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ABSTRACT Accurate and robust pedestrian detection is fundamental for indoor robotic systems to navigate
safely and seamlessly alongside humans in spatially constrained, unpredictable indoor environments. This
paper presents a novel method, IRBGHR-PIXOR, a detection framework specifically engineered for
pedestrian perception in indoor mobile robots. This novel approach employs an enhanced adaptation of the
cutting-edge PIXOR model, integrating two pivotal augmentations: a remodeled convolutional backbone
leveraging Inverted Residual Blocks (IRB) in unison with Gaussian Heatmap Regression (GHR), as well as
a Modified Focal Loss (MFL) function to tackle data imbalance issues. The IRB component notably bolsters
the network’s aptitude for processing intricate spatial representations generated from sparse 3D LiDAR
scans. Meanwhile, integrating GHR further elevates accuracy by enabling precise localization of pedestrian
subjects. This is achieved by modeling the probability distribution and predicting the central location of
individuals in the point cloud data. Extensively evaluated on the large-scale JRDB dataset comprising
intense scans from 16-beam Velodyne LiDAR sensors, IRBGHR-PIXOR accomplishes exceptional results,
attaining 97.17% Average Precision (AP) at the 0.5 IOU threshold. Notably, this level of accuracy is achieved
without significantly increasing model complexity. By enhancing algorithms to overcome challenges in
confined indoor environments, this research paves the way for safe and effective deployment of autonomous
technologies once encumbered by perceptual limitations in human-centered spaces. Nonetheless, evaluating
performance in diverse edge cases and integration with complementary sensory cues promise continued
progress. The developments contribute towards the vital capacity of reliable dynamic perception for next-
generation robotic systems coexisting in human-centric environments.

INDEX TERMS Robot navigation, pedestrian detection, pedestrian tracking, PIXOR, Gaussian heatmap,
point cloud, deep learning.

I. INTRODUCTION

In recent years, the deployment of mobile robots in human-
occupied indoor spaces has gained significant interest,
with diverse applications spanning from automated inven-
tory and surveillance operations in warehouses, to service
robotics in retail environments, and assistive technologies
for the elderly in residential care [1]. This widespread
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adoption hinges on the integration of highly precise and
dependable pedestrian detection systems into these robots.
However, pedestrian detection for indoor mobile robots
poses numerous distinct challenges rarely encountered in
outdoor navigation. This arises largely due to confined spaces
exacerbating the unpredictability of pedestrian movements,
coupled with complications from poor lighting, sensor noise
interference, infrastructure obstruction, and dense crowds.
Consequently, achieving near-flawless pedestrian tracking is
crucial, demanding a level of accuracy and reliability that
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current detection methods struggle to provide. Therefore,
specialized solutions are imperative.

As technology has advanced, so too have the methods
for pedestrian detection. Traditional camera-based systems,
despite undergoing significant advancements [2], continue
to confront challenges, particularly with changing lighting
conditions and the inherent complexity of depth perception.
In contrast, LIDAR technology has brought forth a new
dimension in detection capabilities by providing intricate 3D
point cloud data that offers a more detailed understanding of
the object space [3], [4].

With the introduction of deep learning, pioneering 3D
object detection techniques that utilize this point cloud data
have emerged, with VoxelNet [5], [6] and PointPillars [7]
at the forefront. Among these, PIXOR [8] distinguishes
itself as a noteworthy single-stage detector that has shown
remarkable proficiency with raw point cloud data, though
it encounters some challenges when applied to the complex
JRDB dataset [1]. These deep learning approaches, especially
those that integrate CNNs [9], have transformed 2D image
processing and are now making significant strides in the
realm of 3D LiDAR data interpretation [10], [11]. VoxelNet,
for instance, has been instrumental in converting point clouds
into structured voxel grids, effectively balancing precision
with computational efficiency [5]. Nonetheless, there remain
challenges in customizing models such as PIXOR—designed
to skip preprocessing steps—for use in indoor environments
where unique challenges such as spatial limitations, varied
lighting conditions, intricate human movement patterns, and
sensor noise can complicate detection [12]. The unveiling of
the JRDB dataset [13], [14], which captures the complexity of
indoor environments, underscores the pressing need to refine
pedestrian detection algorithms for such challenging settings.

PIXOR represents a cutting-edge 3D object detection
system that processes LiDAR point clouds directly, utilizing
a bird’s eye view for efficient representation combined
with a CNN optimized for precise, density-oriented box
predictions [8]. This approach simplifies the 3D point cloud
data into a 2D grid, preserving essential height information
while reducing the complexity typically associated with 3D
voxel grids. Through this technique, PIXOR’s architecture
extracts multi-scale features, and its head component accu-
rately predicts object classes and geometrical box shapes.
The system’s innovative features, including its anchor-free
approach and the omission of separate region proposal
mechanisms, have propelled it to the forefront of the
field, evidenced by its stellar performance in benchmarks
such as KITTI, where it operates in real-time at rates
surpassing 28 FPS [15].

The JRDB dataset provides a unique egocentric view,
documenting the experiences of a social robot named
JackRabbot as it navigates the diverse indoor and outdoor
spaces of a university campus. This dataset is replete with
a wide range of human activities and introduces complex
challenges due to the variability in scene settings, population
densities, and the presence of occlusions. Its comprehensive
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annotations and extensive data serve as an invaluable resource
for developing a deeper understanding of human-centric
robotic perception.

Faced with the rich and intricate details of the JRDB
dataset, which reflect the multifaceted nature of human
activities in indoor environments, even a robust system like
PIXOR encounters new challenges. This dataset presents
a demanding set of scenarios that necessitate creative and
innovative solutions. Our research is directly aimed at
addressing these challenges. We endeavor to refine and
adapt PIXOR to more effectively handle the specificity
and unpredictability of indoor pedestrian detection, ensuring
that it can navigate and interpret the complex dynamics of
human activities within such environments. Our goal is to
tailor PIXOR’s capabilities to meet these demands, thereby
advancing the field of pedestrian detection and contributing
to the safety and efficiency of autonomous systems operating
alongside humans.

In our research, we augment the PIXOR model to address
the specific challenges of indoor pedestrian detection. Fig. 1
shows the proposed method’s framework and the structure of
IRBGHR-PIXOR. Below is a summary of our contributions:

1) We develop an enhanced PIXOR backbone tailored for
indoor LiDAR datasets, achieved through the combi-
nation of the Inverted Residual Block technique and
the application of Gaussian heatmap regression [16]
within the object detection head (IRBGHR-PIXOR).
These improvements optimize the model, significantly
boosting its accuracy in detecting objects of varying
sizes.

2) A modified focal loss [17] function has been incor-
porated to handle class imbalances, emphasizing the
significance of precise pedestrian localization.

3) In the experimental results, IRBGHR-PIXOR can
achieve higher accuracy on the JRDB validation set
compared to previous single-stage detectors. Overall,
these advancements pave the way for a robust solution
to indoor pedestrian detection challenges.

