagorean additivity if

∑
i∈[n] Xi ∼ subG((

∑
i∈[n] σ

2
i )

1/2)
and the conditions for satisfying Pythagorean additivity have
been investigated as follows.

Lemma 1 (Sum of dependent subgaussians [18]). If
(Zi|Z0, . . . ,Zi−1) ∼ subG(σi), E[Zi] = 0 for all i ∈ [n],
and σi is free of Z0, . . . ,Zi−1, then the random variables Zi,
i ∈ [n], have Pythagorean additivity.

Corollary 1. Let Yi ∼ subG(BY ) be mutually independent
BY -bounded random variables for all i ∈ [n], and let Xi ∼
subG(BX ) be BX -bounded random variables for all i ∈ [n]
where Xi depends only on Xj and Yj for all j < i. Then XiYi
for all i ∈ [n] have Pythagorean additivity.

Corollary 1 ensures that although all XiYi’s are dependent
on each other, they can have Pythagorean additivity similar
to the case when XiYi’s are mutually independent. This is
useful for analyzing a sum of large numbers of dependent
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random variables, e.g. analyzing an error bound after
bootstrapping in FHE. However, Corollary 1 implies that
Xi and Yi must be bounded with zero mean since Xi and
Yi are subgaussian. A similar analysis under more relaxed
conditions is performed in Section IV-A.

D. LWE/MLWE SYMMETRIC ENCRYPTION AND GADGET
DECOMPOSITION
In this section, widely used lattice-based crytosystems are
introduced. First, we recall LWE symmetric encryption [19].
For given q, n, t ∈ N, t-bit message spaceZ2t , a scaling factor
1 ≤ 1 ≤ ⌊q/2t⌉, and a secret key s= (−s1, . . . ,−sn, 1) ∈
Zn+1
q , a ciphertext for the message m ∈ Z2t is obtained as

follows:

cts
[
1m

]
≜

(
a, b =

n∑
i=1

aisi +1m+ e
)T
∈ Z(n+1)×1

q , (4)

where m is chosen from {0, . . . , 2t − 1}, T denotes the
transpose of matrix, a∈ Zn

q is chosen uniformly at random,
e is sampled from a centered discrete Gaussian distribution
χe on Z with standard deviation σ , and s is sampled from
a distribution χs. We adopt a ternary secret key s, which is
widely used for FHE [20]. In addition, s is called h-sparse if
the number of non-zero elements of s is h.
The phase function ϕs and the decryption function ϕ̄s of cts

are defined as:

ϕs

(
cts

[
1m

])
≜ b−

n∑
i=1

aisi = 1m+ e,

ϕ̄s

(
cts[1m]

)
≜

⌊(
ϕs(cts[1m])+ ⌊1/2⌋

)
/1

⌋
.

Therefore, if |e| < 1/2, then the message m is correctly
extracted by the decryption function ϕ̄s and we call such
cts[1m] a valid ciphertext.

If the structure Z(n+1)×1
q of LWE ciphertext in (4) is

replaced by RN ,q, such ciphertext is called a module-LWE
(MLWE) ciphertext CTs(X )[1m(X )] for the message m(X ) ∈
RN ,q encrypted by the secret key s(X ) ∈ RKN ,q. In addition,
we use a generalized MLWE of sample extraction [1], [4],
which generates LWE ciphertexts ct[1mi] from MLWE
ciphertext CT[1m(X )] as follows:

SampleExtract(CTs(X )[1m(X )], i) = cts′ [1mi]

≜ (a′0,0, . . . , a
′

0,N−1, a
′

1,0, . . . , a
′

K−1,N−1, bi), (5)

where a′k,j = ak,i−j for 0 ≤ j ≤ i and a′k,j = −ai,N−j
for i < j ≤ N − 1, for all k ∈ [K ]. Then,
cts′ [1mi] is a valid LWE ciphertext for the secret key s′ =
(s0,0,. . . ,s0,N−1, s1,0,. . . ,sK−1,N−1). In this paper, LWE and
MLWE ciphertexts are denoted as ct and CT if they are clear
in the context.

For a given N , a ciphertext ct is called squashed if the
integer modulus used for ct is 2N . A squashed ct is used to
explain FHEW/TFHE in Section II-E.

1) GADGET DECOMPOSITION
Next, an approximated gadget for decomposing LWE and
MLWE ciphertext is introduced, which is used for construct-
ing GSW cryptosystem.

Definition 2 (Gadget [21]). For any finite additive group
R, an R-gadget of size l, quality ρ, and precision ϵ is
a vector g ∈ Rl such that any element u ∈ R can be
written as an approximated integer combination

∑
i gi · xi

such that max|xi| ≤ ρ for all xi ∈ Z and the gadget error
A = u−

∑
i gi · xi ∈ R has the magnitude |A| ≤ ϵ.

Proposition 2 (Deterministic (signed) gadget decomposi-
tion [4], [5]). Assume that two finite additive groups RN ,Q
and ZQ, and gadget parameters B ∈ N and l̄ ∈ N are
given such that Bl̄−2 ≤ Q < Bl̄−1. Then, there exists a
gadget g= (Bl̄−l, . . . ,Bl̄−1) and the deterministic gadget
decomposition G−11 : RN ,Q → R1×lN ,Q and G

−1
2 : ZQ → Z1×l

Q
with size l = l̄ − 1, quality ρ = ⌈B/2⌉ and precision
ϵ = ⌈

∑l̄−l
i=1 B

i/2⌉.

Note that if ϵ = 0, i.e., l = l̄, it is an exact
gadget decomposition and if l < l̄, it is an approximated
gadget decomposition. Next, module GSW (MGSW) cryp-
tosystem [22] and external product of MGSW and MLWE
ciphertexts are introduced based on gadget decomposition.

E. FULLY HOMOMORPHIC ENCRYPTIONS USED FOR
CONSTRUCTING OD-FPFHE: (M)GSW, FHEW, AND TFHE
First, (M)GSW cryptosystem is briefly introduced. Let In ∈
Rn×nN ,Q be the identity matrix and⊗ denote Kronecker product.
Then for a message m ∈ {0, 1}, MLWE secret key s(X ),
and RN ,Q-gadget g in Proposition 2, an MGSW ciphertext
GCTs(X )[m] ∈ Rl(K+1)×(K+1)N ,Q in matrix form is obtained by
using MLWE ciphertexts as follows [5], [22]:

GCTs(X )[m] ≜

(
CTs(X )

[
mS ′i (X )

])T

i∈[l(K+1)]

where S′(X ) = (IK+1 ⊗ g)s(X ). The external product � for
any given two ciphertexts CTs(X ) [m1(X )] and GCTs(X )[m2]
is defined as:

� : CT× GCT→ CT, (CT,GCT) 7→ G−1(CT)GCT,

(6)

where G−1 is a gadget decomposition algorithm given in
Proposition 2. The phase result of CT � GCT is known as
follows [4]:

ϕs(X )(CTs(X ) � GCTs(X ))

= m2m1(X )+ m2e′(X )+
∑

i∈[l(K+1)]

ei(X )G−1(CT)i

+

∑
i∈[K+1]

si(X )Ai(X ) (7)

where e(X ) ∈ Rl(K+1)N ,Q is the noise in GCT, e′(X ) is the
noise in CT, and A(X ) is the gadget error from Definition 2.
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Since |ei(X )| and |si(X )| are small, the validity of CT�GCT
depends on ρ and ϵ of gadget decomposition.
For a given LWE ciphertext ct and an evaluating function

f , bootstrapping in FHEW and TFHE performs the following
operations: (i) the modulus of ct is reduced to 2N so that
the valid squashed ct′[1m] for m = (mt−1, . . . ,m0)(2) is
obtained [5]; (ii) BlindRotate [4] is run with the accumulate
polynomial ACCPoly(X ) ∈ RN ,Q which is converted from the
look-up table f ((14) in Section IV-B), and then the following
MLWE ciphertext CT is obtained

CT
[
(−1)mt−1ACCPoly(X )Xϕs(ct)

]
; (8)

(iii) the CT in (8) is extracted to obtain a valid LWE
ciphertext ct′′ for the constant message of CT by using
SampleExtract(CT, 0); (iv) the secret key of ct′′ is switched
to the secret key of ct by using KeySwitch [4]. Therefore,
if mt−1 controls the sign of the look-up table, or if mt−1 is
zero, then (8) is correct.

Recently, a programmable bootstrapping (PBS) is pro-
posed [23], which can evaluate any look-up tables. Moreover,
without padding PBS (WoP-PBS) is proposed to make the
above bootstrapping correct even when mt−1 = 1. In this
paper, WoP-PBS is applied to RN ,Q when Q = Q0Q1 with
shared primes Q0 and Q1, as explained in Section IV-C.

F. INTRODUCTION TO FLOATING-POINT NUMBER
SYSTEMS
A floating-point number system can be defined as follows:

Definition 3 (Floating point number system [24]). Afloating-
point number system is defined by four integers: (i) a radix
β ≥ 2; (ii) a precision p ≥ 2; (iii) two extreme exponents emin
and emax with emin < emax. Then a real number x is called
a floating-point number if x has at least one representation
(s,m, e) such that

x = s · m · βe, (9)

where s ∈ {1,−1} is the sign of x, m = (mp−1.mp−2 . . .m0)(β)
is a rational number satisfying 0 ≤ m < β, and e is an integer
satisfying emin ≤ e ≤ emax . It is denoted as (β, p, emin, emax)
floating-point number system.

We call m and e in (9) as fraction and exponent, respec-
tively. Since Definition 3 does not guarantee uniqueness of
(s,m, e), normal form1 is defined as:

Definition 4 (Normal form [24]). For the (β, p, emin, emax)-
floating-point number system, (s,m, e) of x ∈ R is called a
normal form if 1 ≤ m < β or if e = emin with 0 ≤ m < 1.

If x ≥ βemin , we can choose the unique fraction
(mp−1.mp−2 . . .m1m0)(β) with mp−1 ≥ 1, and otherwise,
we can uniquely choose m by setting e = emin.
The result of floating-point operation should be rounded

to a nearer floating-point number and various rounding

1We do not distinguish the normal form and the subnormal form given
in [24].

algorithms have been studied [24]. In this paper, the
rounding zero (RZ) method is used [24] because it is easily
implemented by rounding down when the calculated number
is represented in normal form. Let RZ be a function from
any real number x to a floating-point number such that RZ(x)
rounds down if x ≥ 0 and rounds up if x < 0 [24]. Then a
tight bound of rounding error is known as follows:

Proposition 3 (Error bound [24]). Let⊤ ∈ {+,−, ·, /} be an
arithmetic operation. If x, y ∈ R satisfying βemin ≤ |x⊤y| ≤
(β − β1−p)βemax , then the following inequality holds

|x⊤y− RZ(x⊤y)| ≤ β1−pmin
(
x⊤y,RZ(x⊤y)

)
. (10)

If there is no overflow, Proposition 3 gives an error bound
after floating-point operation ⊤ and RZ. However if normal
form is not used, RZ cannot be implemented by rounding
down at the p-digit point of fraction m, and hence a precision
degradation occurs meaning that Proposition 3 cannot be
applied. Consider x = 0.1 · 101 in the (10, 2, 0, 2) floating-
point number system. If x2 = 0.01 · 102 is rounded down on
the second digit, the result is 0 but RZ(x2) = 1 and hence the
error is 1 which is larger than 2−1 calculated by (10).
The IEEE Standard [25] introduces (2, 24,−27+2, 27−1)

and (2, 53,−210+2, 210−1) floating-point number systems,
which are called single and double precision, respectively.
In this paper, analogues of them are homomorphically
implemented in Section V and simulated in Section VI.

III. FLOATING-POINT FULLY HOMOMORPHIC
ENCRYPTION
In this section, FPFHE and OD-FHE are defined and
a cryptosystem dealing with floating-point messages is
proposed, which is used for constructing FPFHE.

A. DEFINITIONS
We formally define FPFHE and OD-FHE by extending the
definitions in the homomorphic encryption standard [20],
and we will focus on constructing a cryptosystem called
OD-FPFHE using the operations O = {+,−, ·}.

Definition 5 (FPFHE). A floating-point fully homomorphic
encryption is FHE = (KeyGen, Enc, Dec, Eval) such that (i) it
uses (β, p, emin, emax)-floating-point numbers as its message
space; (ii) it has an operation set O ⊆ {+,−, ·, /} (iii); it
uses a rounding function R, i.e. for ⊤ ∈ O and any x, y with
βemin ≤ |x⊤y| ≤ (β − β1−p)βemax , the ciphertexts ct[x] and
ct[y] satisfy the inequality∣∣∣Dec(Eval(ct[x], ct[y],⊤))− R(x⊤y)

∣∣∣
≤ β1−pmin

(
x⊤y,R(x⊤y)

)
,

except negligible probability.

Definition 6 (ξ -Overflow). For a message space M with
norm | · | and ξ ∈ R, x ∈ M is called ξ -overflow if
|x| ≥ ξ . For a depth-bounded circuit f , x is called ξ -
overflow over f if any intermediate result is ξ -overflow while
evaluating f (x).
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Definition 7 (OD-FHE). For a message spaceM with norm
| · | and a depth-bounded circuit family C, a (ξ, C)-overflow-
detectable fully homomorphic encryption is an FHE with a
homomorphic algorithm such that for any ciphertext ct of m ∈
M and any f ∈ C, it returns a ciphertext for the message
m′ = 1 if m is ξ -overflow over f , and m′ = 0 otherwise,
except negligible probability.

For CKKS with message space MC ⊂ CN and ξ =
maxx∈MC |x|/2, it clearly has ξ -overflow numbers over f
for any depth-bounded circuit f becauseMC is finite. If the
message spaceM does not have a norm such as a ring with
positive characteristic, e.g. BGV/FV and TFHE, ξ -overflow
number is hard to define. However, if BGV/FV are used
to encrypt a subset of Z, then ξ -overflow numbers can be
defined and exist as well as CKKS.

Generating a proof for overflow in CKKS and BGV/FV is a
complicated problem because fixed-point operations are used
and extra precision may be required to check if an overflow
occurs. In the proposed FPFHE, however, only by inspecting
the exponent of homomorphic operation result, we can easily
check if an overflow occurs or not when ξ = β l for some l ∈
N and just one extra bit in the exponent is required to do that.
Note that the security considered in this paper is

Chosen-Plaintext Attacks (CPA)-security. From that view-
point, the overflow-detecting ciphertext does not give further
information to the attacker having the encryption oracle.

B. FLOATING-POINT ENCODING AND DECODING
To implement FPFHE, we must have proper encoding and
decoding algorithms between floating-point numbers and the
corresponding message polynomials. We choose q ∈ N and
shared primes Q0 = ν2η0 + 1 and Q1 = ν2η1 + 1 with
Q0 > Q1, and use the scaling factors 1 = Q1 and 1′ = qν
and β-evaluation map 9β : N[X ]→ Q, a(X ) 7→ a(β)β1−p.
Then, for a normal form (s,m, e) of floating-point number x,
Encode and Decode are defined as follows:
• Encode(s, m = (mp−1.mp−2 . . . .m0)(β), e)

- Set polynomials M s(X ) ≜ 1s, M f(X ) ≜
1

∑p−1
i=0 miX

i, and M e(X ) ≜ 1′e.
- Return (M s(X ),M f(X ),M e(X )).

• Decode(M̄ s(X ), M̄ f(X ), M̄ e(X )), where M̄ i(X ) =
ϕ̄(CTi[M i(X )]), i ∈ {s, f, e}
- Set m = 9β (M̄ s(X )), e = M̄ e(0), and s as the
sign of M̄ s(0).

- Return (s,m, e).
In this paper, M s(X ), M f(X ), and M e(X ) are called

sign, fraction, exponent polynomials, respectively, and the
following facts will be derived after analyzing bootstrapping
error in Section IV-B: (i) The size of Q1 controls the
bootstrapping error; (ii) The rounding error after tensor
product of two MLWE ciphertexts are relatively small when
Q0 and Q1 are shared primes; (iii) Moreover, the size of
Q0 should be large enough to take messages increased by a
carry and should be determined by depending on β, p, and
the carry system which is analyzed in Section V-B. q is also

used as integermodulus of LWE ciphertext and shared primes
Q0 and Q1 are found by exhaustive search.

C. CONSTRUCTION OF FLOATING-POINT FULLY
HOMOMORPHIC ENCRYPTION
In this section, a formal FPFHE is proposed and its essential
homomorphic operations will be introduced in Section V.
We adopt the state-of-the-art improved TFHE cryptosystem
with tensor product [1] but we change its torus modulus to
shared primes (See details in [1]).
Our proposed evaluation keys are almost similar to those

in [1], but for the proposed OD-FPFHE, these keys have been
renamed for better understanding of their roles. The evalua-
tion keys P, BL, and Ten correspond to the key-switching
key KSK, bootstrapping key BSK, and relinearization key
RLK used in [1], respectively. Note that in [1] the term
KSK is used for reverting to canonical LWE ciphertexts,
in the proposed FPFHE, P, is used for denoting the operation
of packing ciphertexts into a single RLWE ciphertext after
bootstrapping.

We use additional key-switching key KS encrypted with
h-sparse secret key to reduce the lattice dimension and error
magnitude. Therefore, the improved TFHE [1] takes the
key-chain of BSK and KSK, and the proposed FPFHE takes
the key-chain of BL, P, and KS. Fig. 1 compares between
the improved TFHE [1] and the proposed FPFHE in terms
of key-chain of evaluation keys and bootstrapping procedure.
In addition, an example of encoding, encryption, decoding,
and decryption procedures of the proposed FPFHE is shown
in Fig. 2.

Note that generating evaluation keys in FHEs assumes
circular security and key-dependent message (KDM) secu-
rity [26] and we also construct FPFHE under these assump-
tions. Then, an overall procedure of the proposed FPFHE is
given as follows and the detailed procedures will be explained
in the next sections.

• Setup(1λ)

• Choose q and shared primes Q0 and Q1.
Determine the dimensions Ngct, Kgct, Nct, Kct,
and n. Choose t for the message space Z2t of
LWE ciphertext. Choose h for the sparsity of
secret key.

• Choose the gadget parameters B∗ with
B∗/2-quality and B∗/2-precision, l∗ =

⌈logQ/ logB∗⌉−1 for all ∗ ∈ {bl, pack, ten, ks}
(See Definition 2).

• KeyGen(1λ)
Set the evaluation key as ev= (P,BL,KS,Ten) and
a secret key as sk.
• Generate two ternaryMLWE keys sk-bl, sk and
a h-sparse LWE key sk-ks.

• KSi,j,k = ctsk-ks[sk i,jBk+1ks ],(i, j, k) ∈

[Kct, n, lks].
• Let S be the set of non-zero values of sk. Then,
generate BL(s)

i =GCTsk-bl [ m
(s)
i ], i ∈ [n], and
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FIGURE 1. Comparison of key-chain and bootstrapping between improved TFHE and the proposed FPFHE.

FIGURE 2. Overview of encoding and encryption (resp. decoding and decryption) when (2, 5, 0, 3)-floating point number system, x =

−4.75, and its normal form (−1, (1.0011)(2), 2) are used.

s ∈ S where m(s)
i is 1 if sk − ksi = s, and

0 otherwise.
• Pi,j,k = CTsk[sk − bl i,jB

k+1
pack], (i, j, k) ∈

[Kgct,Ngct, lpack].
• Teni,j = CTsk[sk i1 (X )sk i2 (X )B

k+1
ten ] for all

(i, j) ∈ [(Kct + 1)Kct/2, lten] where i1 = θ
−1
1 (i)

and i2 = θ−12 (i) (θ−11 and θ−12 are defined in
Section II-A).

• Encsk(x)
• Choose the normal form (s,m, e) of x and run
Encode(s,m, e).

• Return FCTsk ≜ (CTsk[M s(X )], CTsk[M f(X )],
CTsk[M e(X )]).

• Decsk(FCTsk)
• Run ϕ̄sk for all inputs to obtain M̄ s(X ), M̄ f(X ),
and M̄ e(X ).

• Return Decode(M̄ s(X ), M̄ f(X ), M̄ e(X )).
• Evalev(FCT1,FCT2,⊤)

• If ⊤ ∈ {+,−}, run ADD and if ⊤ = ·, run
MULT proposed in Section V.

In Section VI, Q0 and Q1 are chosen near 40-bit shared
primes and every element of ZQ are saved in CRT form
(a, b) ∈ ZQ0 × ZQ1 to circumvent 128-bit operations.
However, to perform the original gadget decomposition G−1,
φ−1(a, b) should be performed, which is the inverse function
of (3) and requires 128-bit operation.
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Algorithm 1 G−1crt , gadget decomposition on CRT
Input: Q0 = ν2η0 + 1, Q1 = ν2η1 + 1, d= (a0, b0)× . . .×

(an−1, bn−1) ∈ (ZQ0 × ZQ1 )
n

Output: c = (c0,0, c0,1, . . . , c0,l−1, c1,0, . . . , cn−1,l−1) ∈
Z1×nl
Q

(Pre-)calculate Q̂0 = Q−11 mod Q0 ▷Without loss of

generality, Q1 < Q0

for i ∈ [n] do
x = (ai − bi)Q̂0 mod Q1
y = x + bi mod 2η1
z = xν + ⌊(x + bi)/2η1⌋
ci = (ci,0, . . . , ci,l−1) := G−1(y+ 2η1z) ▷ Guarantee that

0 ≤ y < 2η1

end for
return c = (c1, . . . , cn)

Therefore, we introduce an accelerating gadget decompo-
sition G−1crt using shared primes, which requires only 64-bit
operation when νQ0 and νQ1 are less then 264.