The remainder of this paper is organized as follows. Section II
reviews related work on 3D object detection using LiDAR
point clouds and other modalities. Section III describes the
proposed methods in detail, including the enhanced PIXOR
architecture, Gaussian heatmap regression, and modified
focal loss. Section IV presents extensive experiments on
the JRDB dataset, analyzing the results and benchmarking
the performance of IRBGHR-PIXOR against state-of-the-
art approaches. Finally, Section V concludes the paper and
discusses directions for future work.

Il. RELATED WORK

A. OBJECT DETECTION WITH CNN

In computer vision, the detection of objects has seen
impressive advancements, particularly due to the emergence
of Convolutional Neural Networks (CNN). Initially lauded
for their image classification capabilities [18], CNNs have
been skillfully modified for object detection tasks. Such
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FIGURE 1. Overview of the proposed 3D pedestrian detection framework utilizing LiDAR point cloud data.

modifications typically include the analysis of specific image
segments for object presence, a practice showcased by Over-
feat [19], which employs a CNN to traverse different areas
and scales to determine object boundaries. The innovation
of class-independent object proposals [20] has further honed
this process, giving rise to key developments such as Region-
CNN (RCNN) [21] and faster subsequent versions [22].
Notably, Faster-RCNN [23] has been pivotal in integrating
CNNs for both extracting features and formulating object
proposals, enhancing the efficiency of the detection process
and setting impressive new standards [24]. Yet, the complex-
ity inherent in these dual-stage methods sometimes restricts
their deployment in real-time situations. Concurrently, 2D
object detection has been substantially improved by CNN
methodologies, and there has been a parallel surge in 3D
detection technologies, especially with the application of
LiDAR systems for pedestrian detection, signifying a vital
transition from 2D to the complex analysis and understanding
of 3D spatial data.

B. 3D DETECTION OF PEDESTRIANS WITH LiDAR

LiDAR sensors, a critical component in autonomous nav-
igation systems, capture three-dimensional structural data
of environments, producing sparse 3D point clouds that
detail geometric shapes with high precision [9], [25], [26].
Initially, LiDAR detectors employed manually engineered
features and systematically scanned areas using sliding
window techniques to detect objects [27]. However, the
integration of deep learning has led to a significant leap
in the performance of 3D object detection systems. Deep
learning frameworks such as PointNet [28] and PointNet++
[29] have been at the forefront, processing unstructured point
clouds for classification and segmentation by learning the
spatial distribution of points through layers of perceptrons
and pooling operations.
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Further, voxel-based architectures like VoxelNet [5] and
SECOND [30] have advanced the field by converting point
clouds into structured voxel grids, which are better suited for
convolutional operations, thus facilitating more effective and
efficient 3D object detection. Innovations like PointPillars [7]
and PointRCNN [10] have introduced methods to condense
point clouds into dense representations, optimizing them
for 2D convolutional network processing. The development
of single-stage detection models such as PIXOR [8] and
Point-GNN [31] has streamlined the detection workflow by
omitting the region proposal phase, enhancing speed without
compromising accuracy. Advanced methodologies, such as
PV-RCNN [32], [33], blend the robust features of voxel-based
CNNs with the flexibility of PointNet architectures, while
PointPainting [34] augments point cloud data with semantic
information from other sensors, thereby overcoming the
granularity limitations inherent in voxel-based techniques.
These deep learning advancements have not only improved
the precision of LiDAR-based 3D detectors but have also
enabled their application in real-time scenarios. Nonetheless,
interpreting human activities within these detailed 3D
environments remains a complex challenge that continues to
drive research in the field [35].

C. 3D DETECTION OF PEDESTRIANS WITH CAMERA

Camera systems, in contrast to LiDAR, capture the world
in two dimensions through RGB imagery, offering rich
visual data such as color, texture, and semantic details that
complement the depth information provided by LiDAR [36].
The challenge of deriving three-dimensional data from these
inherently flat images has been a significant hurdle. Early
techniques in monocular 3D detection, like 3DOP [36],
utilized geometric constraints to infer depth information.
The rise of deep learning has seen CNN-based models
like Mono3D [37], [38], [39] and Deep3DBox [40] employ
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sophisticated algorithms to extrapolate the third dimension
from 2D detections.

Stereo camera setups and depth sensors offer a direct depth
perception that aids in the accurate localization of objects
in 3D space, with notable approaches such as FQNet [41]
and DSGN [42] exploiting this data. Additionally, self-
supervised learning methods like MonoDIS [43] forgo the
need for exhaustive 3D annotations by learning depth cues
from the image data itself. However, these camera-based
systems still fall short of the accuracy levels achieved by
LiDAR, particularly in estimating depth in monocular setups.
The synergy of fusing camera and LiDAR data is an area
of intense research, seeking to merge the strengths of both
modalities for superior 3D detection capabilities [44]. Despite
the strides made in this integration, the passive nature of
cameras means they still cannot match the depth-sensing
fidelity of active systems like LiDAR and radar on their
own [45]. The pursuit of refining passive camera-based
detection to match the efficacy of active sensing technologies
remains a dynamic and evolving field within computer
vision.

Ill. PROPOSED METHODS

Our developed system employs LiDAR data for precise
3D detection of pedestrians in indoor settings, focusing
on accurate localization and heading angle prediction.
It utilizes a more efficient 2D representation of LiDAR
point clouds for real-time processing. Upcoming sections
will discuss improvements to the system’s architecture and
the implementation of an optimized loss function to boost
accuracy.

A. DATA REPRESENTATION
The paper employs the Bird’s Eye View (BEV) as its chosen
input representation. BEV serves as a way to represent
LiDAR point clouds. The decision to favor BEV over
a 3D voxel grid is driven by the fact that conventional
neural networks operate under the assumption that input
data is grid-based. The use of a 3D voxel grid introduces
unnecessary computational overhead, especially given the
sparse nature of LIDAR point cloud data. BEV representation
reduces the input’s dimensionality from three to two while
preserving height information, allowing the application of
efficient 2D convolutions. This approach simplifies object
detection, maintains metric space, and enables the network to
leverage prior knowledge regarding the physical dimensions
of objects.

In the case of a 3D pedestrian of the nt instance,
we specify a set of 3D ground truth bounding box attributes
as (x<">, PO ORNONTONACS (,(n)). Here, x®, y® and

z™ represent the central position in the LiDAR coordinate
system, while w™, 1™ and h™ describe the width, length,
and height of the bounding box. Furthermore, 0™ denotes
the yaw rotation around the z-axis, which is oriented
perpendicular to the ground. We establish the 3D spatial
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dimensions (Xmin, Xmax) X Vumin> Ymax) X (Zmins Zmax) for
the area of interest where we aim to detect objects.

For every pedestrian’s center in the form of a 2D coordinate
in the BEV image system, we obtain the keypoints as follows:

(n) . (n)
X = Xmin Y — Ymin
p= (P @, P <n>) = ( . ) (D
* Y ry Raown ry.Riown

where ry,ry are the resolution of per cell, Rgoyn is the
output stride (downsample ratio of the model). To represent
the 2D bounding box in the BEV, we can express it
as Py, Py, %, ,y_ﬁ:iwn,f)(")). We will have cor-
responding heads for various components, including the
keypoint Gaussian heatmap head, local offset head, object
size head, and orientation head. With the proposed Gaussian
heatmap head, the values of each coordinate are explained in
the following section.