The correctness of G−1crt in Algorithm 1 comes from the
following property. For any (a, b) ∈ ZQ0 × ZQ1 with 0 ≤
a < Q0, 0 ≤ b < Q1, and c = φ−1(a, b) ∈ ZQ, there
exists x < Q0 such that c = b+ xQ1 = (b+ x)+ (xν2η1 ) by
Euclid division algorithm. SinceQ1 < Q0 and φ−1(b, b) = b,
we obtain

xQ1=φ
−1(a, b)− φ−1(b, b)=φ−1(a− b, 0)= (a− b)Q1Q̂0,

where the equalities hold in ZQ, which means x = (a− b)Q̂0
mod Q1. Then we can split c = y+2η1z into lower significant
η1-bit number y and more significant η0-bit number zwithout
calculating the exact value of c, and run gadget decomposition
twice by using 64-bit integer operations.

In the next section, error amplification after bootstrapping
of the proposed FPFHE is analyzed.

IV. ERROR ANALYSIS AND SEQUENTIAL
BOOTSTRAPPING
In this section, we revisit error analysis of bootstrapping
in Fig. 1. Section IV-A proves a more generalized result
of [18], which is used to analyze the error amplification
without independent heuristic even when deterministic gad-
get decomposition is used for bootstrapping. Section IV-B
performs an error analysis for the product of two fraction
ciphertexts, which is the worst-case error amplification
among homomorphic operations in Section V. Therefore,
for a valid MLWE ciphertext from TensorProd, the server
runsKeySwtich,BlindRotate, andPacking sequentially and
returns a valid MLWE ciphertext which can be multiplied
using TensorProd again, as in Fig. 1. Therefore, a server can
run polynomial number of times due to this bootstrapping.
In detail, the following algorithms are run: (i) A BlindRotate
in Algorithm 2 runs to reduce error and raise modulus
from q to Q; (ii) A Packing in Algorithm 4 runs to pack
outputs of BlindRotate into two MLWE ciphertexts CT1 and

CT2; (iii) A TensorProd in Algorithm 3 runs to product
CT1 and CT2, and p LWE ciphertexts (ct′i)i∈[p] are obtained
by using SampleExtract. (iv) A KeySwitch in Algorithm 5
runs to generate squashed LWE ciphertext from (ct′i)i∈[p].
However, after multiplying two fraction polynomials, the
message in each coefficient may exceed 2t . To solve this
problem, Section IV-C introduces a sequential bootstrapping
with shared primes.

A. INVESTIGATION OF SUBGAUSSIAN RANDOM
VARIABLES HAVING PYTHAGOREAN ADDITIVITY
For subgaussian random variables X and Y , Corollary 1
requires boundedness of both X and Y to show that XY is
subgaussian. However, we will show that it is enough to
require that one is bounded and the other is subgaussian.

Lemma 2. If X is a B-bounded random variable, Y is σ -
subgaussian random variable, and X and Y are uncorrelated,
then XY ∼ subG(

√
8Bσ ).

Proof: Since X and Y are uncorrelated, E[XY ] =
E[X ]E[Y ] = 0. Due to the following inequality

P(|XY | > t) ≤ P(|Y | > t/B) ≤ 2 exp
(
−

t2

σ 2B2

)
, (11)

it can be shown that (i) the k-th moment is bounded as
E[|XY |k ] ≤ (2B2σ 2)k/2 kΓ(k/2) where Γ(·) is a gamma
function, and (ii) the moment generating function is bounded
as MXY (s) ≤ exp(4B2σ 2s2) [17]. Therefore XY ∼

subG(
√
8Bσ ). □

However, the factor
√
8 in Lemma 2 is undesirable and

by putting additional condition on Y ,
√
8 can be removed as

follows:

Lemma 3. Let X be a B-bounded random variable and Y be
σ -subgaussian with symmetric distribution, i.e. E[Y 2n−1] =
0 for all n ∈ N. If X and Y are independent, then XY ∼
subG(Bσ ).

Proof: Since X and Y are independent, E[XY ] =
E[X ]E[Y ] = 0. By Lemma 2, there exists a measurable
function point-wisely larger than the moment generating
function MXY (s) for all s ∈ R. Then, for any s ∈ R,

MXY (s) =
∫

Ω
esXY dP =

∫
Ω

lim
m→∞

m∑
n=1

(sXY )n

n!
dP

(a)
= lim

m→∞

m∑
n=1

∫
Ω

(sXY )n

n!
dP

(b)
≤ lim

m→∞

⌊m/2⌋∑
n=1

∫
Ω

(sB)2nY 2n

(2n)!
dP (c)
= MBY (s)

(d)
≤ exp

(
(σB)2s2

2

)
, (12)

where (a) holds from monotone convergence of measurable
functions with boundedness of MXY (s) [16], (c) holds since
Y has a symmetric distribution, and (d) holds from the
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property of B-scaled subgaussian. In addition, (b) holds since
E[(XY )2n+1] = E[X2n+1] · E[Y 2n+1] = 0 for all n ∈ N,
and even moment of X is bounded by Lebesgue integral
property with X2n

≤ B2n for all n ∈ N [16]. Therefore,
XY ∼ subG(Bσ ). □

Corollary 2. Let Yi ∼ subG(σ ) be mutually independent
random variables having symmetric distribution for all i ∈
[n]. Let X1, . . . ,Xn be B-bounded random variables where
Xi is dependent only on X0, Y0,. . . , Xi−1, and Yi−1. Then
X0Y0,. . . ,Xn−1Yn−1 have Pythagorean additivity.

Proof: By Lemma 3, Zi = XiYi ∼ subG(σB) for all i ∈
[n]. Since Yi is independent of Z1, . . . ,Zi−1 and Xi is still B-
bounded even if Z1, . . . ,Zi−1 are given, X0Y0,. . . ,Xn−1Yn−1
have Pythagorean additivity by Lemma 1. □
Note that Corollary 2 does not require that Xi’s are

subgaussian, meaning that E[X ] does not have to be zero
contrary to Corollary 1. Most of additional errors after
bootstrapping are the product form of gadget decomposition
and errors in ciphertext or secret key. Since the output of
deterministic gadget decomposition relies on its input, the
mean value of output may be non-zero, to which Corollary 2
can be applied.

B. ERROR ANALYSIS OF THE BOOTSTRAPPING ON A
SHARED PRIMES
In this section, BlindRotate, Packing, TensorProd, and
KeySwitch are sequentially run for bootstrapping as in
Fig. 1 and its error analysis is performed. Since Packing
and TensorProd have been widely studied in FHE with
GINX-bootstrapping [1], [4], their detailed algorithms are
provided in Appendix, and BlindRotate and KeySwitch
[1], [4] are modified to properly operate the proposed OD-
FPFHE.Moreover, overall error analysis is performed and the
detailed proofs are provided in Appendix.

1) SETUP BEFORE RUNNING BLINDROTATE
We have valid squashed LWE ciphertexts ct0,ct1,. . . ,ct2p−1,
where p denotes the precision of floating-point number
system, and the accumulate polynomial is given as

ACCPoly(X ) = 1′′
∑
i∈[n]

mouti X i ∈ RQ,Ngct , (13)

where the scaling factor 1′′ ≥ 1 and the coefficients mouti
are chosen by the server according to the target look-up table.
In this paper, three options of 1′′ are considered: (i)1′′ = 1
if the output of BlindRotate is used to run TensorProd or to
generate a ciphertext of fraction polynomial; (ii)1′′ = 12 if
the output of BlindRotate is used to operate with the output
of TensorProd, which has the scaling factor 12; (iii)1′′ =
1′ if the output of BlindRotate is a ciphertext of exponent
message. For a given cti[1m], let c ∈ N be the largest number
satisfying 2c|aj of cti and 2c|b of cti for all j ∈ [n], and let
s ∈ N be the bit length of m such that s+ c ≤ t . In addition,
we adopt multi-output PBS technique with 2c multi-output
in [1]: for given server’s target look-up tables gj : Z2s →

Z2t for all j ∈ [2c], we can convert them into polynomials
ACCPoly(X ) in (13) with the coefficients

mouti =
∑
j∈[2c]

∑
i=jmod2c

gj
(
⌊i2s/Ngct⌋

)
. (14)

Then by using BlindRotate with ACCPoly(X ) and
SampleExtract(·, i), for all i ∈ [2c], the server can obtain
2c LWE ciphertexts each of which has the message gi(m),
i ∈ [2c]. Since one term in the summation of mouti in (14)
becomes the message gj(m) in the output of BlindRotate
as in (8), the server can get the information about message
bit-length of output because of publicity of ACCPoly(X).

2) RUNNING BLINDROTATE
First, we propose Algorithm 2 which is obtained by
modifying the blind rotation in [5].

Algorithm 2 BlindRotate

Input: ct = (a1, . . . , an, b) ∈ Zn+1
2Ngct

, ACCPoly(X) ∈
RNgct,Q

Output: out∈ Z(NgctKgct+1)×2c

Q
1: ACC := (0(X ), . . . , 0(X ),X−bACCPoly(X )) ∈ Rk+1Q
2: for i ∈ [n] do
3: ACC+ =

∑
j∈S (X

aij − 1)[ACC � BL(j)
i ]

4: end for ▷ S is the set of non-zero values of sk-ks

5: return out = (SampleExtract(ACC, α))α∈[2c]

The difference between Algorithm 2 and the blind rotation
in [5] is Line 3. When S = {−1, 1}, i.e. using ternary
secret key in blind rotation, the algorithm [5] runs with ACC
+= [(Xai − 1)ACC � BL(1)

i ]+ [(X−ai − 1)ACC � BL(−1)
i ].

To calculate the external product �, gadget decomposition
should be run with G−1crt ((X

ai − 1)ACC) and G−1crt ((X
−ai −

1)ACC), for evaluating (6). However, in Algorithm 2, only
G−1crt (ACC) is required to evaluate (6), meaning that the
proposed method does not increase the number of NTT
operations even if the size of S increases. Therefore, the
number of (I)NTT operations (Kgct + 1)lbl + 1 are required
compared to the number of (I)NTT operations |S|(Kgct +

1)lbl + 1 in [5].
The error analysis for the output of BlindRotate is given

as Proposition 5 in Appendix.

3) RUNNING PACKING AND TENSORPROD
After cti’s are run by BlindRotate for i ∈ [p], every
p resulting ciphertexts generate one MLWE ciphertext of
fraction polynomial by using Packing (see Algorithm 4).
If another MLWE ciphertext from Packing is given, these
two ciphertexts are multiplied by using TensorProd (see
Algorithm 3) and an MLWE ciphertext containing product
of two fraction polynomials is obtained. Note that Packing
and TensorPrd are widely used in many FHEs [1], [6] and
error analysis for the outputs of Packing and TensorProd in
our case is given in Propositions 6 and 7 in Appendix.
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Algorithm 3 TensorProd
Input CT1[1m1(X )] = (a0, . . . , aKct−1, b), CT2[1m2(X )] =

(a0, . . . , aKct−1, b) ∈ R
Kct+1
n,Q

Output OUT[12m1(X )m2(X )] ∈ R
Kct+1
n,Q

1: OUT = bCT1 + bCT2 − (0, . . . , 0, bb)
2: for i ∈ [Kct], j ≤ i do
3: Set k = θ (i, j) and set γk = 1/2 if i = j, γk =

1 otherwise

4: v(X ) = G−1crt

(
γk

(
aiaj + ajai

))
5: OUT +=

∑
x vx(X )Tenk,x ▷ Tenk,x is the one

of evaluation key generated by the user and lten is its gadget parameter

(See Section III-C)

6: end for
7: return OUT

Algorithm 4 Packing

Input: (cti[1mi])i∈[p] ∈
∏

i∈[p] Z
NgctKgct+1
Q ,

Output: OUT
[
1

∑
i∈[p] miX

i
]
∈ RKct+1

Nct,Q

1: Set OUT = (0(X ), . . . ., 0(X ),
∑

i∈[p] biX
i) ▷ bi is the b of

cti
2: for (i, j, x) ∈ [p,Kgct,Ngct] do
3: v = G−1crt

(
CTi,j,x

)
4: OUT +=

∑
y∈[lpack] vyPj,x,yX

i
▷ Pj,x,y is the

evaluation key generated by the user and lpack is its gadget parameter

(See Section III-C)

5: end for
6: return OUT

However, the resulting ciphertext should be re-run by
bootstrapping for two reasons. First, a large error is added
after TensorProd so that if TensorProd is run with this
error again, the output may not be valid. Second, some
coefficient of message polynomial may contain a message
larger than the radix β or the degree of message polynomial
is greater than p− 1 (Recall that fraction polynomial should
have p message coefficients), that requires homomorphic
RZ operation. Therefore, SampleExtract is applied to
the output of TensorProd to generate p LWE ciphertexts
again and calculate carryovers to adjust fraction polynomial
homomorphically. This process is explained in Section V-B
and KeySwitch is again requied to make valid squashed
LWE ciphertexts. Since Packing and TensorProd have been
widely used and studied in FHEs [1], [4], [5], [6], they are
listed as Algorithms 4 and 3 in Appendix.

4) RUNNING KEYSWITCH
For p ciphertexts from TensorProd, KeySwitch is run to
reduce the modulus and dimension such that a valid squashed
LWE ciphertext is obtained.

Let cti[12m] be the LWE ciphertext extracted from the i-
th coefficient message by SampleExtract(·, i), and let d be
the number of zeros from LSB such that md−1 = . . . =

m1 = m0 = 0 for m = (mt ′−1 . . .m1m0)(2). Then KeySwitch
plays an important role in homomorphically generating the
ciphertext for s-bit message (md+s−1 . . .md+1 . . .md )(2) from
the ciphertext for the message m. Since c is chosen by the
server, the server can select s to satisfy s+ c ≤ t , and re-run
BlindRotate.

Algorithm 5 KeySwitch

Input ct[m12] ∈ ZKctNct+1
Q , the start index d , the number of

desirable bootstrapping bits s, and the number of multi-
output 2c.

Output out
[
(md+s−1 . . .md )(2)2logNgct−s

]
∈ Zn+1

2Ngct
1: ct← ⌊ct/Q1⌋ mod Q0
2: Calculate the bias = 2d+η0−1ν and add it to b of ct
3: ct← ⌊ct/ν2η1+s+c+1+d−q⌉ mod 2q

4: Set out= (0, 0, . . . , 0, bct) ∈ ZKctNct+1
2q ▷ bct is b in ct

5: for (j, x) ∈ [Kct,Nct] do
6: v = G−1(act,j) ▷ act,j is the j-th coefficient of a in ct

7: out +=
∑

k vkKSj,x,k
8: end for
9: return out← ⌊out/2q−1−logNgct⌉2c mod 2Ngct

The overall error amplification of bootstrapping is given
in Lemma 4 by combining the errors from BlindRotate,
Packing, TensorProd, and KeySwitch.

Lemma4. Assume that KeySwitch(Algorithm 5) runs with a
ciphertext ct[12 (mt ′−1. . .m0)(2)] generated by BlindRotate,
Packing, TensorProd(Algorithms 2, 4, 3), and SampleEx-
tract with valid squashed (ctj)j∈[p] and (ct′j)j∈[p]. Let d be
the largest number satisfying md−1 = . . . = m0 = 0 and
1 = �(Nct|Epack|). Then the error Etot of KeySwitch output
with the message (md+s−1 . . .md )(2) 2logNgct−s is bounded
except with the probability 2−�(v) as

O
(
|E (p−1)ten | +1νpβ

2

1ν2d+η1+s−logNgct
+
σBks
√
lksNctKctv

2q−1−logNgct
+
√
hv

)
, (15)

where Epack and E (p−1)ten are derived in Propositions 6 and 7.

The proof of Lemma 4 is provided in Appendix.
If the overall error amplification Etot in (15) is less than

or equal to 2Ngct/2t , the output of KeySwitch is a valid
ciphertext and hence BlindRotate can be applied again.
We call that FPFHE is valid if its parameters satisfy |Etot| ≤
2Ngct/2t . Intuitively, a valid FPFHE can bootstrap ciphertext
for the message (mt−1mt−2 . . .m0)(2)12.

5) IMPORTANCE OF USING SHARED PRIME
The reason for using shared primes is to mitigate the
distortion in the messages that occur when the modulus
is changed from Q0 to 2n for the purpose of performing
bootstrapping. However, if we change the modulus Q0 to
2n, ⌊ct · 2n/Q0⌋ is calculated and hence the scaling factor
becomes ⌊1 · 2n/Q0⌋. Therefore, the inherent drawback of
this method is that the scaling factor becomes distorted, while
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FIGURE 3. An example of sequential bootstrapping to evaluate look-up tables (fi,j ) when t = 2.

the bootstrapping algorithm requires a power of two scaling
factor.

However, if shared primes are used and the modulus
reduction is performed as in Line 1 of Algorithm 5, the
approximated scaling factor1 ≈ ν2η1 of the message and the
approximated modulus Q0 ≈ ν2η0 share the same parameter
ν with negligible error amplification (which is shown in the
proof of Lemma 4). Therefore, by dividing ct by ν2i for some
i < η1 < η0 as in Line 3 of Algorithm 5,1 and Q0 are easily
reduced to the power of two.

In addition, if a non-sparse ternary secret key is used for
encrypting KSj,x,k , the third error term of (15) is changed
to O(

√
nv). Although the first and the second error terms

of (15) can be reduced by increasing Q1 = ν2η1 + 1 and
q, O(
√
nv) cannot be controlled and hence it makes an error

floor. However, if a sparse ternary secret key is used for
encrypting KSj,x,k , the third error term can be controlled by
the sparsity h.

C. SEQUENTIAL BOOTSTRAPPING ON SHARED PRIMES
FOR ACCOMMODATING LARGE NUMBERS AND
EVALUATING LOOK-UP TABLES
We discuss how to bootstrap ciphertexts of large messages
and how to evaluate arbitrary look-up tables (LUT) with the
proposed valid FPFHE with t ≥ 2. Note that TFHE/FHEW-
based bootstrapping can evaluate arbitrary LUTs having
input with t bits and output with t bits, typically t =
4 in a practical manner. Apparently, this does not imply
the ability to perform operations on arbitrary n-bit input-
output LUTs. Instead of arbitrary n-bit input and n-bit
output LUTs, if a such LUTs can be decomposed into
product forms of t-bit input and t-bit output, it can be

implemented using n/t rounds of bootstrapping in a parallel
manner.

However, more challenges still exist. If each n-bit messages
are encoded as numbers in the range [0, 2n−1] and encrypted
in each message coefficient of m(X ) of ciphertext CT, it is
difficult to perform bootstrapping on them all at once due to
obtaining sign-reversed bootstrapped when most significant
bit is 1, as explained in (8)

Note that an attempt to overcome this problem is explained
in [1]. Analogously, we explain how to bootstrap when
the LUT is decomposed into t-bit input and t-bit output
LUTs in this section, that is called sequential bootstrapping.
In comparison to [1], the sequential bootstrapping performs
over integers modulo Q = Q0Q1, which is greater than
264 and hence admits a lot of room for message space,
while [1] is limited to a small modulus. In addition, sequential
bootstrapping enables to bootstrap carry-over circuit after
calculating arithmetic operations.

To explain sequential bootstrapping dealing with worst
errors, consider an output MLWE ciphertext of TensorProd
as an input to sequential bootstrapping as in Fig. 3. First, the
operation of sequential bootstrapping is explained by using a
simple example.