B. NETWORK ARCHITECTURE

In this study, we have made several significant modifications
to the backbone and head of the PIXOR model [8] to
improve the performance of our pedestrian detection system.
Leveraging the fully convolutional architecture specifically
designed for high-density 3D object detection in PIXOR, this
network generates pixel-wise predictions in a single stage,
where each prediction corresponds to a 3D object estimation.
The calculation of these density predictions is performed
efficiently and directly, without the need for predefined
anchor objects. This design eliminates the requirement for
anchor objects to be predefined and avoids the necessity
of adjusting the number of proposals transferred from the
first stage to the second stage, along with the corresponding
Non-Maximum Suppression threshold. This approach has
demonstrated effective performance in practical scenarios.
Nonetheless, while the original study [8] applied PIXOR
for the detection of large-sized vehicles in expansive 3D
LiDAR spaces, our research is centered around the detection
of pedestrians for indoor robotic applications. This presents a
more complex challenge due to the smaller scale of humans
within the 2D x-y plane and the intricate interplay of complex
backgrounds. To resolve this challenge, we have introduced
structural modifications to the PIXOR backbone to enhance
its operational efficiency. Furthermore, we have taken
into account the inherent correlation between pedestrian
objects and their immediate surroundings by employing a
2D Gaussian distribution strategy to represent the ground
truth, as opposed to the conventional hard-label approach.
In our approach, we treat small objects as keypoints within
their relevant context. Additionally, we have modified the
corresponding focus loss function to attain a higher level of
accuracy in the detection of small-sized objects, surpassing
the performance of several other advanced methods. The
proposed network architecture is shown in Fig. 2.

1) MODIFIED BACKBONE STRUCTURE
Basing our work on PIXOR’s architecture, we have revamped
the model’s backbone. To begin with, we replaced the
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FIGURE 2. The proposed network architecture (IRBGHR-PIXOR) for detecting pedestrians using the BEV of LiDAR 3D point cloud.

Bottleneck blocks with Inverted Residual Blocks. In conven-
tional networks, Bottleneck blocks typically consist of convo-
lutional layers. These convolutional layers serve to extract a
comprehensive representation of input features while pooling
layers aid in reducing the feature map size, thereby decreasing
computational demands and enhancing representation robust-
ness. Nevertheless, these blocks still entail considerable
computational complexity, as has been discussed in previous
studies [46] and [47].

The utilization of Inverted Residual Blocks reduces the
computational workload by a factor of ten. For a visual
comparison, please refer to Fig. 3, which illustrates the
structural distinctions between the Bottleneck Residual Block
and the Inverted Residual Block.

Nevertheless, the challenge becomes more pronounced
when dealing with small-sized objects, such as pedestri-
ans in this context. The size of a pedestrian figure is
approximately 8 X 12 pixels when utilizing a discretization
resolution of 0.05m. Following a 16X downsampling
process, it occupies less than 1 pixel, rendering the precise
identification of pedestrians within this spatial domain
quite a daunting task. To surmount this, we devised a
strategy to merge information from high-resolution feature
maps through skip connections and amalgamated this data
with low-resolution feature maps. The up-sampling of the
latter was executed using Transpose Conv2d layers with
stride = 2, ultimately resulting in the ultimate sampled
representation. Furthermore, we employed Gaussian heatmap
regression to address the challenge of dealing with small
objects.
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Our proposed backbone architecture (IRBGHR-PIXOR) is
depicted in Fig. 2, encompassing a total of eighteen layers.
The first two blocks are constructed as Conv3 X 3 with 32
channels each. Subsequently, we have incorporated eleven
Inverted Residual Blocks, structured to facilitate feature
extraction and data compression in a specific arrangement,
with varying quantities (1, 3, 4, 3). The initial convolution
within each residual block adopts a stride of 2 to facilitate
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feature map subsampling. The cumulative outcome is a
downsampling factor of 16. We seamlessly integrate the
output of three Conv1 X 1 blocks through skip connections
and further refine the result by employing two transposed
convolution blocks, thus generating the final feature-sampled
map. This ultimately yields the final feature map, exhibiting
a 4X down-sampling factor in relation to the input size
(transitioning from 240 X 240 fo 60 X 60).

2) HEAD NETWORK STRUCTURE

The head network serves the dual purpose of object
recognition and localization. However, since the focus of
this study is primarily on detecting pedestrians, the output
of the head network for object recognition takes the form
of a heatmap representing the likelihood of pedestrians.
A sigmoid activation function is employed in this particular
head. This predicted heatmap is compared to the ground
truth heatmap, which is transformed using a Gaussian kernel
during training. The localization head is further divided into
three smaller heads, including the local offset head, object
size head, and orientation head, which will be discussed in
more detail in the following subsection.

a: RECOGNITION HEAD WITH GAUSSIAN HEATMAP

The recognition head employs a Gaussian kernel for each
object within the labeled input data, where each object
is associated with a keypoint. All the ground truth pix-
els are transformed into a heatmap denoted as Ky, &

Xmax —Xmin Ymax —Ymin

R( "x-Raown * 1y-Rdown ) The ground truth for the object is
defined by a non-standard two-dimensional Gaussian func-
tion as follows:

_ (x_px)2+(y_py)2
K,y =exp (— 207 @

where (x — py) and (y — py) are the distances to the center
of the object, and o), is the standard deviation that adapts
to the object’s size [48]. In case of an overlap between
two Gaussian functions in the conversion process, the one
with the greater intensity is chosen. Fig. 4(a) depicts the
process of transforming data from a 3D LiDAR point cloud
into the ground truth heatmap by Gaussian kernel. Fig. 4(b)
exhibits the areas where objects 1 and 2 intersect, and
we opt for the object with the higher intensity level. IA(x,y
stands for the predicted heatmap value coming from the
model using the Gaussian heatmap head. A value of K Xy =
1 denotes the object’s center, while IA(x,y = 0 specifies that
the pillar is categorized as background.

b: LOCALIZATION HEAD

In the localization head, we have divided it into three
separate components to determine the object’s offset, size,
and orientation. Each object is represented as an oriented
bounding box with parameters {x., y., w, [, 8}. Here, (xc, y.)
indicate the center position of the object while, (w, [) denote
the width and length of the object in the x-y plane and,
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Pedestrian heading

FIGURE 5. The parameterization for a pixel in the geometry output.

0 represents the heading angle of the object (—m to m).
We do not consider the z-axis as the pedestrian objects we
are interested in are constrained to a single plane.