Suppose that LWE ciphertexts ct encrypting each message
mi are given (the expression mi = (mi2mi1mi0)(2) is a binary
representation). the precision of each message coefficient is
3 bits, and the server wants to evaluate look-up tables fi,0 :
Z2s → Z2t and fi,1 : Z2s′ → Z2t with s = 1 and s′ =
2, where the input to fi,0 is an LSB of the message, and the
input to fi,1 is the remaining 2 bits of the message. Then, the
server can evaluate each fi,j on the ciphertext by sequential
bootstrapping with ACCPoly 1, 2, and 3, and its equivalent
look-up tables g0,. . . , g4 as follows:
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The sequential bootstrapping is performed as follows: (i)
At Fig. 3 a), two ciphertexts are generated by usingACCPoly
1 and (8); (ii) These two ciphertexts are multiplied and
ct[12mi,0] is generated. Since it contains a large error, the
server runs KeySwitch and BlindRotate with ACCPoly 2
at Fig. 3 b) to optain a partial result ct[1fi,0(mi,0)] and
ct[12mi,0] with small error; (iii) ct[12mi,0] is subtracted
from the input ct[12(mi,2mi,1mi,0)(2)] and runs KeySwitch
and BlindRotate with ACCPoly 3 at Fig. 3 c) to obtain
ct[21fi,1(mi,2mi,1)]; (iv) Packing is run to collect every
partial ciphertext at Fig. 3 d).
The correctness of sequential bootstrapping in Fig 3

relies on two facts. First, the subtraction ∗) part gen-
erates negligible error amplification because the error
amplification of BlindRotate is O(2η0 )-times less than the
error amplification of TensorProd, which are shown in
Propositions 5 and 7 in Appendix. Therefore, the output
of BlindRotate can be added to and subtracted from the
output of TensorProd poly(η0)-times, with negligible error
amplification. Second, every output ciphertext in Fig. 3 is
generated by using the proposed sequential bootstrapping in
Fig. 1 (or subroutine), except the output at ∗) part. Therefore,
if the proposed FPFHE is valid, every output ciphertext
is valid.

Finally, we formally propose a sequential bootstrapping,
which is the special case of WoP-PBS on our shared prime as
follows.

Lemma 5 (Sequential Bootstrapping on Shared Primes,
Analogous of Lemma 5 in [1]). Suppose that a valid FPFHE
with LWE message space Z2t for t ≥ 2 and look-up tables
f0,. . . ,ft ′−1 are given. Then, for each bit of the message
mi = (mi,t ′−1 . . .mi,0)(2) of the ciphertext ct[12mi] obtained
by BlindRotate, Pack, TensorProd, and SampleExtract,
a valid ciphertext CT[1′′fi,j(mi,j)] is generated for any
scaling factor 1′′ ≥ 1.

Although Lemma 5 is similar to Lemma 5 in [1], NTT
can be used in the proposed FPFHE and hence a large
message can be processed without generating extra noise,
contrary to the improved TFHE using FFT [1]. In addition,
the proposed FPFHE allows to pack up to p LWE ciphertexts
for multiplying two packed ciphertexts and to bootstrap every
coefficient bit by bit, by applying sequential bootstrapping,
which is essential for constructing homomorphic floating-
point operations.

In the next section, floating-point homomorphic addi-
tion and multiplication are proposed for constructing
FPFHE.

V. OVERFLOW-DETECTABLE FLOATING-POINT FHE
In Section V-A, floating-point homomorphic addition
and multiplication denoted as ADD and MULT are
proposed. Section V-B constructs various homomorphic
(sub)algorithms for constructing ADD and MULT. Sec-
tion V-C proposes a homomorphic method for normalizing
floating-point outputs. Finally, Section V-D introduces a
homomorphic algorithms for generating ciphertext of the
message indicating overflow occurrence.

Due to Lemma 5, various floating-point homomorphic
algorithms can be constructed and we will implement (4,27,-
511,511) and (4,12,-127,127) OD-FPFHEs as examples,
which achieve double and single precision, respectively.
Also, we choose LWE message space with t = 6, meaning
that each least significant 5-bit messages can be sequentially
bootstrapped. Note that, various ACC initial polynomials for
implementing each pseudo-code of homomorphic algorithms
are listed in Appendix.

A. OVERVIEW OF HOMOMORPHIC OPERATIONS FOR
OD-FPFHE: ADDITION, MULTIPLICATION, AND
OVERFLOW-DETECTION
For a better understanding of homomorphic operations,
we briefly explain how to do floating-point homomorphic
addition and multiplication of ciphertexts by using examples
in Figs. 4 and 5. Also, their pseudo-codes are given in
Algorithms 6 and 7, denoted as ADD and MULT. Note
that all the homomorphic algorithms used for construction of
ADD andMULT are proposed and explained in detail in the
following sections (Therefore, you may read the following
sections and then come back to this section if needed.)

Addition is performed as follows (e.g. See Fig. 4 A) Addi-
tion). (i) Takes two floating-point ciphertexts; (ii) Calculate
the maximum of two exponents; (iii) For each exponent,
subtract exponent values from the max value and calculate
the minimum of p and the subtracted value homomorphically;
(iv) The difference values are sign-reversed and lifted to
the monomial exponent multiplied with its sign message by
ConstToExp; (v) The outputs at (iv) are multiplied with
each fraction polynomial; (vi) CarryAdd bootstraps each
coefficient of the output ciphertext at (v) to make it less
than the precision β and move its carry to higher-degree
coefficients.

In Fig. 4 A), there are two noticeable points. The first one
is that the max of two exponents is added by 1. because,
after moving carry to higher-degree coefficients, the p-th
coefficient of fraction polynomial may become non-zero.
For this case only, the resulting fraction polynomial should
be divided by X and the exponent should be increased by
1 to make it a normal form. Note that, it may require a lot
of computation at the server to homomorphically check the
value of the p-th coefficient. However, if the server adds 1 to
the max value in advance, and regards the most significant
position in fraction polynomial as p, normalizing process can
be easily implemented.
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FIGURE 4. Addition: (2,5,0,3)-floating point number system with x = −4.25, y=1.5. Normal representation of
x = (sx , ex , mx ) and y = (sy , ey , my ) is (−1, (1.0001 )(2), 2) and (1, (1.1)(2), 0), where (1.0001)(2) = X4 + 1 and (1.1 )(2)
= X4 +X3. Dashed-circle is the input, dotted-circle is the input value, solid-box is the homomorphic operation requiring
sequential bootstrapping, dash-single dotted box is the homomorphic operation without sequential bootstrapping.

Algorithm 6 ADD

Input FCTi = (CTisign,CT
i
frac,CT

i
exp) for i = 1, 2, CTproof

Output FCTout = (Outsign,Outsign,Outsign), CT′proof
1: CTmax

exp [max(m1,m2)1′] = Max
(
CT1

exp[m11
′],

CT2
exp[m21

′]
)

2: for i=1:2 do
3: CTdiff

exp

[
min

(
max(m1,m2) − mi, p)

)
1′

]
= Min(

CTmax
exp - CTiexp, CT[p1

′]))

4: tmpCTi = TensorProd
(
ConstToExp(CTdiff

exp,CT
i
sign),

CTifrac
)

5: end for
6: (Outsign,Outfrac, (IsZeroi)i∈[p]) =

CarryAdd(tmpCT1 + tmpCT2)
7: CT′proof := GenProof(CTmax

exp + 1,CTproof)
8: (Outfrac,Outexp) = Normalize((IsZeroi)i∈[p],CTmax

exp +

1,Outfrac)
9: return (Outsign,Outfrac,Outexp,CTproof’)

The second one is that the input toConstToExp is forced to
take a value between 0 and p by applying Min at (iii). If the
monomial obtained at (iv) has the degree less than or equal
to −p, multiplication of this monomial and each fraction
polynomial, as performed at (v), generates a new fraction
polynomial with coefficient 0 for the term X i, 0 ≤ i < p.
However, time consumption of the proposed ConstToExp
depends on the maximum input size, and therefore forcing
its input less than or equal p enhances the overall speed of
ADD.

For multiplication as in Fig.5 A), (i) Take two floating-
point ciphertexts; (ii) Multiply two fraction polynomials; (iii)

CarryMul bootstraps each coefficient of the output at (ii) to
make it less than the precision β andmoves its carry to higher-
degree coefficients; (iv) Add two exponents; (v) Multiply two
signs.

Algorithm 7 MULT

Input FCTi = (CTisign,CT
i
frac,CT

i
exp) for i = 1, 2, CT′proof

Output FCTout = (Outsign,Outsign,Outsign), CT′proof
1: (Tmpfrac, (IsZeroi)i∈[p]) =

CarryMul(TensorProd(CT1
frac,CT

2
frac))

2: Tmpexp = CT1
exp + CT2

exp
3: Outsign = Packing ◦ BlindRotate ◦ KeySwitch◦ Sample-

Extract( TensorProd(CT1
sign,CT

2
sign), 0)

4: CT′proof = GenProof(Outexp,CTproof)
5: (Outfrac,Outexp) = Normal((IsZeroi)i∈[p],FCTmax

exp ,Outfrac)
6: return (Outfrac,Outsign,Outexp,CT′proof)

For both ADD and MULT, the homomorphic opera-
tion output is converted into a normal form by applying
Normalize as explained in Section V-C. The resulting
exponent after performing ADD or MULT is examined to
check if an overflow occurs or not by GenProof as in Figs. 4
C) and 5 C), and a ciphertext CT′proof containing overflow
information is generated, as explained in Section V-D.

B. VARIOUS NON-LINEAR HOMOMORPHIC ALGORITHMS
FOR FLOATING-POINT HOMOMORPHIC ADDITION AND
MULTIPLICATION
In this section, various non-linear homomorphic algorithms
are introduced which are necessary for ADD and MULT.

First, we propose Max in Algorithm 8 to calculate the
maximum of two exponent values. The correctness follows
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FIGURE 5. Multiplication: (2,5,0,3)-floating point number system with x = −4.25, y = 1.75. Normal representation of x
and y is (−1, (1.0001)(2), 2) and (1, (1.11)(2), 0), where (1.0001)(2) = X4 + 1 and (1.11)(2) = X4 + X3 + X2.

Algorithm 8 Max

Input CT(1)
exp[m11

′],CT(2)
exp[m21

′]
Output Outexp[max(m1,m2)1′]
1: CTexp[(meme−1 . . .m0)(2)1′]← CT(1)

exp − CT(2)
exp + 2e1′

▷ e is the smallest integer satisfying emax − emin < 2e

2: Generate MLWE ciphertext CTtmpi[mi1] by sequential
bootstrapping for all i ∈ [e+ 1]

3: for i ∈ [e] do
4: CT[memi2i1′] = Packing◦BlindRotate◦KeySwitch◦

SampleExtract (TensorProd (CTtmpe,CTtmpi), 0)
5: Out← Out+ CT[memi2i1′]
6: end for
7: return Out+ CT(2)

exp − 2e1′

from max(x, y) = ReLU(x − y) + y where ReLU(x) return
0 if x < 0 and x otherwise. To examine the sign of message
in CT(1)

exp − CT(2)
exp, assume that both messages take the value

between emin and emax. Since the magnitude of message in
CT(1)

exp − CT(2)
exp is less than 2e, the server can add 2e1′ to it

and check whether me is still one or not by using sequenctial
bootstrapping in Line 2. Then, a ciphertext CTtmpe[me1] can
mask other ciphertexts after processing the loop Line 3-5,
which is equivalent to ReLU.