In Fig. 5, the output of the network’s regression head
is represented as {dx, dy,w, I, cos(0), sin(0)}, with each
component signifying specific object properties at each pixel
location (pyx, py). To ensure the heading angle falls within the
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desired range, it is decomposed into two correlated values.
During inference, 6 is decoded using atan2 (sin (0) , cos (0)) .
Importantly, these values pertaining to object position
and size are in real-world metric units. By employing
the logarithmic function to pre-scale the training dataset,
we attain zero mean and unit variance in the learning target

{log (dx) , log (dy) , log (W), log (1), cos (0) sin (6)}.

c: LOSS FUNCTION

In this subsection, we will present the proposed loss function
used for the pedestrian detector in 3D space. In object
recognition, let IA(x,y represent the heatmap value at (x,y) in
the predicted heatmap and let Ky y be the heatmap value at
(x,y) in the ground truth heatmap. In the previous PIXOR
model research [8], a traditional cross-entropy (CE) loss
function was employed, as illustrated in (3):

1 .
Lieat—cE = _N ZLCross entropy (Kx,y» Kx,y)
X,y
1 log (kx’y) l-.fleay = 1
= N . (3)
log (1 - Kx,y) else

where N is the total count of objects within the detection
range. However, it may not be as effective when there is
a significant class imbalance or noisy training data. The
Focal Loss (FL) function [49] has been developed with the
intention of reducing the loss for well-classified samples and
increasing the loss for poorly classified ones as follows (4):

Lpeat—FL

1 A
= _N ZLFacal loss (Kx,y9 Kx,y)
X,y
N B ~
1 Z a (1—Kx,y) log(Kx,y),

A B N
N xy | (1 —a) (Kx,y) log (l—Kx,y) , else

l:fo,y:]-

“

where o and § are the hyperparameters. In the (4), o is a
constant. Nevertheless, in this paper, when the ground truth
heatmap value deviates from 1, it is required to penalize
objects located farther from the center more significantly.
Consequently, a modified Focal Loss (MFL) function has
been suggested for this purpose, as expressed in the
following (5):

Lpeat—MFL

1 A
== N Z LModiﬁedFocalloss (Kx,y, Kx,y)
x’y

—__Z (1 K"»V) l"g(ny) ifKyy=1
= X,y 1 ny) (Kx’y) log (1—f(x’y), else
Q)]

The coefficients « and B will be selected through our
experimental results. We will evaluate the impact of these
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loss equations to determine the best equation for accurately
detecting pedestrians indoors.

In the localization head, Smooth L1 loss is used as
a replacement for the conventional L1 loss to promote
stability, and prevent abrupt gradient maxima that may lead to
premature convergence or an unstable training process. In the
experimental section, we will compare and assess L1, L2, and
Smooth L1 losses. The three loss functions are presented as
follows:

AY = Ypred — Yirue
L1(Ay) = Ay
L2(Ay) = (Ay)?
0.5(Ay)? if |Ayl <1

6
|Ay| —0.5. else ©

SmoothLy (Ay) = [

The total recognition loss and all location losses, including

offset loss, size loss, and orientation loss, are presented by the
following (5):

Liotal = Lheat—MFL + — Z SmOOthLloff (Ok —Op)
k 1

N
1 N
+ 5 > SmoothLa,, (Sk — Sk)
k=1
1 N
+ 5 I; SmoothLy,,,(0r — 01) 7

where @k, S’k, and ék are the predicted offset, size, and
orientation, while O, Sk, and 6y are the ground truth values of
the offset, size, and orientation for object k, respectively. The
proposed methods are evaluated and compared to previous 3D
pedestrian detection approaches in the experimental section.
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FIGURE 6. Data collection from various locations and data distribution.

IV. EXPERIMENTS

Our methodology utilized the PIXOR algorithm, a CNN-
based 3D object detector tailored for processing LiDAR
point clouds through a BEV representation. Central to
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our experimental setup is the JRDB pedestrian detection
dataset. Initially, we applied data augmentation techniques,
such as rotation, scaling, and translation, to the JRDB
dataset. This augmentation is vital to enhance the dataset’s
diversity and variability, fostering the development of a more
robust and adaptable model. Subsequently, the augmented
data undergoes a transformation into a BEV representation,
followed by voxelization. The BEV representation offers a
top-down view of the scene, crucial for effective pedestrian
detection in LiIDAR scans, while voxelization transforms this
data into a 3D grid, streamlining processing. Finally, the
processed data is used to train the IRBGHR-PIXOR model.
This model is an enhanced version of the PIXOR algorithm,
designed specifically for efficient and accurate pedestrian
detection using 3D LiDAR point clouds.

A. DATASETS

The JRDB pedestrian detection dataset [14] was utilized
for evaluating our proposed model. It comprises 15,000
samples, partitioned into training (80%), validation (10%),
and testing (10%) sets. Data collection took place at various
locations, including cafes, shopping centers, auditoriums,
intersections,gates, basements, lanes, halls, and memorial
courts, as illustrated in Fig. 6. The data distribution across
these locations was different, categorizing crowd density into
three levels: easy, moderate, and challenging, determined by
the population density in each area.

B. DATA AUGMENTATION

Data augmentation is employed as a critical component for
expanding the versatility and adaptability of our point cloud
data. To ensure diversity, three fundamental augmentation
techniques, namely ‘“Rotation,” “Scaling,” and ‘“Transla-
tion,” are utilized. In the “Rotation” process, the data is
subjected to a specified angle of rotation, introducing variety
within an angular limit of 20 degrees. This approach enables
the data to encompass a broad range of angular variations. For
“Scaling,” the goal is to encompass variations in object sizes
and distances. The data is consistently scaled within a range
of 0.95 o 1.05 times its original size, accommodating the
diverse array of object scales. The “Translation” operation
focuses on shifting the data to simulate different object
locations. This is achieved by applying a random shift to the
data and adjusting spatial positions using a scaling factor of
0.4. It’s noteworthy that the augmentation process selects
data randomly and effectively doubles the total number
of samples, resulting in an overall dataset size of 30,000
samples. Fig.7 shows the normalization and augmentation of
data.

C. EXPERIMENTS SETTING

The region of interest for the point cloud is set to
[—6.0, 6.0] x [—6, 6] meters for the two x-y axes, and
bird’s eye view projection is carried out with a discretization
resolution of 0.05m. The height span is established as
[—1.5, 1.5] meters within LiDAR coordinates to correspond
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with the typical human height, and all data points are
segregated into 30 segments, each with a bin width of
0.1m. In addition, a single reflectance channel is computed,
resulting in our input representation having dimensions of
240 x 240 X 30. In contrast to other detectors [50] that
commence by initializing network weights from a pre-trained
model, we opt to train our network from the ground up,
avoiding any reliance on pre-trained models.

The IRBGHR-PIXOR model is implemented in
PyTorch [51]. A batch size of 10 is employed for training,
which consists of 20 epochs. The model training is conducted
on a system with Ubuntu 20.04, an Intel i7 3.4 GHz CPU,
an Nvidia GTX 3060 GPU, and 32 GB of RAM. During
training, the networks are optimized using a learning rate
of 3x10~4. The optimization is carried out using the
AdamW [52] optimizer utilizing a one-cycle policy [53].
A momentum of 0.9 is applied, and a fixed weight decay
of 0.0005 is utilized to ensure convergence

D. EVALUATION METRIC

To assess the performance of our pedestrian detection model,
we utilize two key evaluation metrics: Intersection over
Union (IoU) and Average Precision (AP). IoU is defined
as the ratio between the intersection and union of the
predicted region and the actual object region. Here, “A0O”
corresponds to the area of overlap, which is the intersecting
area between the predicted and ground truth bounding
boxes, while “AoU” encompasses the area of union, which
combines the predicted bounding box and the ground truth.
IoU values fall within the range (0,1), with each detection
having a unique IoU score. To determine whether detection
is correct or wrong, we employ a predefined threshold.
This definition introduces the concepts of True Positive
(TP), when IoU is above the threshold, representing correct
detections; False Positive (FP), when IoU is below the
threshold, signifying wrong detections; and False Negative
(FN), which occurs when a ground truth object lacks a
corresponding predicted bounding box. Additionally, in order
to compute AP, precision and recall are defined, where
precision measures the accuracy of predictions, and recall
assesses the model’s ability to identify correct detections.
These metrics provide a comprehensive assessment of
the model’s performance in pedestrian detection. These
definitions are expressed in the following equations:

Area of Overlap (AoO) @
IoU = : 3
Area of Union (AoU) ‘
Precision = P _ w )
~ TP +FP  All of Predicted box
Recall i il (10)
ecall = =
TP +FN  All of ground truth box
1
AP = / Precision (Recall)d (Recall) (11)
0
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FIGURE 7. Normalization and augmentation of data throughout the training process.

TABLE 1. Comparative evaluation and accuracy assessment of 3D pedestrian detection systems on the JRDB test set with varying loU thresholds and

interest ranges.

Backbone Network Avg_Training AP,y-os5 , test (%) AP ,y—0.7, test (%) AP, y-0.9, test (%)
Time per Epoch ™0 "c ™ T¢ o [ 1224m | 06m | 6-12m | 12-24m | 0-6m | 6-12m | 12-24m
(Seconds)

PIXOR without GAU [8] 1262 87.38 73.16 63.53 85.51 70.35 58.42 64.63 51.58 40.65
PIXOR + GAU [8] 1320 90.52 73.63 64.62 88.73 71.94 62.41 67.92 52.15 4255
AFDet + GAU [47] 3649 95.64 76.39 65.05 94.84 75.28 62.58 76.11 54.81 44.23

IRBGHR-PIXOR + GAU 993 97.17 79.74 66.55 95.27 77.15 63.17 77.48 54.47 43.86

Range 0-6m, test

Range 6-12m, test

Range 12-24m, test
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FIGURE 8. Evaluation of proposed and conventional methods on JRDB test set: analysis of 3 regions of interest at loU=0.5 and high loU = 0.9 levels.

E. EVALUATION RESULTS

1) IMPACT OF LOSS FUNCTIONS

In our experiments, we conducted different types of com-
parisons involving our proposed model and traditional
methods like PIXOR [8] and AFDet [54] combined with a
Gaussian heatmap. The evaluation results are presented in
TABLE 1. From the table, it is evident that the proposed
approach outperforms other conventional methods in terms of
accuracy, with AP scores exceeding those of other approaches
at IoU levels of 0.5,0.7, and 0.9, within a range of
6 meters, which aligns with the requirements of indoor robots.
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Notably, the proposed method exhibits an approximately
10% improvement over the conventional PIXOR approach.
However, when compared to AFDet at IoU = 0.9 within
the distance ranges of 6m — 12m and 12m — 24m, it lags
behind by less than 1%. Nevertheless, it’s important to
note that the training speed of the proposed method is four
times slower for a single epoch. Moreover, given that the
robot operates exclusively indoors, the requirement for high
accuracy at shorter distances (below 6m) and a negligible
performance difference at longer distances (with < 1% error)
is acceptable, considering its advantages.
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TABLE 2. Impact of loss function on accuracy.

Recognition | Localization | APjy—os, val APyoy-05:09, val
(0-6m) (0-6m)
Cross-entropy L1 91.63% 82.56%
Cross-entropy | Smooth L1 92.45% 83.05%
Focal L1 93.89% 85.03
Focal Smooth L1 94.25% 85.16%
Modified-FL L1 96.25% 86.72%
Modified-FL Smooth L1 97.21% 88.30%

The fine-grained Precision-Recall (PR) curves are shown
for the four methods at IOU levels of 0.5 and 0.9 across
three different distance thresholds in Fig. 8. The curve plots
once again demonstrate the superior accuracy of our proposed
approach compared to the pedestrian detection capabilities
of the other three methods at close range. The significant
improvement in system accuracy in detecting pedestrians
for 3D point cloud data is underscored by the substantial
impact of both the proposed backbone replacement and the
application of Gaussian heatmap regression (GAU) for heat
recognition. Remarkably, the integration of the Gaussian
heatmap has demonstrated a pronounced efficacy, notably in
its capacity to augment the recognition of diminutive objects
set against an expansive spatial backdrop. This augmentation
is conspicuously reflected in the accuracy metrics when
contrasting the conventional approach devoid of Gaussian
heatmap with its Gaussian heatmap-equipped counterpart,
yielding an approximate 3% increase in accuracy.

Subsequently, an assessment of the loss functions intro-
duced for both recognition and localization heads is per-
formed. The results, depicted in TABLE 2, underscore the
model’s training procedure, encompassing the integration of
a range of loss functions, such as Cross-entropy, Focal loss,
and Modified Focal loss, in combination with L1 loss and
Smooth L1 loss. Following this, a performance evaluation
on the validation dataset is executed, comparing outcomes
based on two critical accuracy metrics (APoy = 0.5
and AP1oU=0.5:0.9)- The use of Cross-entropy and L1 loss,
while respectable, yields an APu—0.5 of 91.63% and
an APj,uy—-0.5:0.9 of 82.56%. Incorporating Cross-entropy
with Smooth L1 loss brings an improvement, resulting in
API,,U:0_5 of 92.45% and AP10U=0,5;0‘9 of 83.05%.
Meanwhile, the employment of Focal loss alongside L1
loss introduces a notable performance boost, achieving an
AP1,u—0.50f93.89% and an APj,y—0.5.0.9 of 85.03%.
Furthermore, combining Focal loss with Smooth L1 loss
enhances accuracy, resulting in an APp,py—o.5 of 94.25%
and an APIoU=0.5 of 85.16%.

Notably, the pinnacle of performance is attained with
the use of Modified Focal loss and L1 loss, achieving an
APj,u—0.5 of 96.25% and an AP1,y—0.5.0.9 of 86.72%.
The culmination of these advancements is witnessed in the
proposed method, where Modified Focal loss harmonizes
with Smooth L1 loss to achieve peak accuracy, boasting an
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APoy—0.5 of 97.21% and an AP1,y—0.5.0.9 of 88.30%.
This comprehensive evaluation underscores the remarkable
strides taken in pedestrian detection, with the ‘“Modified-
FL” and “Smooth L1”’ combination emerging as the superior
choice. The “Modified-FL” loss function emerges as a robust
solution, effectively handling challenging scenarios while
also addressing data imbalance, distances, and probability
values of ground truth, thereby enhancing the overall
performance of the detection system. In parallel, “Smooth
L1 proves its mettle in comparison to the traditional “L1”
loss by offering greater resilience to outliers, contributing
to training stability, and ensuring precise localization. The
selection of these adept loss functions is pivotal in advancing
the accuracy and reliability of pedestrian detection in 3D
point cloud data.