Next, we propose a homomorphic algorithm for lifting a
constant message m1′ to the monomial exponent message
as 1Xm in ConstToExp (Algorithm 9), which is used for
equalizing exponent values before doing addition and for
normalizing the resulting ciphertext after doing addition or
multiplication. For the former case, ConstToExp returns a
ciphertext containing the message ms1X−m for given sign
message ms, and for the latter case, returns a ciphertext
containing the message 1Xm.

Algorithm 9 ConstToExp
Input CTexp[m1′] where m = (me . . .m0)(2), CTsign[ms1],

f ∈ {0, 1}
Output Out[1Xm] if f = 1, Out[ms1X−m] otherwise
1: Generate CTi[mi1] by using sequential bootstrapping

and Packing
2: Out[(1− f )ms + f1] = (1− f )CTsign + f1
3: for i ∈ [e+ 1] do
4: Out = TensorProd((X (2f−1)2i

−1)Out,CTi)+1Out
5: for j ∈ [2i] do
6: Out = Run Packing with BlindRotate
◦KeySwitch◦ SampleExtract(Out, j)

7: end for
8: end for
9: return Out

The correctness of ConstToExp in Algorithm 9 is similar
to the correctness of BlindRotate. Suppose that m =

(meme−1 . . .m0)(2) and CTsign[ms1]. When i = 0 in Line 4,
the message12((X −1)m0+1)=12Xm0 is assigned to Out.
By induction on i, we can show that the message12Xmi...m0(2)

is assigned to Out if the previous message is 12Xmi−1...m0(2) .
In addition, we know that Out in Line 4 can be bootstrapped
with sufficiently large Q1 since the error added to Out is
relatively small by Propositions 6 and 7.

Next, a homomorphic carryover algorithm for addition is
proposed in Algorithm 10, denoted as CarryAdd, which is
a core part of performing carryover during addition of two
fractions. Let π : Z → Zβ , π (x) = x mod β be a
message-extraction function. After two ciphertexts are added,
message in each coefficient should be adjusted by using π
and if a carry appears, it should be added to higher-degree
coefficients.
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There are many ways to move carry, and first we give
abstract definition of carry system. Let ci→j : Z → Z be a
carry function for all i, j ∈ N with i < j. After defining a
carry collection Cj by using ci→j and C0,. . . ,Cj−1, recursively,
we define a carry system C over polynomial ring Z[X ] as
follows:

Cj

( n∑
i=0

αiX i
)
=

[
αj +

j−1∑
i=0

(ci→j ◦ Ci)(α(X ))
]
∈ Z,

C

( n∑
j=0

αjX j
)
=

n∑
j=0

(π ◦ Cj)(α(X ))X j ∈ Z[X ], (16)

whereC0
( ∑n

i=0 αiX
i
)
= α0, i.e. the constant coefficient does

not take a carry. Therefore, the carry system C is dependent
only on carry functions ci→j.
Intuitively, the carry collection Cj adds every carry (ci→j ◦

Ci)(α(X )) to the j coefficient αj from all coefficients strictly
less than j. In addition, we will call C a valid carry system
if 9β (α(X )) = (9β ◦ C)(α(X )) ∈ Q for all α(X ) ∈ Z[X ],
i.e. sharing the same value when evaluating β. For ADD,
ci→i+1(x) = (x − π (x))/β is used for all i ∈ N.

Algorithm 10 CarryAdd

Input CTfrac[m(X )12]
Output (Outsign,Outfrac, IsZeroi∈[p+1])
1: Set ctc = 0 for ctc ∈ ZKctNct+1

Q and CTfrac← CTfracX
2: for i ∈ [p+ 2] do
3: Tmp[12Ci(m(X ))] = SampleExtract(CTfrac, i)
+ctc

4: ct′i
[
1(π ◦Ci)(m(X ))

]
, ctc

[
12(ci→i+1◦Ci)(m(X ))

]
←

Run
SampleExtract(·, j) with (BlindRotate ◦

KeySwitch) (Tmp) and j ∈ [2]
5: end for
6: CT′sign = (Packing ◦BlindRotate◦ KeySwitch)(ctc) ▷

extracting the sign of last carry ciphertext

7: CT′ = TensorProd(CT′sign, Packing(ct′0, . . . , ct
′

p+1))
and set ctc = 0

8: for i ∈ [p+ 2] do
9: Tmp = SampleExtract(CT′, i)+ ctc

10: (ct′′i , ct
c, IsZeroi) = Run SampleExtract(·, j) with

(BlindRotate ◦
KeySwitch) (Tmp) and j ∈ [3] ▷ IsZeroi

contains a message m1 with m = 1 if the message of ct′′i is zero, and

m = 0 otherwise.

11: end for
12: return

(
CT′sign,Packing

(
(ct′′i )i∈[p+2]

)
, (IsZeroi)i∈[p+1]

)

The correctness of CarryAdd is as follows: The fraction
polynomial is multiplied by X so that the least significant
coefficient can take a carry from the previous coefficient.
Note that the position of most significant coefficient is p+ 1,
not p − 1, since the fraction polynomial is multiplied by
X , and the exponent message is increased by 1 in advance.

After CarryAdd runs at every iteration on Line 2, a last
carry ctc appears at p + 1 coefficient and its sign becomes
the sign of the output of adding two ciphertexts. However,
if this sign is negative, a packed message from ct′0, . . .,ct

′

p+1
is sign-reversed, and to fix this problem, CT′sign in Line 6 is
multiplied to the packed ciphertext to CT′ in Line 7. While
adjusting and moving carries in Line 8, CarryAdd also
checks whether each coefficient of C(m(X )) is zero or not,
and generates a ciphertext IsZeroi. Note that IsZeroi is used
to make the message in normal form in Section V-C.

Similar toCarryAdd, a homomorphic carryover algorithm
for multiplication CarryMul is proposed in Algorithm 11
using a valid C and carry functions ci→j.

Algorithm 11 CarryMul

Input CTfrac[m(X )12]
Output (CT′frac, (IsZeroi)i∈[p])
1: Set ctci = 0 for all i ∈ [2p] where ctci ∈ ZKctNct+1

Q
2: for i ∈ [2p] do
3: Tmp[12Ci(m(X ))] = SampleExtract(CTfrac, i) +

ctci
4: (ct′i

[
1(π ◦ Ci)(m(X ))

]
,
(
ctccj

[
12(ci→j ◦

Ci)(m(X ))
])
j, IsZeroi)← Run

sequential bootstrap to generate ciphertexts of i-th
message (π ◦Ci)(m(X )) and carryovers (ci→j ◦Ci)(m(X ))
for all j > i, from the ciphertext Tmp

5: Update carry ctcj += ctccj for all j > i.
6: end for
7: return

(
Packing(ct′i)i∈[2p], (IsZeroi)i∈[2p])

)
We use the following carry functions for multipli-

cation. For the given i-th coefficient of l-bit message
m = (ml−1 . . .m0)(2), set ci→i+1(m12) = (m3m2)(2)
and ci→i+2j(m) = (m4j+3m4j+2m4j+1m4j)(2) for all j ≥
1. Note that it is not trivial to design look-up tables for
generating ciphertexts in Line 4 and we list various look-up
tables (ACCPoly(X)) for implementing above carry system
in Appendix.

For accelerating CarryMul, an upper-bound of Ci(m1(X )
m2(X )) is derived for any valid fraction polynomials m1(X )
and m2(X ) in Proposition 4.

Proposition 4. Suppose that two polynomials a(X ), b(X ) ∈
N[X ] are given where ai ≤ bi, and carry functions ci→j :

N→ N are given for all i, j ∈ N such that ci→j(x) ≤ ci→j(y)
if x ≤ y for all x, y ∈ N. Then the inequality Cj(α(X )a(X )) ≤
Cj(α(X )b(X )) holds for all j and any α(X ) ∈ N[X ].

Proof is provided in Appendix. By Proposition 4,
Ci(m1(X )m2(X )) ≤ Ci(m1(X )mmax(X )) ≤ Ci(m2

max(X )),
where mmax(X ) = (β − 1)1

∑p−1
j=0 X

j. Therefore, for any
carry functions ci→j, the maximum value of each coefficient
is less than or equal to Ci(m2

max(X )) while processing carrys.
From Proposition 4, we can derive the condition for the
modulus Q0

(
as discussed in Section III-B, (iii)) such that
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2η0−η1 > logmaxi Ci(m2
max(X )

)
. Otherwise, messages may

be deformed due to smallQ0. Moreover, this upper-bound can
be determined in advance, and the range of index i in Line 2
of CarryMul can be reduced since the server knows the
worst-case smallest index which affects the least significant
position p− 1 by using maxi Ci(m2

max(X )).

C. HOMOMORPHIC ALGORITHMS FOR NORMALIZING
FLOATING-POINT OUTPUTS
After doing CarryAdd or CarryMul, fraction and exponent
should be adjusted to a normal form. The first step is to count
the number of consecutive zeros from the most significant
in the fraction until nonzero value appears and we propose
HomCount in Algorithm 12 for that purpose.

Algorithm 12 HomCount
Input (IsZero)i∈[p′]
Output Out[m1′], where m is the number of consecutive

zeros from the most significant until nonzero value
appears

1: CT1[1mp′−1]← IsZerop′−1[1mp′−1]
2: Out[12mp′−1]← 1IsZerop′−1[1mp′−1]
3: for i = p′ − 2 to 0 do
4: (CT1[1

∏p′−1
j=i mj],CT2[12 ∏p′−1

j=i mj]) ←

Packing ◦BlindRotate◦ KeySwitch
(SampleExtract(TensorProd(CT1, IsZeroi),0))

5: Out += CT2
6: end for
7: return Out[m1′]← Bootstrap Out

Note that the message of CT1 and CT2 are the same
except the scaling factor. In Line 4 of Algorithm 12,
TensorProd(CT1, IsZeroi) works as AND gate meaning that
the message of its output is 1 only if the messages of both
CT1 and IsZeroi are 1. Therefore, every returned ciphertext
CT1 in Line 4 encrypts 1 until the message of IsZeroi is
0 at some index i for the first time, and encrypt 0 afterwards.
Then, all the returned ciphertexts CT2 are added to generate
Out in Line 5, which has the message scaled by 12. Finally,
we bootstrap Out to obtain a ciphertext containing the
message about the number of consecutive zeros starting from
the most significant until nonzero significant value appears.