TABLE 3. Impact of alpha («) and beta (8) parameters on pedestrian
detection accuracy for modified-focal loss.

IRBGHR-PIXOR + GAU | APyy_os.val | APiygs.00, val
(Modified-Focal) (0-6m) (0-6m)
a=1p=1 94.77% 85.03%
a=1p=2 95.27% 86.22%
a=1,=3 96.23% 87.12%
a=1,=4 96.72% 87.43%
a=1,B=5 96.47% 87.28%
a=2,p=1 95.36% 86.66%
a=2,p=2 96.41% 87.07%
a=2,=3 96.89% 87.57%
a=2,B=4 97.21% 88.30%
a=2,B=5 97.05% 87.42%

2) PARAMETER TUNING

Following the evaluation of the proposed loss function,
which demonstrated a significant enhancement in accuracy,
we proceeded to experimentally determine the optimal values
for the alpha and beta weights within the recognition loss
function. The results of this evaluation, involving various
combinations of « and B values in (5), are presented
in TABLE 3. The observed results exhibit a consistent
upward trend in performance with the incremental increase
of both o and B values. The observed results exhibit a
consistent upward trend in performance with the incremental
increase of both alpha and beta values. Notably, the
highest performance is achieved with higher alpha and
beta values, such as « = 2 and f§ = 4, which yield
the most favorable APj,y—0.5 and APj,y—-0.5:0.9 Sscores
at 97.21% and 88.30%, respectively. These outcomes
underscore the critical importance of meticulous parameter
tuning, particularly concerning alpha and beta, to optimize
the recognition loss function. This optimization process
profoundly influences the overall accuracy of the pedestrian
detection system. It’s crucial to highlight that augmenting the
beta values imposes a more substantial penalty within the
loss function, particularly when dealing with ground truth
values smaller than 1. This penalization mechanism plays a
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FIGURE 10. Pedestrian detection results at an intersection within 0-6m and 0-12m ranges of interest with sparse pedestrian level.

pivotal role in improving the model’s capacity to recognize
pedestrians, especially in situations involving smaller objects
or challenging detection scenarios.

Fig. 9 vividly illustrates the trajectory of the loss function
values, encapsulating both Training Loss and Validation
Loss, for two distinct alpha and beta parameter combinations:
a =1, =4, and « = 2, § = 4 using the training set
of the dataset. An intriguing trend comes to the forefront,
highlighting the notably swift convergence achieved when
employing « = 2 and B = 4 throughout a 40-epoch
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training phase. It’s noteworthy that the « = 2 and 8 = 4
combination reaches a remarkable minimum loss function
value of approximately 0.5, contrasting with the higher value
of around 1.2 for the counterpart coefficient pair. This insight
underscores the heightened efficiency that = 2 and g = 4
impart to the training process. The model’s ability to swiftly
converge within a training period of 40 epochs emphasizes the
compelling advantages of fine-tuning these parameters for an
expedited and highly effective training regimen in the realm
of pedestrian detection using 3D point cloud data.
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FIGURE 11. Pedestrian detection results in a center within 0-6m and 0-12m ranges of interest with sparse pedestrian level.

TABLE 4. Impact of data augmentation on proposed method.

APyoy=os . APIoU =59,
Data Aug. - 20
ata Aug val (0-6m) val (0-6m)
IRBGHR-
0, 0,
PIXOR + none 91.06% 83.42%
GAU Rotation +
(Modified- Scaling + 97.21% 88.30%
Focal) Translation

3) IMPACT OF DATA AUGMENTATION

TABLE 4 presents a comparative evaluation of the impact of
data augmentation on the accuracy of the IRBGHR-PIXOR +
GAU (Modified-Focal) method for pedestrian detection.
Two augmentation scenarios are considered: one with no
augmentation and another involving Rotation, Scaling, and
Translation. The results clearly demonstrate the substantial
effect of data augmentation on model performance. When no
augmentation is applied, the model achieves an APj,y—-0.5
of 91.06% and an AP1,y—0.5.0.9 of 83.42%. However,
the introduction of Rotation, Scaling, and Translation
significantly enhances accuracy, with a notable boost in
APov—0.5 t0 97.21% and AP1,0-0.5:0.9 to 88.30%. This
observation underscores the pivotal role of data augmentation
in enhancing the model’s capability to detect pedestrians
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effectively. By introducing variations in the training data
through these transformations, the model becomes more
robust, improving its accuracy across a broader range of
real-world scenarios. It signifies the practical importance of
incorporating data augmentation techniques to bolster the
reliability and precision of pedestrian detection in the context
of 3D point cloud data.

In the final segment, the outcomes of pedestrian detec-
tion in real-world data will be showcased, encompass-
ing diverse locations, spanning from sparsely populated,
uncomplicated areas with sparse pedestrian presence to
intricate, densely populated environments replete with
obstacles, as depicted in Fig. 10. 11., and 12. Addition-
ally, the predicted Gaussian heatmap is also depicted in
the figure.

F. DISCUSSION
The backbone architecture refinements directly enable a
6.5% boost in Average Precision (AP) for pedestrian detec-
tion (from 73.16% to 79.74% at 0.5 IOU). This highlights the
value of multi-scale feature learning using inverted residual
blocks in processing complex spatial LiDAR data.
Additionally, integrating Gaussian heatmap regression
improves AP by 3-4% over baseline across IOU thresholds.
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FIGURE 12. Pedestrian detection results at a hall within 0-6m and 0-12m ranges of interest with high pedestrian density.

This showcases its ability to handle variability in human
shapes/sizes and overcome sensor noise/occlusions.

Furthermore, optimizing the modified focal loss function
parameters results in a 7% increase in AP over standard focal
loss. Finding the optimal «, 8 hyperparameter settings is vital
for emphasizing precise localization while mitigating class
imbalance.

Cumulatively, the architectural and algorithmic improve-
ments in IRBGHR-PIXOR advance state-of-the-art to
97.17% AP on JRDB. The 5-10% gains over existing LIDAR
detectors validate the solutions for enhancing indoor robotic
perception.

The targeted enhancements directly address key chal-
lenges that emerge when adapting pedestrian detection for
unstructured indoor settings. This research provides an
effective template to boost reliability using LiDAR for robotic
applications.

V. CONCLUSION

This paper presented a novel 3D pedestrian detection
system called IRBGHR-PIXOR tailored for indoor robotics
applications. The key contributions include:
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First, an improved PIXOR backbone using inverted
residual blocks and feature fusion to enhance multi-scale
feature learning for small objects.

Second, integration of Gaussian heatmap regression in
the detection head to precisely localize pedestrian keypoints
against complex backgrounds.

Third, a modified focal loss function to handle class
imbalance while emphasizing precise localization.

Fourth, extensive experiments on the indoor JRDB dataset
demonstrated state-of-the-art accuracy of 97.17% AP at
0.5 10U, outperforming prior methods.

The proposed architectural improvements and train-
ing strategies significantly advance the state-of-the-art in
LiDAR-based pedestrian detection for robots operating in
indoor spaces. Precise 3D perception of humans allows
safe navigation and robust scene understanding in dynamic,
unstructured environments.

Several promising avenues exist to build on this research
and further advance reliable pedestrian detection for robotics.
More advanced augmentation techniques like generative
adversarial networks (GANs) could produce highly realistic
synthetic data to improve model robustness across indoor
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scenes. Additionally, adaptive loss tuning approaches based
on meta-learning must be explored for scene-adaptive
parameter optimization instead of manual tuning. Rigorously
evaluating performance on diverse benchmark datasets would
provide invaluable insight into generalizability across varying
crowd densities, illumination conditions and sensor noise
profiles. Fusing LiDAR with complementary RGB and
depth data from vision sensors can enrich representations
through multi-modal fusion to exploit synergies between
active and passive sensing. Testing long-term real-world
functionality would reveal reliability challenges in complex
deployments, guiding the development of online domain
adaptation techniques. Thoroughly investigating these areas
of more advanced augmentation, adaptive loss tuning, multi-
dataset evaluation, sensor fusion and online adaptation
would significantly elevate pedestrian detection to overcome
limitations in robustness, adaptability and contextual rea-
soning. This research has established the foundations to
progress these multifaceted efforts toward deployment-ready
perception.

ACKNOWLEDGMENT
The authors would like to thank the support of time
and facilities from the Ho Chi Minh City University of
Technology (HCMUT), e Vietnam National University Ho
Chi Minh City (VNU-HCM), and FPT University, Can Tho,
Vietnam, for this study.

REFERENCES

[1] R.Martin-Martin, M. Patel, H. Rezatofighi, A. Shenoi, J. Gwak, E. Frankel,
A. Sadeghian, and S. Savarese, “JRDB: A dataset and benchmark of
egocentric robot visual perception of humans in built environments,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 45, no. 6, pp. 6748—6765, Jun. 2023.

[2] E. Arnold, O. Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby, and
A. Mouzakitis, “A survey on 3D object detection methods for autonomous
driving applications,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 10,
pp. 3782-3795, Oct. 2019.

[3] S. Shi, L. Jiang, J. Deng, Z. Wang, C. Guo, J. Shi, X. Wang, and H. Li,
“PV-RCNN-++: Point-voxel feature set abstraction with local vector
representation for 3D object detection,” Int. J. Comput. Vis., vol. 131, no. 2,
pp. 531-551, Feb. 2023.

[4] L. Wang and Y. Huang, “A survey of 3D point cloud and deep learning-
based approaches for scene understanding in autonomous driving,” IEEE
Intell. Transp. Syst. Mag., vol. 14, no. 6, pp. 135-154, Nov. 2022.

[5] Z.Yinand T. Oncel, “VoxelNet: End-to-end learning for point cloud based
3D object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 4490-4499.

[6] H.Wang, Z. Chen, Y. Cai, L. Chen, Y. Li, M. A. Sotelo, and Z. Li, ‘“Voxel-
RCNN-complex: An effective 3-D point cloud object detector for complex
traffic conditions,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1-12, 2022.

[7]1 H. L. Alex, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“PointPillars: Fast encoders for object detection from point clouds,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2019,
pp. 12697-12705.

[8] B. Yang, W. Luo, and R. Urtasun, “PIXOR: Real-time 3D object detection
from point clouds,” 2019, arXiv:1902.06326.

[9]1 Y. Wu, Y. Wang, S. Zhang, and H. Ogai, “Deep 3D object detection
networks using LiDAR data: A review,” IEEE Sensors J., vol. 21, no. 2,
pp. 1152-1171, Jan. 2021.

[10] Y. Li, L. Ma, Z. Zhong, F. Liu, M. A. Chapman, D. Cao, and J. Li,
“Deep learning for LiDAR point clouds in autonomous driving: A review,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 8, pp. 3412-3432,
Aug. 2021.

VOLUME 12, 2024

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]
(31]

(32]

M. S. Mekala, W. Park, G. Dhiman, G. Srivastava, J. H. Park, and
H.-Y. Jung, “Deep learning inspired object consolidation approaches using
LiDAR data for autonomous driving: A review,” Arch. Comput. Methods
Eng., vol. 29, no. 5, pp. 2579-2599, Aug. 2022.

R. Q. Charles, L. Wei, W. Chenxia, S. Hao, and J. G. Leonidas, ‘‘Frustum
PointNets for 3D object detection from RGB-D data,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 918-927.

M. Ehsanpour, F. Saleh, S. Savarese, 1. Reid, and H. Rezatofighi, “JRDB-
act: A large-scale dataset for spatio-temporal action, social group and
activity detection,” 2021, arXiv:2106.08827.

E. Vendrow, D. Tho Le, J. Cai, and H. Rezatofighi, “JRDB-pose: A large-
scale dataset for multi-person pose estimation and tracking,” 2022,
arXiv:2210.11940.

G. Andreas, L. Philip, and U. Raquel, “Are we ready for autonomous
driving? The KITTI vision benchmark suite,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2012, pp. 3354-3361.

L. Zhengxiong, W. Zhicheng, H. Yan, T. Tan, and Z. Erjin, “Rethinking
the heatmap regression for bottom-up human pose estimation,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2020,
pp. 13264-13273.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dolldr, ““Focal loss for dense
object detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2,
pp. 318-327, Feb. 2020.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097-1105.

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and
Y. L. Cun, “OverFeat: Integrated recognition, localization and detection
using convolutional networks,” in Proc. Int. Conf. Learn. Represent., 2014,
pp. 1-16.

J. Pont-Tuset, P. Arbeldez, J. T. Barron, F. Marques, and J. Malik,
“Multiscale combinatorial grouping for image segmentation and object
proposal generation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 1, pp. 128-140, Jan. 2017.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014,
pp. 580-587.

J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object detection via region
based fully convolutional networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 379-387.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 91-99.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, and M. Bernstein, “ImageNet large scale visual
recognition challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252,
Dec. 2015.

S. Huang, L. Liu, X. Fu, J. Dong, F. Huang, and P. Lang, “Overview
of LiDAR point cloud target detection methods based on deep learning,”
Sensor Rev., vol. 42, no. 5, pp. 485-502, Aug. 2022.

D. Fernandes, A. Silva, R. Névoa, C. Simoes, D. Gonzalez,
M. Guevara, P. Novais, J. Monteiro, and P. Melo-Pinto, ‘“‘Point-cloud
based 3D object detection and classification methods for self-driving
applications: A survey and taxonomy,” Inf. Fusion, vol. 68, pp. 161-191,
Apr. 2021.

M. Arsalan, A. Dragomir, F. John, F. John, and K. Jana, “3D bounding
box estimation using deep learning and geometry,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2017, pp. 7074-7082.

R. Q. Charles, S. Hao, K. Mo, and J. G. Leonidas, ‘“PointNet: Deep learning
on point sets for 3D classification and segmentation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jul. 2017, pp. 652—660.

R. Q. Charles, Y. Li, S. Hao, and J. G. Leonidas, ‘“PointNet++: Deep
hierarchical feature learning on point sets in a metric space,” in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 1-10.