Algorithm 13 Normalize :
Input ((IsZeroi)i∈[p],CTexp,CTfrac)
Output Outfrac,Outexp
1: CTmin

exp =Min( HomCount((IsZeroi)i∈[p]), CTexp)
2: CTtmp = TensorProd(ConstToExp(CTmin

exp ),CTfrac)
3: for i ∈ [p] do
4: outi ← (BlindRotate ◦KeySwitch◦

SampleExtract)(CTtmp, i)
5: end for
6: return (Packing(out0, . . . , outp−1),CTexp − CTmin

exp )

By using HomCount, we construct Normalize in Algo-
rithm 13 for normalizing fraction and exponent of the output
ciphertext. Since the number of consecutive zeros in the
fraction is counted by HomCount, Normalize can subtract
this value from the exponent ciphertext. However, since
the subtracted message may be less than emin, Normalize
evaluatesMin in Line 1 and then subtracts thismin value from
the input exponent ciphertext in Line 4. Note that CTmin

exp of
constantmessage is converted to CTtmp ofmonomial with this
constant message as its exponent by ConstToExp in Line 2.
Finally, all out ciphertext outi are packed into one MLWE
ciphertext.

D. GENERATING A PROOF TO DETECT OVERFLOW AND
CONSTRUCTING OD-FPFHE
In this section, we propose GenProof in Algorithm 14
to generate a ciphertext, called as a proof containing the
message indicating whether ξ -overflow occurs or not. Note
that we will use the threshold ξ = 2βmax+1 and an auxiliary
numbers e′ ≥ ⌊logmax(|emax−1|, |emax−2emin+1|)⌋+1 in
Algorithm 14 to examine the value of exponent, which is
used for the proposed OD-FPFHE. The GenProof operates
as follows:

Algorithm 14 GenProof
Input CTexp[m1′], CTproof[mpf1′]
Output proof[(mpf + α)1′] with α = 1 if m > emax, and

α = 0 otherwise
1: CT[(me′−1 . . .m0)(2)1′] = CTexp + (2e

′

− emax − 1)1′

2: CT′proof[(1− me′−1))1
′]← ▷ Calculation can be performed

via Line 1-5 of Max (Algorithm 8)

3: return CT′proof += CTproof

GenProof operates similar to Max as follows: If the
previous proof has the message mpf is 0, i.e., an overflow
does not occur while performing the previous operations,
then the message m is in 2emin ≤ m ≤ 2emax. Since
m′ ≜ emax−m+ 1 is strictly positive if and only if m ≤ emax,
the e′-th bit in the binary representation of 2e

′

−m′ is one if and
only if m′ is strictly positive, meaning that CT′proof in Line 2
has the message about whether m > emax or not. Otherwise,
if the previous proof message mpf has a non-zero message,
then it indicates that an overflow has already occurred, hence
CT′proof has a non-zero message.

Finally, a user can check whether an overflow occurs or
not by decrypting the returning proof that is a sum of all
the previous proofs. Therefore, by combining FPFHE with
bootstrapping failure probability 2−�(v) given in Lemma 4
and an arithmetic circuit family C which contains a circuit f
having poly(v) bounded operations, (βemax+1, C)-OD-FPFHE
is constructed.

VI. SECURITY ANALYSIS AND SIMULATION RESULTS
As other FHEs, the proposed OD-FPFHE takes key-
dependent message (KDM) and circular security assumptions
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TABLE 1. Concrete parameters of OD-FPFHE for various security levels.

TABLE 2. Time consumption of ADD and Mult for various parameter values (second).

to generate public keys [2], [22], [26]. To determine concrete
parameter values of OD-FPFHE for achieving target security,
we estimate the computational complexity of Primal uSVP
and dual lattice attack using k-block BKZ with SVP oracle
having the sieving cost 20.292k+16.4 [27]. In addition, we apply
hybrid primal and dual attack [28] to LWE key-switching key
encrypted by h-sparse sk-ks.

A. SIMULATION RESULTS
Every simulation is performed by running Ubuntu 20.04 LTS
over Intel(R) Xeon(R) Silver 4210R CPU@2.40GHz having
20 core 40 threads and 256 GB of RAM. PALISADE is com-
piled with the following CMake flags: WITH-NATIVEOPT
= ON (machine-specific optimizations are applied by the
compiler), WITH-INTEL-HEXL = ON (AVX-512 acceler-
ation is used), and WITH-TCM = ON (Tcmalloc is used,
which is suitable for multi-thread processing), by Clang++
10.0.0.

In Table 1, the number after D (double precision) refers
to the security level in bits. For instance, D128 guarantees
128-bit security of double precision OD-FPFHE under
Primal, Dual, and hybrid attacks. Note that OD-FPFHE with
D128 can deal with the ciphertexts for both double and single
precision messages.

We implement (4,27,-511,511) and (4,12,-127,127)
floating-point number systems by using PALISADE v1.11.
We simulate ADD and MULT in Algorithms 6 and 7 by
using 1 (single-core), 4, and 10 threads using the parameters
in Table 1 and list the operation time in Table 2. In addition,
we simulate addition and multiplication time per threads,
which is also listed in Table 2 as Amortized time. Therefore,
if many threads are available, run time is expected to be close
to the amortized time if a circuit is evaluated parallel such
as matrix multiplication. However, if a circuit is evaluated by
sequential operations, run time is expected to be close to the
Time (10 thread) in Table 2.

B. PERFORMANCE EVALUATION OF THE PROPOSED
OD-FPFHE
The speed of ADD and MULT of the proposed OD-FPFHE
with D128 is 100x and 2.6x times faster than those of
TFHE-based implementation [15]. While the floating-point
implementation in [15] inefficiently utilized the existing
homomorphic encryption, the proposed approach redesigned
homomorphic encryption to align with floating-point opera-
tions in the plaintext domain, resulting in a significant speed
improvement. Also, the speed ofADD is 28.8x faster than that
of CKKS-based implementation [15]. However, the speed of
MULT of CKKS-based implementation [15] is faster than
that of the proposed OD-FPFHE because the implementation
in [15] does not normalize the result and hence Proposition 3
is not guaranteed.

Next, we arbitrarily choose double precision and sin-
gle precision messages x without encoding error, i.e.
Decode(Encode(x)) = x as follows:

x1d = −9.1763514236254290 ∗ 10
−32,

x2d = 6.2467247246375865 ∗ 10−24,

x3d = 2.4523526872362373 ∗ 1022,

x4d = −5.4324663335297274 ∗ 10
17,

x1s = −2.7914999921796382 ∗ 10
−15,

x2s = 8.3867001884896375 ∗ 10−12,

x3s = 1.82634005135360 ∗ 1014,

x4s = −6.278269952 ∗ 10
9,

where x id denote double precision message and x id denote
single precision message. Then we evaluate z1 = x1 + x2,
z2 = x3 − x4, z3 = z1 · z2, and z4 = z23 over the ciphertext
domain, and the results together with the correct calculation
values are listed in Table 3. Note that the correct calculation
values are rounded down. It can be easily checked that the
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TABLE 3. Homomorphic computation results For double precision(64-bit) and single precision(32-bit).

error between correct value and decryption result is bounded
as expected from Proposition 3 if an overflow does not occur.
All the simulation codes are open to the public.

C. CONCLUSIONS AND FUTURE WORKS
We proposed a floating-point fully homomorphic encryp-
tion with homomorphic normalization. Since floating-point
number systems are is widely used in many areas such
as high-precision deep learning and control systems, the
proposed FPFHE can guarantee both privacy and accuracy
for many precise applications. In addition, we proposed an
OD-FPFHE which also has many applications. For instance,
it is quite useful for solving satellite collision problem and
performing accurate continual learning while keeping the
privacy of training data because the encrypted training data
causing an overflow can be excluded at the training stage to
avoid the degradation in learning.

However, there are still many issues to be studied. First,
we do not propose homomorphic floating-point division
algorithm. Since algebraic structures of many FHEs are
not in Euclidean domain, a simple and natural division
algorithm is not trivial, and hence we have been searching
an effective and fast division circuit suitable for the proposed
FPFHE. In addition, floating-point homomorphic elementary
functions such as exponential, logarithm, and N -th root
functions are also desirable in privacy-preserving machine
learning.

One of the critical disadvantages of current OD-FPFHE
is slow operation time. However, the operation speed can
be improved in many aspects as follows: Since a large Q
affects bootstrapping time, reducingQ should be investigated.
For instance, randomized gadget decomposition is reported
that it reduces error amplification after running GSW-
like multiplication [21]. Therefore, effective randomized
gadget decomposition for OD-FPFHE and both rigorous and
practical error analysis will improve the operation time.

Also, studies of accelerating speed of FHEs on GPUs
have been performed [29] and in the near future, OD-FPFHE
is expected to benefit from such hardware acceleration,
potentially leading to the improved performance.

APPENDIX A
PROOF OF PROPOSITION 4
We prove Proposition 4 by induction on j of Cj. Assume that
C0, . . . ,Cj−1 satisfy Proposition 4. Since every coefficient of
b(X ) is greater than or equal to the corresponding coefficient
of a(X ), C0(a(X )α(X )) = a0α0 ≤ b0α0 ≤ C0(b(X )α(X ))

holds. Then for the index j,

Cj(a(X )α(X ))

=

∑
i∈[j+1]

aiαj−i +
∑
i∈[j]

(ci→j ◦ Ci)(a(X )α(X ))

≤

∑
i∈[j+1]

biαj−i +
∑
i∈[j]

(ci→j ◦ Ci)(b(X )α(X ))

= Cj(b(X )α(X ))

□

APPENDIX B
ERROR ANALYSIS OF BLINDROTATE
Proposition 5. Assume that BlindRotate in Algorithm 2
runs with a valid squashed ct and returns outα ∈ ZNgctKgct+1

Q
for the message (ACCPoly(X ) X−ϕ(ct))α . Then for any α ∈
[Ngct], the error in α-coefficient, denoted as E (α)bl of outα ,
is bounded except with probability 2−�(v) as follows:

|E (α)bl | = O
(
Bbl

√
vNgctKgct

(
n+ σ

√
nlbl

))
. (17)

Proof:WhenAlgorithm 2 runs with i on Line 2, by using
(7) and CMux gate analysis in Section 3.4 of [4], the additive
error is derived as follows:∑
j∈[lbl]

(Xai − 1)G−1crt (ACC
(i))E1

j (X )

+

∑
j∈[lbl]

(X−ai − 1)G−1crt (ACC
(i))E−1j (X )

+

∑
j∈[l̄bl]

[
(Xai − 1)A1j (X )+ (X−ai − 1)A−1j (X )

]
sk − bl(X )j,

(18)

where ACC(i) is the computed value after the (i − 1)-st
iteration on Line 3, A1j (X ) and A−1j (X ) are gadget error
polynomials, and E1

j (X ) and E−1j (X ) are j-column error
polynomials of BL1

i and BL−1i , respectively.
Since the errors E1

j (X ) and E−1j (X ), and the secret
key sk − bl j(X ) follow symmetric distribution and each of
them is multiplied by independent and bounded random
variable, then the summands in each summation in (18) have
Pythagorean additivity by Corollary 2. By induction on i,
we can obtain (17) by using (2) and Proposition 1. □
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APPENDIX C
ERROR ANALYSIS OF PACKING
Proposition 6. Assume that Packing in Algorithm 4 runs
with p ciphertexts (cti[1mi])i∈[p] where cti ∈ ZNgctKgct+1

Q
are generated by running BlindRotate in Algorithm 2
with valid squashed (ct′j)j∈[p], and returns a ciphertext

OUT[1
∑

i∈[p] miX
i] ∈ RKct+1

Nct,Q . Then for any coefficient

α ∈ [2p], the α-coefficient error E (α)Pack of OUT is bounded
except with probability 2−�(v) as follows:

|E (α)pack| = |E
(α)
bl | + O

(
Bpack

√
vNgctKgct(p+ σ

√
lpackp)

)
.