Y. Yan, Y. Mao, and B. Li, “SECOND: Sparsely embedded convolutional
detection,” Sensors, vol. 18, p. 3337, Oct. 2018, doi: 10.3390/s18103337.
W. Shi and R. Rajkumar, “‘Point-GNN: Graph neural network for 3D object
detection in a point cloud,” 2020, arXiv:2003.01251.

S. Shi, L. Jiang, J. Deng, Z. Wang, C. Guo, J. Shi, X. Wang, and H. Li,
“PV-RCNN++: Point-voxel feature set abstraction with local vector
representation for 3D object detection,” 2021, arXiv:2102.00463.

9175


http://dx.doi.org/10.3390/s18103337

IEEE Access

D. A. Nguyen et al.: Enhancing Indoor Robot Pedestrian Detection

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]

[54]

9176

S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “PV-
RCNN: Point-voxel feature set abstraction for 3D object detection,” 2019,
arXiv:1912.13192.

S. Vora, A. H. Lang, B. Helou, and O. Beijbom, ‘PointPainting:
Sequential fusion for 3D object detection,” 2019, arXiv:
1911.10150.

0. Rinchi, H. Ghazzai, A. Alsharoa, and Y. Massoud, “LiDAR technology
for human activity recognition: Outlooks and challenges,” IEEE Internet
Things Mag., vol. 6, no. 2, pp. 143-150, Jun. 2023.

C. Xiaozhi, K. Kundu, Y. Zhu, A. G. Berneshawi, H. Ma, S. Fidler, and
R. Urtasun, “3D object proposals for accurate object class detection,” in
Proc. NIPS, 2015, pp. 1-9.

V. A. Christine, S.-N. Jaya, and S.-N. Jaya, “Building 3D virtual worlds
from monocular images of urban road traffic scenes,” in Advances in Visual
Computing (Lecture Notes in Computer Science). 2021.

M. Zhu, S. Zhang, Y. Zhong, P. Lu, H. Peng, and J. Lenneman,
“Monocular 3D vehicle detection using uncalibrated traffic cameras
through homography,” 2021, arXiv:2103.15293.

Y. Chen, F. Liu, and K. Pei, “Monocular vehicle 3D bounding box
estimation using homograhy and geometry in traffic scene,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2022,
pp. 1995-1999.

F. Chabot, M. Chaouch, J. Rabarisoa, C. Teuliere, and T. Chateau,
“Deep MANTA: A coarse-to-fine many-task network for joint 2D
and 3D vehicle analysis from monocular image,” 2017, arXiv:1703.
07570.

L. Lijie, J. Lu, C. Xu, Q. Tian, and J. Zhou, “Deep fitting degree scoring
network for monocular 3D object detection,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2019, pp. 1057-1066.

Y. Chen, S. Liu, X. Shen, and J. Jia, “DSGN: Deep stereo
geometry network for 3D object detection,” 2020, arXiv:
2001.03398.

A. Simonelli, S. R. R. Bulo, L. Porzi, M. Lépez-Antequera, and
P. Kontschieder, ‘““Disentangling monocular 3D object detection,” 2019,
arXiv:1905.12365.

D. Feng, C. Haase-Schiitz, L. Rosenbaum, H. Hertlein, C. Glaser, F. Timm,
W. Wiesbeck, and K. Dietmayer, “Deep multi-modal object detection
and semantic segmentation for autonomous driving: Datasets, methods,
and challenges,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 3,
pp. 1341-1360, Mar. 2021.

V. S. Hikkal, “Comparative study of 3D object detection frameworks based
on LiDAR data and sensor fusion techniques,” J. Phys., Conf., vol. 2232,
May 2022, Art. no. 012015.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510-4520.

P. Ding, H. Qian, and S. Chu, “SlimYOLOv4: Lightweight object
detector based on YOLOV4,” J. Real-Time Image Process., vol. 19, no. 3,
pp. 487-498, Jun. 2022.

H. Law and J. Deng, “CornerNet: Detecting objects as paired keypoints,”
Int. J. Comput. Vis., vol. 128, no. 3, pp. 642-656, Mar. 2020.

M. Weber, M. Fiirst, and J. M. Zollner, “Automated focal loss for
image based object detection,” in Proc. IEEE Intell. Vehicles Symp. (IV),
Oct. 2020, pp. 1423-1429.

X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3D object
detection network for autonomous driving,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jul. 2016, pp. 1907-1915.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” Tech. Rep., 2017.

I. Loshchilov and F. Hutter, “‘Decoupled weight decay regularization,” in
Proc. Int. Conf. Learn. Represent., 2017, pp. 1-19.
S. Gugger. (2018). The ICycle Policy.
https://sgugger.github.io/the-1cycle-policy.html

R. Ge, Z. Ding, Y. Hu, Y. Wang, S. Chen, L. Huang, and Y. Li,
“Afdet: Anchor free one stage 3D object detection,” 2020, arXiv:
2006.12671.

[Online].  Available:

oA

DUY ANH NGUYEN received the bachelor’s
degree in mechatronic engineering from the
Ho Chi Minh City University of Technology
(HCMUT), Vietnam, in 2015, and the Ph.D.
degree from Nanyang Technological University,
Singapore, in 2020. He was a Postdoctoral
Researcher with the Korea Advanced Institute of
Science and Technology (KAIST), until 2023.
He is currently a Lecturer with HCMUT. He is
also a Researcher and an Educator in the field

of mechatronic engineering and related disciplines. His research interests
include frequency comb, photonics, computer vision, and intelligent systems.

A~

KHANG NGUYEN HOANG is currently pur-
suing the degree in software engineering with
the Department of Software Engineering, FPT
University, Can Tho, Vietnam.

His research interests include machine learning,
deep learning, autonomous robotics, and image
processing.

NGUYEN TRUNG NGUYEN is currently pur-
suing the degree in software engineering with
the Department of Software Engineering, FPT
University, Can Tho, Vietnam.

His research interests include autonomous
robots, computer vision, deep learning, and
machine learning.

DUY ANH NGUYEN received the bachelor’s
degree in automatic control from the Ho Chi
Minh City University of Technology (HCMUT),
Vietnam, in 2003, and the master’s and Ph.D.
degrees in logistics from Korea Maritime Uni-
versity, in 2006 and 2009, respectively. He is
currently an Associate Professor with the Faculty
of Mechanical Engineering, HCMUT. He is also
a Researcher and an Academician in the fields
of mechatronic engineering, automation, robotics,

and logistics. His research interests include logistics, automation, robotics,
mechatronics, computer vision, and manufacturing technologies.

HOANG NGOC TRAN received the B.S. degree
in mechatronics engineering from the Ho Chi
Minh City University of Technology, Ho Chi Minh
City, Vietnam, in 2015, and the Ph.D. degree
in electrical and computer engineering from
Sungkyunkwan University, Suwon, South Korea,
in 2020.

From 2020 to 2022, he was a Postdoctoral
Researcher with the Department of Electrical and
Computer Engineering, Sungkyunkwan Univer-

sity. Since 2022, he has been a Lecturer and a Researcher with the
Department of Software Engineering, FPT University, Can Tho, Vietnam.
His research interests include signal processing, motion control, embedded
systems, autonomous robotics, computer vision, machine learning, and deep

learning.

VOLUME 12, 2024