(19)

Proof: The decryption result of the output of Packing
OUT in Algorithm 4 is as follows:∑

i,j,x,y

G−1crt (CTi,j,x)y(sk − bl j,xB
y+1
pack + E

′
j,x,y(X ))X

i

+

∑
i∈[p]

biX i

=

∑
i

ϕ(CTi)X i +
∑
j,x

(
∑
i

A′j,x,yX
i)sk − bl j,x

+

∑
i,j,x,y

G−1crt (CTi,j,x)yX
iE ′j,x,y(X ), (20)

where A′j,x,y is a gadget error and E ′j,x,y(X ) is the error
polynomial of packing key Pj,x,y, which is already analyzed
(See details in [4]).

Since the errors E ′j,x,y(X ) and the secret key sk − bl j,x
follow the symmetric distribution and each of them is
multiplied by independent and bounded random variable,
the second and third summands in (20) have Pythagorean
additivity by using Corollary 2. Since the first summation
in (20) is

∑
i(1miX

i
+ E (i)bl ), (19) holds. □

APPENDIX D
ERROR ANALYSIS OF TENSORPROD
Proposition 7. Assume that TensorProd in Algorithm 3
runs with two ciphertexts CT1[m1(X )] and CT2[m2(X )] ∈
RKct+1
Nct,Q which are generated by Algorithms 2 and 4
with valid squashed (ctj)j∈[p] and (ct′j)j∈[p], and returns

OUT[12m1(X )m2(X )] ∈ RKct+1
Nct,Q . If 1 = �(Nct|Epack|) is

chosen and the coefficients of both m1(X ) and m2(X ) are
bounded by1(β−1), then for any α ∈ [2p], the α-coefficient
error E (α)Ten of OUT is bounded except with probability 2

−�(v)

as follows:

O
(
1pβ

∣∣∣E (p−1)pack

∣∣∣+ K 2
ctN

2
ctltenBten + σBtenKgct

√
ltenNgctv

)
(21)

Proof: We perform decryption of OUT returned from
Algorithm 3 as follows:∑

k,x

G−1crt

(
γk

[
ajai + aiajϕ(CT1)ϕ(CT2)

+

∑
k,x

A′′k,x(X )sk i(X )sk j(X )

+

∑
k,x

G−1crt

(
γk

[
ajai + aiaj

])
x
E ′′k,x(X ), (22)

where A′′k,x are the gadget errors and E ′′k,x(X ) are the errors
in Tenk,x . Also, the noise ϕ(CT1)ϕ(CT2) −m1(X )m2(X ) is
calculated as follows:

m1(X )Epack,2(X )+ m2(X )Epack,1(X )+ Epack,1(X )Epack,2(X ),
(23)

where Epack,1(X ) and Epack,2(X ) are the packing errors in
CT1 and CT2, respectively.
Since the maximum degree of both message polynomials

m1(X ) and m2(X ) is p − 1, the (p − 1)-st coefficient of
m1(X )Epack,2(X )+ m2(X )Epack,1(X ) is expressed as∑

i∈[p]

(
m1,iE (p−1−i)pack,2 + m2,iE (p−1−i)pack,1

)
(24)

by (2). Since each coefficient is the sum of p product
of message and packing error, without loss of generality,
we analyze a worst-case error of (p− 1)-st coefficient having
messages m1(X ) = m2(X ) =

∑
i∈[p]1(β − 1)X i. Since

|Epack,1(X )Epack,2(X )| = O(Nct|E (p−1)pack,1|
2), by using the fact

1 = �(Nct |Epack|), (18), and (20), then (23) is bounded
as O(1pβ|E (p−1)pack |). Moreover for (22), the first summation
is bounded as O(K 2

ctN
2
ctltenBten) and the second summation is

bounded as O
(
σBten Kgct

√
ltenNgctv

)
by using Corollary 2. □

APPENDIX E
PROOF OF LEMMA 4
After running Algorithm 5 with input ct, this ct is
multiplied by three values 1−1, (ν2η1+s+c+1+d−q)−1, and
2c+1+logNgct−q, as listed in Lines 1, 3, and 9. Since
2c+logNgct+1−q/1ν2η1+s+c+1+d−q is multiplied to ct, the
error in ct becomes the left of first term of (15). When
Algorithm 5 runs on Line 1, O(

√
KctNctv)-bounded flooring

errors are added, which is negligible compared to |E (p−1)ten |/1.
Next, we consider ct in Line 1 as the ciphertext modulo

ν2η0 . If the modulus of ct is changed from Q0 = ν2η0 +
1 to ν2η0 , then O(

√
KctNct) errors are added by the following

decryption equation on Z:

b− aisi = m+ e+ h̄Q0 = m+ e+ h̄+ h̄ν2η0 ∈ Z,

for some h̄ ∈ Z where h̄ = O(
√
KctNct) for ternary

secret key [6], which is negligible compared to other noises.
Moreover, we regard the message mQ1 = mν2η1 + mν as
a message mν2η1 with error mν. Therefore, the message of
the ciphertext out becomes (mf+s . . .mf )(2)2logNgct−s after
terminating Algorithm 5 and up to mν ≤ p(β − 1)2ν error
is added. Therefore, extra noise νp(β − 1)2 is derived from
the message part and becomes the rest of first term of (15).

After rounding in Line 3, O(
√
NctKctv)-bounded rounding

error is added. After running on Line 5, errors in KSj,x,k are
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added, which is O(σBks
√
lksNctKctv)-bounded random vari-

able by Corollary 2. Both errors are divided by 2q−1−logNgct

after running Line 9, which is the second term in (15).
Finally, the rounding errors after running Line 9 are added.

However, we use h-sparse secret key for encrypting KS and
only h rounding errors are added. By using subgaussian
property with Corollary 2, this error is O(

√
hv)-bounded, and

hence the third term of (15) is derived. □

APPENDIX F
ACCUMULATE POLYNOMIALS FOR IMPLEMENTING
HOMOMORPHIC ALGORITHMS MAX, MIN, CONSTTOEXP,
CARRYADD, AND CARRYMUL
In this appendix, we propose accumulate polynomials for
implementing various homomorphic algorithms necessary
for constructing (4, 27,−511, 511) floating-point FHE.

A. MIN AND MAX
To implement and accelerate Max in the (4,27,-511,511)
floating-point FHE with e = 10, we apply two sequential
bootstrappings to generate ciphertext having 4-bit messages
in Line 2 ofMax in Algorithm 6. Since the exponential bit is
10, there is remaining significant 2bits, thereforeACCPoly 4
is used once to bootstrap the remaining two message bits in
Line 2 and we obtain two ciphertexts having the messages
m10(m9m828 − 210)1′ and m101 at once. Note that Min
can be implemented by using the equation min(x, y) =
−ReLU(x − y)+ x in a similar way.

B. ConstToExp
To implement and accelerate ConstToExp in the (4,27,-
511,511) floating-point FHE, ACCPoly 5 and ACCPoly 6
are used for bootstrapping in Line 2 in Algorithm 7. Since
the message is cut and m ≤ p = 27 < 25 is less than
5 bits, 3 bits from the least significant bit are sequentially
bootstrapped by using ACCPoly 5 and hence CT[1m0],
CT[1m1], and CT[1m2] are obtained. These ciphertexts
generate CT[1X4m2+2m1+m0 ] in Line 3 with i = 0, 1, and 2.
Moreover, twomost significant bits are bootstrapped by using
ACCPoly 6 and ciphertext CT[1X16m4+8m3 ] is constructed
by using Packing with ACCPoly 6 at once.

C. CarryAdd
To implement and accelerate CarryAdd in the (4,27,-
511,511) floating-point FHE, ACCPoly 7 is used for
bootstrapping in Line 4 of Algorithm 8. Note that the i-
th coefficient message mi corresponding to the sum of two
fraction polynomials takes a value between −6 and 6. If a
carry message takes a value from −2 to 1, then ct′i and
ctc are obtained by adding 812 and bootstrapping with
ACCPoly 7. When bootstrapping is performed at i = p +
1 in Line 3, ACCPoly 8 is used to obtain the sign of
fraction and message at once. Note that the i-th coefficient
message mi after packing and tensor product in Line 8
takes a value between −3 and 3. Therefore, we obtain ct′′i ,
ctc, and IsZeroi by adding 412 and then bootstrapping
using ACCPoly 9.

D. CarryMul
To implement and accelerate CarryMul in the (4,27,-
511,511) floating-point FHE, carry functions are designed
as follows: for the i-th coefficient of l-bit message
m = (ml−1 . . .m0)(2), set ci→i+1(m12) = (m3m2)(2) and
ci→i+2j(m) = (m4j+3m4j+2m4j+1m4j)(2) for all j ≥ 1.
The remaining carry functions ci→i+2j+3 are set to zero
function for all j ∈ N. Then carry functions can be
efficiently constructed by using ACCPoly 10 as follows: If
l ≤ 4, ciphertexts of message part and carry are obtained
by using only one common bootstrapping. Otherwise if
l > 4, ACCPoly 10 is used to obtain four cipher-
texts corresponding to four messages (−1)m3 (m1m0)(2)1,
(−1)m3 (m2)(2)1, (−1)m31, and (−1)m312, respectively.
Note that if m4 is not zero, all calculated ciphertexts have
sign-reversed messages. However, the sign of the first and
second ciphertexts is removed by doing tensor product with
the third ciphertext, and those ciphertexts contain messages
(m1m0)(2) and (m2)(2), respectively. Finally, a ciphertext
having the message (m3m2)(2) is calculated by adding 1 to
the output g2 and the ciphertext having the message (m2)(2).
Therefore, we can always decompose a message having a
large bit into ciphertexts having a maximum two bit message.
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